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Abstract. The contribution of cold-season soil respiration to
the Arctic—boreal carbon cycle and its potential feedback to
the global climate remain poorly quantified, partly due to a
poor understanding of changes in the soil thermal regime and
liquid water content during the soil-freezing process. Here,
we characterized the processes controlling active-layer freez-
ing in Arctic Alaska using an integrated approach combin-
ing in situ soil measurements, local-scale (~ 50 m) long-
wave radar retrievals from NASA airborne P-band polarimet-
ric SAR (PolSAR) and a remote-sensing-driven permafrost
model. To better capture landscape variability in snow cover
and its influence on the soil thermal regime, we downscaled
global coarse-resolution (~ 0.5°) MERRA-2 reanalysis snow
depth data using finer-scale (500 m) MODIS snow cover ex-
tent (SCE) observations. The downscaled 1 km snow depth
data were used as key inputs to the permafrost model, cap-
turing finer-scale variability associated with local topogra-
phy and with favorable accuracy relative to the SNOTEL
site measurements in Arctic Alaska (mean RMSE = 0.16 m,
bias = —0.01 m). In situ tundra soil dielectric constant (&)
profile measurements were used for model parameteriza-
tion of the soil organic layer and unfrozen-water content
curve. The resulting model-simulated mean zero-curtain pe-
riod was generally consistent with in situ observations span-
ning a 2° latitudinal transect along the Alaska North Slope
(R: 0.6 +£0.2; RMSE: 19 & 6 days), with an estimated mean
zero-curtain period ranging from 61+ 11 to 73 £ 15 days
at 0.25 to 0.45m depths. Along the same transect, both
the observed and model-simulated zero-curtain periods were
positively correlated (R > 0.55, p < 0.01) with a MODIS-
derived snow cover fraction (SCF) from September to Octo-

ber. We also examined the airborne P-band radar-retrieved ¢
profile along this transect in 2014 and 2015, which is sen-
sitive to near-surface soil liquid water content and freeze—
thaw status. The ¢ difference in radar retrievals for the sur-
face (~< 0.1 m) soil between late August and early Octo-
ber was negatively correlated with SCF in September (R =
—0.77, p <0.01); areas with lower SCF generally showed
larger ¢ reductions, indicating earlier surface soil freezing.
On regional scales, the simulated zero curtain in the up-
per (< 0.4 m) soils showed large variability and was closely
associated with variations in early cold-season snow cover.
Areas with earlier snow onset generally showed a longer
zero-curtain period; however, the soil freeze onset and zero-
curtain period in deeper (> 0.5 m) soils were more closely
linked to maximum thaw depth. Our findings indicate that a
deepening active layer associated with climate warming will
lead to persistent unfrozen conditions in deeper soils, pro-
moting greater cold-season soil carbon loss.

1 Introduction

Warming in the northern high latitudes is occurring at
roughly twice the global rate, leading to widespread soil
thawing and permafrost degradation (Liljedahl et al., 2016).
Increasing soil warming and thawing potentially expose vast
soil organic carbon (SOC) stocks in permafrost soils to mo-
bilization and decomposition, which may promote large pos-
itive climate feedbacks (Schuur et al., 2015). The timing,
magnitude, location and form of this potential permafrost
carbon feedback remain highly uncertain due to many poorly
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understood mechanisms that control permafrost thaw and
subsequent organic carbon decomposition (Lawrence et al.,
2015). Despite recent improvements in modeling permafrost
soil thermal and carbon dynamics, global model projections
of near-surface permafrost loss by 2100 range from 30 %
to 99 % and associated carbon release ranges from 37 to
174 Pg C under the current climate warming trajectory (Rep-
resentative Concentration Pathway RCP 8.5) (Koven et al.,
2013; Schuur et al., 2015). Moreover, most observational and
modeling studies in the Arctic—boreal zone (ABZ) have em-
phasized the shorter growing season, while cold-season soil
respiration may account for more than 50 % of the annual
carbon budget (Zona et al., 2016).

A lack of consensus on the contribution of cold-season soil
respiration to the annual ABZ carbon cycle and the poten-
tial carbon feedbacks of ABZ ecosystems to global climate
can be largely attributed to a relatively poor understanding
of changes in liquid water content and soil thermal regime
that occur during the seasonal soil freeze—thaw (F-T) tran-
sition (Oechel et al., 1997; Zona et al., 2016). Models typ-
ically assume that the thaw or growing season is the most
active period of carbon exchange in ABZ ecosystems, while
soil respiration largely shuts down when surface soils freeze
(Commane et al., 2017). However, unfrozen conditions in
deeper soil layers can persist for a substantially longer pe-
riod than surface soils and maintain a significant amount of
liquid water, sustaining soil respiration for several weeks or
more (Oechel et al., 1997). Earlier snow accumulation and
a deeper snowpack can effectively insulate soils from cold-
air temperatures (Zhang, 2005; Yi et al., 2015). Soil mois-
ture can further delay soil freezing due to large latent heat
release with soil-water phase change, where soil tempera-
tures can persist near 0 °C (i.e., the zero-curtain period) for
up to several weeks or more during the late fall and early
winter seasons. The zero curtain can sustain soil microbial
activity and has been shown to be closely correlated with
soil respiration during the early cold season (Zona et al.,
2016; Euskirchen et al., 2017). Highly organic soils and peat
(e.g., SOC > 25 kng’z), prevalent in the ABZ, can act as
strong insulators during the summer thaw season and can
also have a significant impact on the soil thermal regime and
hydrologic processes due to their distinct hydraulic and ther-
mal properties (Lawrence and Slater, 2008; Rawlins et al.,
2013).

We still lack a comprehensive understanding of how the
soil-freezing process and zero curtain vary across the Arc-
tic and are responding to recent climate trends and associ-
ated changes in snow cover conditions, especially in deep
soils. Limited field studies have shown inconsistent trends in
the fall soil freeze-up and zero-curtain period in the Arctic,
mainly attributed to the relatively short study period exam-
ined and large interannual climate variability (Smith et al.,
2016; Euskirchen et al., 2017; Kittler et al., 2017). More-
over, sparse in situ measurements covering different temporal
periods pose challenges in characterizing regional trends in
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soil freezing across the Arctic. Satellite microwave remote-
sensing data sets over the past 3 decades indicate widespread
reductions (~ 0.8-1.3 days decade™!) in the mean annual
frozen season across the pan-Arctic domain (Kim et al.,
2015). This is primarily caused by earlier spring thawing,
while the onset of fall soil freezing shows more variable
trends, partly due to more variable snow cover conditions
during fall and winter (Qian et al., 2011; Brown and Derk-
sen, 2013; Burke et al., 2013). Moreover, current satellite mi-
crowave sensors operating at frequencies ranging from Ka to
L-band that provide regional monitoring of surface F-T dy-
namics are generally less sensitive to deeper soils, e.g., be-
low ~ 5cm depth. The soil F-T classification is also con-
strained by the coarse spatial resolution (~> 10km) of pas-
sive microwave sensors and scatterometers relative to finer-
scale landscape heterogeneity, particularly during seasonal
F-T transitions (Naeimi et al., 2012; Rautiainen et al., 2016;
Derksen et al., 2017).

Detailed process models have been widely used to simu-
late soil F-T and permafrost dynamics in the ABZ, which can
effectively represent heat transfer between the atmosphere
and underlying soil and permafrost layers to predict changes
in active-layer conditions and land—atmosphere interactions
(Burke et al., 2013; Rawlins et al., 2013; Lawrence et al.,
2015; Paquin and Sushama, 2015; Jafarov et al., 2018). How-
ever, regional model applications are constrained by multi-
ple factors including large uncertainties in surface meteorol-
ogy drivers, deficient representations of surface heterogene-
ity and microtopography and insufficient understanding of
the processes controlling soil F-T and permafrost dynamics
(e.g., Koven et al., 2013; Slater and Lawrence, 2013; Walvo-
ord and Kurylyk, 2016). Other models provide an interme-
diate level of complexity by relying on a simplified process
logic utilizing satellite remote-sensing-based environmental
observations as key model drivers; these models have been
effective in regional-scale mapping of permafrost extent and
active-layer dynamics in the Arctic (Westermann et al., 2017;
Yiet al., 2018).

The objective of this study was to clarify primary envi-
ronmental controls on the timing of seasonal freezing of the
active layer and the duration of the zero-curtain period in
Arctic Alaska. A remote-sensing-driven soil process model
was used to examine the impact of climate variability and
snow cover properties on the estimated soil F-T transition
and zero curtain within the active-layer profile. Model simu-
lations were conducted at 1 km resolution and over a multi-
year period (2001-2016) to capture landscape-level hetero-
geneity in active-layer freezing process and its sensitivity to
regional environmental trends. To better capture the snow
cover variability and its impact on soil F-T dynamics, we
also developed a new algorithm to generate a fine-resolution
(1 km) snow depth data set as soil model inputs through com-
bining the MODerate resolution Imaging Spectroradiome-
ter (MODIS) snow cover extent (SCE) and coarse-resolution
global reanalysis data. The timing and duration of frozen
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soil conditions in the Arctic strongly influence underlying
permafrost stability and potential vulnerability of vast SOC
stocks in the tundra area (Parazoo et al., 2018; Yi et al.,
2018; Zona et al., 2016). Thus, the model results also help
clarify the potential response of cold-season soil respiration
and boreal—Arctic carbon cycle to current climate warming
trends.

2 Methods

In this study, we used a remote-sensing-driven permafrost
soil model that was previously applied to simulate the active-
layer dynamics across Alaska at 1km resolution (Yi et al.,
2018). Seasonal snow cover is a key model driver and one
of the most important factors influencing soil freezing, while
few snow data sets are available for the Arctic region with
suitable spatial (< 1 km resolution) and temporal (~ weekly)
fidelity. Most regional and global permafrost models rely on
global reanalysis precipitation or snow data sets to repre-
sent snow insulation effects on soil thermal regime. However,
coarse-resolution reanalysis data sets generally have diffi-
culty capturing landscape-scale (100—1000 m) variability in
snow cover conditions, especially over complex terrain and
during seasonal transitions (Liston and Sturm, 2002; Gisnas
et al., 2016). Therefore, a necessary first step in our study
involved generating an Alaskan snow data set with suitable
spatial and temporal resolution consistent with soil model
inputs (1km and 8 day). To do this, we developed a new
algorithm to downscale the coarse (~ 0.5°) global reanaly-
sis snow depth data using finer-scale MODIS SCE records
(Fig. 1). The resulting downscaled 1km snow data set was
used as the soil model inputs to simulate the soil freeze onset
and zero-curtain period over the Alaskan Arctic.

Soil dielectric constant is directly associated with the
amount of unfrozen water remaining during soil freeze-up
and thus may better define the active-layer freezing pro-
cess compared with soil temperature. In this study, we in-
vestigated the sensitivity of soil dielectric constant to active-
layer freezing indicated from both in situ measurements
and airborne radar retrievals during the fall transitional pe-
riod. Longwave (P-band) polarimetric SAR (PolSAR) data
with large penetration depths (~ 50-60 cm depending on soil
moisture content) were acquired from airborne radar acqui-
sitions over northern Alaska in August and October 2014
and 2015 prior to the NASA Arctic Boreal Vulnerability Ex-
periment (ABoVE) airborne campaign. The airborne radar
data were used to characterize spatial variability and seasonal
shifts in the near-surface (~< 10cm depth) soil dielectric
constant associated with the soil F-T transition. These data
were used to augment more detailed but spatially limited in
situ soil dielectric measurements used for model parameter-
ization and to assess the value of longwave radar measure-
ments in frozen soil studies. Resulting model simulations
were then validated using ground-based zero-curtain mea-
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surements. We then conducted an integrated analysis of the
sensitivity of active-layer freezing to variable snow condi-
tions combining in situ observations, model simulations and
airborne radar retrievals.

2.1 Constructing a fine-resolution regional snow data
set

In a previous study (Yi et al., 2018) we used coarse-
resolution (0.5°) snow depth data from the MERRA-2 global
reanalysis as input for the permafrost model over Alaska. In
the prior study, we first interpolated the MERRA-2 data over
a finer 1 km spatial grid using an inverse-distance weight-
ing scheme and then used the MODIS 500 m SCE data to
identify snow-free pixels within each coarser MERRA-2 grid
and adjust the 1 km snow depth estimates accordingly. How-
ever, a more sophisticated downscaling scheme was needed
to better account for the influence of local topography on the
1 km snow distribution pattern. This information can be de-
rived from the MODIS SCE data; however, persistent cloud
cover and patchy snow conditions constrain the ability of the
MODIS SCE data to capture snow cover variability, espe-
cially during the transitional season. To overcome this con-
straint, in this study we developed an elevation-based spa-
tial filtering algorithm to predict the snow occurrence for
MODIS cloud-contaminated pixels; we then used the cloud-
free MODIS SCE data to downscale the MERRA-2 snow
depth data (Fig. 1). For each snow-covered 1km pixel in-
dicated by the MODIS data, we estimated the snow depth
based on the snow depth of neighboring MERRA-2 0.5° grid
cells, with weights predicted using a similar spatial filter.

2.1.1 Cloud filtering of MODIS SCE data

Most existing cloud-filter algorithms designed for the
MODIS SCE products use empirical relationships between
snow cover conditions and ancillary data to predict the snow
cover occurrence for cloud-covered pixels (e.g., Parajka and
Bloschl, 2008; Gafurov and Bardossy, 2009; Parajka et al.,
2010). The empirical relationships are generally appropriate
for the limited areas or conditions in which they were devel-
oped and may not be suitable for other regions with different
climates or topography. To develop a more general cloud-
filter algorithm, we exploited spatial interpolation methods
originally designed for generating grid-based surface meteo-
rology from in situ weather station observations. We used a
similar methodology that was used to generate Daymet sur-
face precipitation, which uses a truncated Gaussian weight-
ing filter and accounts for the dependence of precipitation on
elevation (Thornton et al., 1997). This method was found to
generate reliable precipitation estimates in complex topogra-
phy in the western USA (Henn et al., 2018). For our appli-
cation, we treated the pixels without cloud cover as “station
observations” and then used the spatial filter to predict the
occurrence of snow in cloud-contaminated pixels and gener-
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Figure 1. Flow diagram describing the snow data processing and soil
occurrence probability for MODIS cloud-contaminated pixels. Based on
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modeling procedure. A spatial filter was used to predict the snow
the cloud-free MODIS SCE imagery, the snow depth of each snow-

covered 1 km pixel was estimated from the snow depth of the neighboring MERRA-2 grid cells with weights predicted using another spatial
filter. The downscaled 1 km snow depth data were then used to drive a remote-sensing-based soil process model to simulate the zero-curtain
period and ALT. Both the snow data processing and soil modeling were carried out at an 8-day time step.

ate continuous cloud-free snow cover images at 1 km spatial
resolution and 8-day timescale.

The general form of the spatial filter, with respect to the
cloud-contaminated or central pixel (i) to be filled, is defined
as follows:

0; if d>R
- d\*
Wd) exp |:—a(ﬁ) :| —exp(—a); if d<R|’

ey

where W (d) is the filter weight associated with the radial
distance d from the central pixel, and « is a unitless shape
parameter with a prescribed value of 6.0 following Thorn-
ton et al. (1997). R is the truncation distance, varying with
the local density of observations (i.e., cloud-free pixels) in
the adjacent areas of the central pixel; at least 50 observa-
tions should be included for interpolation to the central pixel,
within a maximum search radius of 50 km. Snow distribution
is closely associated with local topography; therefore, we di-
vided the observations falling within the range of the search
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radius into two groups representing elevations above and be-
low the elevation of the central pixel. We then estimated the
snow occurrence probability (Psnow) and weighted elevation
(Z) for each group:

n
> W(d;) x P;
Psnow = =l n s
2 W (d;)
j=l1
where P l 1; if snow exists ]
= 0; if snow does not exist
n
Z W(d)) x Z;
z="" 2)
> W(d))

j=1

The snow occurrence probability at the central pixel (Psnow, i)
was then estimated as a weighted function of the snow occur-
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rence probability of the two groups (Zpove and Zpelow):

Psnow,i = Lsnow,below + (Psnow,above - Psnow,below)

X (Zi = Zvelow) / (Zavove — Zbelow)- 3)

The snow cover condition (SC) of the central pixel is de-
termined based on the comparison of Pgpow,; With a specific
cutoff value, Peyoft:

“

SC = [ 0; Psnow,i < Pcutoff]

I; Psnow,i > Peutoft

Temporal filtering of the MODIS SCE data was conducted
prior to the application of the spatial filter. Pixels with cloud
cover were reclassified as either snow or nonsnow condi-
tions if the two temporally adjacent 8-day periods were both
identified as cloud-free and indicated consistent snow or
nonsnow-covered conditions. Missing SCE pixels occurring
during polar night were assigned as “snow” when there were
established snow cover conditions in the prior 8-day period
or there was more than 0.2m snow depth indicated by the
co-located MERRA-2 grid cell. This procedure effectively
reduced the number of cloud-contaminated pixels requiring
gap filling.

2.1.2 Downscaling of MERRA-2 snow depth data

The resulting cloud-free 8-day MODIS SCE data was used
with a 1 km digital elevation model (DEM) aggregated from
the 2 arcsec (~ 60 m) DEM for Alaska (U.S. Geological Sur-
vey, 2017) to downscale the MERRA-2 snow depth data to
1 km resolution. Here, a spatial filter similar to the above pro-
cedure was used for the downscaling process, except that the
MERRA-2 gridded snow data were treated as station obser-
vations and the station elevations were defined as the mean
elevation within the associated MERRA-2 grid cell. Previous
studies have demonstrated a clear dependence of snow depth
on elevation, generally with a snow depth increase with el-
evation up to a certain level followed by a decrease at the
highest elevations (Griinewald et al., 2014; Kirchner et al.,
2014). Therefore, we used the transformed snow depth vari-
ables instead of the original MERRA-2 snow depth as input
to the spatial filter to account for the dependence of snow dis-
tribution on elevation. We used a least-squares regression to
analyze the relationship between snow depth and elevation:

( SD — SDmin
SDmax - SDmin

Z — Zmin
) fo+ il 7). 3)
The snow depth (SD) and elevation (Z) data were normal-
ized using their maximum (SDpax and Zpax) and mini-
mum (SDpin and Zyip) values from the MERRA-2 grid cells
within the spatial search radius to account for local variability
in snow distribution (Griinewald et al., 2014). 8o and B are
empirical fitting parameters from the regression model. Lin-
ear regression does not account for the snow depth decrease
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at the highest elevations; however, the coarse MERRA-2 data
represent average conditions within each ~ 0.5° grid cell
and are unable to capture snow depth changes at these high-
elevation extremes.

For each 1km snow-covered pixel indicated by the
MODIS SCE data, snow depth is estimated as follows:

(7 7)
W(dj)XSCX( ! : Zmax_Zmin )

X (SDmax —SDmin)

S W (d;) x SC
j=1

n

j=1

SD; =

k]

(6)

where the interpolation only weights MERRA-2 grid cells
with snow occurrence (indicated by SC). The MERRA-2
snow depth data were used directly for the spatial interpo-
lation (i.e., B1 = 0) where no significant relationship was in-
dicated between elevation and snow depth changes within the
search radius.

2.2 The remote-sensing-driven permafrost soil process
model

The newly developed snow depth data were used with other
satellite remote-sensing data sets as primary input to an es-
tablished permafrost soil model (Yi et al., 2018) for simu-
lating soil freeze onset and zero-curtain period across Arc-
tic Alaska. The model was developed based on a detailed
permafrost hydrology model (Rawlins et al., 2013; Yi et al.,
2015) but has a flexible structure designed to exploit remote-
sensing observations as key model drivers and for model pa-
rameterization. The remote-sensing-based permafrost model,
as described in Yi et al. (2018), uses a numerical approach
to simulate soil F-T processes and the temperature profile
down to 60 m below the surface using 23 soil layers, with in-
creasing layer thickness at depth (soil nodes from 0 to 1 m:
0.01, 0.03, 0.08, 0.13, 0.23 ,0.33, 0.45, 0.55, 0.70, 1.05 m).
Up to five snow layers are used to account for the effects of
seasonal snow cover evolution on snow density and thermal
properties. Both snow heat capacity and thermal conductiv-
ity vary with snow density and are estimated using empirical
methods (Calonne et al., 2011). The model also accounts for
the effects of organic soils and soil-water phase change on
the soil F-T process as described below.

The soil model simulates snow and ground thermal dy-
namics by solving a 1-D heat transfer equation with phase
change (Nicolsky et al., 2007; Rawlins et al., 2013):

B 0 B 0
CET(Z’IH_L;EG(T’Z):8_z(A8_zT(Z’t))’ 7
Z € [zs, 2b]

where T (zt) is the temperature (°C) at a specific soil depth
(z) and time step (¢), L is the volumetric latent heat of fusion
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of water (Jm™3), ¢ is the volumetric water content (m>m~3),
and 0 is the unfrozen liquid water fraction (range: 0-1). C
and A are the volumetric heat capacity (Jm—> K~') and ther-
mal conductivity (Wm™' K~1) of soil respectively, varying
with soil moisture, F-T state and depth. The upper bound-
ary condition is set as the surface temperature (i.e., LST) at
the snow—ground surface (z5), while a heat flux characteriz-
ing the geothermal gradient is applied at the lower boundary
(zb). The soil heat capacity is a function of heat capacities
for soil solid and liquid water, and ice components (Farouki,
1981):

C=(1=/)Cn+ fCo) (1 =bsar) +0wCyw +6:Ci, ®)

where Cy,, Cy, Cy and Cj are the heat capacity of mineral and
organic soil solid, liquid water and ice respectively, weighted
by their volumetric function. f is the soil organic fraction;
Osat, Ow and 6; are the respective saturated water content, vol-
umetric liquid water and ice content, where (6y + 6;) < Ogat.
The thermal conductivity A (Wm~! K~!) was estimated as a
normalized thermal conductivity of the dry (Agry) and satu-
rated (Agar) soil thermal conductivity weighted by soil satu-
ration:

A= Kedga + (1 — Ke)dary ©)

where the Kersten number (Ke) is a function of the soil satu-
ration degree, generally using a logarithm form for unfrozen
soils or linear form for frozen soils (Lawrence and Slater,
2008). Agry is estimated from the soil bulk density; Agyt is
estimated as a geometric mean of the thermal conductiv-
ity of different soil components (Farouki, 1981), which can
vary several-fold from pure organic soil (~ 0.5 Wm~! K1)
to mineral soils (1.5-3 Wm~!K~1);

)"sat — Ag_f)(l_esal)kg(l_esa‘))\,‘%m’w)\,?sm’i, (10)

where Ap, Ao, Ay and A; are the thermal conductivity of min-
eral and organic soil solid, liquid water and ice, respectively;
and Ogy,w and g i are the respective unfrozen liquid water
and ice fractions under saturated conditions.

The unfrozen liquid water fraction (@) is estimated empir-
ically as follows:

1 T >T,

=1 npirt T <1

an
Soil water usually freezes at sub-zero temperatures depend-
ing on solute concentration and other factors, and the con-
stant T is used to represent this freezing-point depression,
with values generally above —1°C (Banin and Anderson,
1974; Woo, 2012). b is a dimensionless parameter deter-
mined by fitting the unfrozen water curve (Romanovsky and
Osterkamp, 2000; Schaefer and Jafarov, 2016). A significant
amount of liquid water can exist even when the soil tempera-
ture is considerably lower than T, characterized by different
values of b. Fine-grained soils that can have a larger amount
of liquid water below freezing are generally associated with
smaller b values (Woo, 2012).
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2.3 Model driver data sets and in situ data

Model simulations were conducted in the Arctic Alaskan
domain (> 66.55°N, Fig. 2), encompassing an area of
~ 400 000 km? and spanning a 16-year period (2001-2016).
Primary model drivers include MODIS 8-day composite
1km LST (MOD11A2; Wan and Hulley, 2015) and 500 m
SCE records (MOD10A2; Hall and Riggs, 2016), SMAP
9km NatureRun (Version 4) and level 4 daily surface (<
Scm depth) and root zone (0—1m depth) soil moisture
(L4SM, Reichle et al., 2017), and daily snow depth and
snow density from MERRA-2 global reanalysis data (Gelaro
et al.,, 2017). The MODIS LST and SMAP L4SM prod-
ucts were used to define model boundary conditions and soil
thermal properties. The soil process model was run at 1 km
resolution and 8-day time step consistent with the MODIS
LST and SCE inputs. All model input data sets were re-
projected to a consistent 1 km Albers projection. The model
snow depth inputs were derived by combining the MODIS
SCE and MERRA-2 snow depth records as discussed in
Sect. 2.1. Compared with snow depth, snow density shows
much smaller spatial and temporal variability (Sturm et al.,
2010); therefore, we used the 1km snow density data gen-
erated using a simple spatial interpolation scheme as de-
scribed in Yi et al. (2018). Other ancillary inputs to the
soil model included the 30 m National Land Cover Database
(NCLD) 2011 (Jin et al., 2013), 2arcsec (~ 60m) DEM
for Alaska (U.S. Geological Survey, 2017), 50m SOC es-
timates for Alaska (to 1 m depth; Mishra et al., 2016), and
the global 9 km mineral soil texture data developed for the
SMAP L4SM algorithm (De Lannoy et al., 2014). The domi-
nant NLCD land cover type within each 1 km pixel was used
to define the modeling domain, with open water and peren-
nial ice and snow areas excluded from the model simulations.
The soil texture and SOC data were used to define model soil
properties including thermal conductivities and heat capaci-
ties. The SOC inventory data was distributed through the top
10 model soil layers (< 1.05m depth) following an expo-
nentially decreasing curve (Hossain et al., 2015) to calculate
the SOC fraction and adjust the soil physical properties of
each soil layer based on the weighted mineral and organic
soil components. More details on the data processing can be
found in Yi et al. (2018).

Three in situ data sets were used for model calibra-
tion and validation (Fig. 2), including half-hourly soil di-
electric constant (¢) and temperature profile measurements
from a Soil moisture Sensing Controller and oPtimal Es-
timator (SoilSCAPE) site (Moghaddam et al., 2010); daily
soil temperature profile measurements from Global Terres-
trial Network for Permafrost (GTN-P) sites (Biskaborn et al.,
2015), and ALT measurements from regional Circumpolar
Active Layer Monitoring (CALM) network sites (Brown et
al., 2000). The SoilSCAPE soil temperature and ¢ measure-
ments were obtained from four different depths (0.05, 0.15,
0.35, 0.56m) and four different nodes of a wireless sensor
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Figure 2. (a) The study area (Arctic Alaska, > 66.55° N) used for the soil model simulations and the locations of in situ sites used for
model calibration and validation; (b) an Alaska permafrost probability map (Pastick et al., 2015) is also shown, indicating higher permafrost
occurrence in Arctic Alaska. The in situ sites include the Prudhoe Meadow SoilSCAPE site, GTN-P soil temperature sites and CALM ALT
sites. Airborne P-band radar data (denoted by green lines) were obtained in late August and early October in 2014 and 2015. Another radar
flight line was collected over the Barrow area (not shown) but was not included in this analysis due to a large percent of surface water in this

area.

network deployed near Prudhoe Bay, Alaska (70°13/47” N,
148°25'19” W) in the summer of 2016. ¢ was measured
using a METER TEROS 12 soil moisture sensor operat-
ing at 70 MHz. For the GTN-P in situ measurements, we
only selected the sites where shallow ground-temperature
measurements (generally down to 1 m depth) were available
for at least 2 consecutive years. Most GTN-P sites meeting
these criteria in Arctic Alaska are located along the Dalton
Highway (Table S1 in the Supplement). In addition, daily
snow depth measurements using an ultrasonic sensor were
available at SNOTEL (SNOwpack TELemetry) sites across
Alaska (Schaefer and Paetzold, 2000; http://www.wcc.nrcs.
usda.gov, last access: 1 September 2018, Fig. S1 in the Sup-
plement) and used to validate the 1km snow depth product
(Sect. 2.1).

2.4 Model parameterization

Soil dielectric properties are strongly correlated with soil
moisture, texture and F-T state (Mironov et al., 2010); ¢ can
capture the soil-freezing process well due to large ¢ differ-
ences between liquid water and ice (Dobson et al., 1985),
especially during the zero-curtain period, when soil tempera-
tures hover around 0 °C and are a relatively poor indicator of
F-T conditions (Fig. 3). The SoilSCAPE measurements were
used to calibrate the model unfrozen water content curve
(Eq. 11) assuming a linear relationship between ¢ and liquid
water content (Mironov et al., 2010; Park et al., 2017). How-
ever, the slope of this linear relationship may change during
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the freezing period due to different dielectric properties of
free and bound water, and ice (Mironov et al., 2010). The
¢ measurements were also used to determine the timing of
complete soil freeze-up at each soil depth. The timing of soil
freeze-up was defined when the observed ¢ drops below a
critical level:

& <8 X (Emax — Emin) » (12)

where g, and epjp are the maximum and minimum dielec-
tric constants for each soil layer, and the threshold § is an em-
pirical parameter. The zero-curtain period at different depths
was then calculated as the difference between soil freeze-up
and land-surface freeze onset. The land-surface freeze onset
was determined from MODIS 1 km LST records extracted at
the SoilSCAPE site and defined as the date at which the mean
LST during three consecutive 8-day periods dropped below
0°C.

The model-simulated soil temperature profile is very sen-
sitive to the soil thermal conductivity, largely determined
by soil texture (organic or mineral soils) and soil saturation
(Egs. 9-10), which are also two major factors affecting &.
Therefore, we used the in situ & data at the SoilSCAPE site
to guide the parameterization of model soil thermal proper-
ties. Since the soil is mostly saturated at this site, much larger
¢ values in the top two layers during the thaw season (Fig. 3)
should be related to organic-rich soils with large soil porosity
(thus high volumetric soil moisture). We defined the top five
model soil layers (0-0.23 m) as organic soils and adjusted the
model soil thermal properties accordingly. The unfrozen soil
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Figure 3. In situ measurements of soil temperature (a) and dielectric constant (b) for a single SoilSCAPE sensor node (S6) at the Prudhoe
Meadow site in northern Alaska (http://soilscape.usc.edu, last access: 1 May 2018).

thermal conductivity within the organic layer was assumed
to gradually increase with depth from ~0.5Wm~!'K~! in
the surface organic soil layer to ~ 1.2Wm~!'K~! at 0.33 m
depth for mineral soils, accounting for increases in the soil
bulk density (Letts et al., 2000). Similarly, soil porosity was
assumed to gradually decease from 0.8 at the surface to
~ 0.4 in the deeper mineral soil layers. The soil thermal
conductivity for frozen conditions can then be determined
from Eq. (10). Using this soil thermal conductivity profile,
the model-simulated temperatures agree well with the in situ
observations (R > 0.97, RMSE < 2.24°C for all measured
soil depths). We then tested different soil dielectric thresh-
olds (8) ranging from 0 % to 50 % and selected the threshold
that produced minimum bias and RMSE between the zero-
curtain period determined using in situ ¢ measurements and
model-simulated unfrozen water content. Using this trial and
error method, an optimal threshold of 15 % was selected,
which produced a mean RMSE of 10.3 days in the simulated
zero curtain from 0.15-0.56 m soil depth in 2016 and 2017
(Fig. 4a).

The resulting threshold § was then used to determine the
critical threshold of soil temperature at soil freeze-up using
both the GTN-P measurements and soil model simulations.
The observed changes in the normalized & with soil freezing
is presented for a selected SoilSCAPE sensor node (S6) in
Fig. 4b. ¢ below the freezing point and above —10 °C ranges
from ~ 5 % to 20 % of the ¢ value for unfrozen soils. Assum-
ing a linear relationship between ¢ and liquid water content
(Mironov et al., 2010), Fig. 4b can approximate changes in
unfrozen water content during soil freezing. Assuming soil
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freeze-up starts when ¢ drops below 15 %-20 % of the an-
nual amplitude, the corresponding soil temperatures range
from —0.01 to —1 °C at depths between 0.05 and 0.56 m. We
selected a temperature threshold of —0.35 °C for soil freeze-
up, which is at the higher end of the range indicated from the
S6 node, but closer to the other SoilSCAPE nodes showing
more rapid e changes below 0 °C. This temperature threshold
is also consistent with our model simulations, which show a
—0.3 to —0.5°C temperature range and 15 %-20 % liquid
water content during freeze-up. This temperature threshold
was used to determine the soil freeze onset and zero-curtain
period at the GTN-P sites with only soil temperature mea-
surements available. However, there is large variability in the
relationship between ¢ and liquid water content at freezing
temperatures due to changes in free and bound water and
ice components (Mironov et al., 2010; Naeimi et al., 2012),
which can result in large uncertainties in the above estimated
thresholds.

2.5 Soil dielectric constant retrievals from airborne
P-band radar

The soil model unfrozen water content curve used to de-
fine the soil freeze-up and zero curtain was only calibrated
using limited SoilSCAPE soil dielectric measurements. We
therefore evaluated the sensitivity of surface soil dielectric
properties derived from local-scale (~ 50 m) airborne low-
frequency (P-band) radar acquisitions along regional tran-
sects in northern Alaska and associated F-T patterns to
snow cover variations. Multiple flight lines were acquired
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Figure 4. Soil-freezing characteristics at the Prudhoe Meadow SoilSCAPE site: (a) comparisons of modeled and observed zero-curtain
period at two sensor nodes (S5 and S6) using a cutoff threshold of 0.15 (Eq. 12) for both in situ soil dielectric constant and model-simulated
unfrozen water content to determine soil freeze onset; (b) changes in in situ soil dielectric constant during soil freezing at the S6 node. The
soil dielectric constant was normalized using the maximum and minimum values of soil dielectric constant during the observation period.

in late August (fully thawed) and early October (partially
frozen) of 2014 and 2015 in northern Alaska, including a re-
gional transect along the Dalton Highway (DHN, 148.39—
149.05° W, 68.78-70.40° N). Multiple soil parameters, in-
cluding active-layer thickness (ALT) and soil moisture (con-
verted from soil dielectric constant), were derived from
NASA Airborne P-band (430 MHz) PolSAR radar backscat-
ter measurements in August and October (Chen et al., 2019).
The radar soil retrievals examined in this study differ from Yi
et al. (2018), which used active-layer retrievals derived from
multi-frequency (L + P-band) radar backscatter acquired in
October 2015. The alternative single-channel (P-band) time
series algorithm used in the current study avoids potential
artifacts introduced from variable P and L-band radar ac-
quisition times. The soil parameters were derived from the
radar backscatter using a three-layer soil dielectric model. In
August, the three layers represent the surface thawed layer,
middle and bottom active layer, and the top of the upper per-
mafrost layer. In October, the two surface layers represent
a partially frozen active layer with a frozen surface layer
overlying a deeper unfrozen active layer. An iterative opti-
mization scheme was used to estimate the soil parameters by
minimizing differences between the observed radar backscat-
ter and radar scattering model simulations using the above
three-layer soil dielectric model. The retrieved parameters in-
clude the thickness and soil dielectric constant of the surface
layer in August and October, the depth and dielectric con-
stant of deeper active layer. Initial validation indicated favor-
able radar ALT retrieval accuracy in relation to in situ CALM
measurements along the DHN transect (Chen et al., 2018,
2019). The differences in surface soil dielectric constant be-
tween August and early October represent the changes in soil
liquid water content that occur during F-T conditions. There-
fore, we examined differences in soil dielectric constant un-
der variable MODIS snow cover fraction to clarify the influ-
ence of snow cover on active-layer freezing.
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2.6 Regional soil model simulation and analysis

We conducted an integrated analysis of in situ ground obser-
vations, soil model simulations and airborne radar retrievals
to investigate the sensitivity of soil freezing to variable snow
cover conditions across Arctic Alaska. For the regional sim-
ulation, the soil process model was spun up for 50 years to
bring the top 10 m soil temperature profile into dynamic equi-
librium using model inputs in the year 2000 (Yi et al., 2018),
followed by a model transit run from 2001 to 2017. Unfrozen
conditions in the deeper active layer may persist well into the
winter season and into the subsequent calendar year. In or-
der to accurately estimate the active-layer freeze onset and
zero-curtain period for the current year, model simulations
of the next calendar year were also needed. Therefore, the
soil freeze onset and zero-curtain period in year 2017 were
not calculated. The soil freeze onset for each soil layer was
determined when model-simulated soil temperature dropped
below —0.35°C as discussed in Sect. 2.4. The zero-curtain
period at each soil depth was defined as the duration between
land-surface freeze onset and freeze onset of the given soil
layer. The regional correlation between snow onset calcu-
lated from the MODIS SCE data and the zero-curtain period
for each soil layer was used to examine relations between the
timing of early snow accumulation and soil freeze-up. Snow
onset was determined as the center of the 8-day period with
more than three adjacent snow-covered periods within a 40-
day moving window; the relatively long temporal window
was used to account for more variable snow cover conditions
during fall.

We selected the DHN flight transect as the focus area for
the integrated analysis due to the relatively dense network of
GTN-P soil temperature and CALM ALT sites in this area
relative to other transects (i.e., ATQ and IVO, Fig. 2). Be-
cause the MODIS 8-day SCE product (i.e., MOD10A2) only
provides binary snow data (i.e., snow vs. nonsnow), the data
set was binned for each 0.1° latitudinal region along the radar
flight transect to calculate the snow-covered area fraction
(SCF). We also averaged the airborne radar-retrieved surface

The Cryosphere, 13, 197-218, 2019



206 Y. Yi et al.: Sensitivity of active-layer freezing process to snow cover in Arctic Alaska

soil dielectric constant for each 0.1° latitudinal bin and an-
alyzed the correlations between SCF and selected variables
representing the soil-freezing process, including the radar-
retrieved surface dielectric constant changes between Octo-
ber and August, and the zero-curtain period derived from
both the soil model simulations and in situ data. For the site
analysis, the SCF from the 0.1° latitudinal bin including the
site was used. Arctic Alaska is generally fully snow covered
by the end of October or early November. Therefore, we used
the SCF averaged from September to October for the zero-
curtain analysis, while only the September SCF was used for
the airborne radar data analysis, since the radar data were
obtained in early October.

3 Results
3.1 Model validation

Accurate simulation of early cold-season soil freezing re-
quires accurate characterization of landscape-scale snow
cover conditions, which was addressed in this study by gap
filling the MODIS SCE record to mitigate data loss from per-
vasive cloud cover and other factors. The gap-filled MODIS
SCE products were then combined with other ancillary data
to downscale the MERRA-2 reanalysis snow depth data,
as one of the main driver data sets for the permafrost soil
model. The accuracy of the gap-filled MODIS SCE product
was cross-checked using the two MODIS sensors (Terra and
Aqua); the downscaled snow depth data were evaluated us-
ing in situ SNOTEL observations across Alaska. The model-
simulated soil-freezing process and ALT dynamics were con-
ducted over a smaller Arctic Alaska domain and evaluated
using a diverse set of regional observations.

3.1.1 Regional 1 km snow cover product

The cloud-free Aqua MODIS SCE data were used to evalu-
ate the accuracy of filled pixels identified as cloud covered
in the Terra MODIS SCE data and vice versa, assuming rela-
tively consistent snow conditions between morning (Terra)
and afternoon (Aqua) SCE acquisitions during the 8-day
composite period. Our results indicate an accuracy of more
than 80 % in the cloud-filtering algorithm with no obvious
differences observed between the two sensor SCE records
(Table 2 and Fig. S2). The cloud cover fraction for the 8-
day temporal composite Terra MODIS SCE data represents
0.5% to 10.1 % of the entire state throughout the year, and
the percentage of cloud-free Aqua MODIS pixels that over-
lapped with cloud-covered Terra MODIS pixels ranges from
0.4 % to 4.6 % (Fig. S2). There are significantly more cloud-
covered pixels in the Aqua MODIS record (1.1 %—15.2 %)
and thus more cloud-free Terra MODIS pixels (0.9 %-9.8 %)
overlapping with cloud-covered Aqua MODIS pixels. Cloud
cover mostly occurs in the spring and fall shoulder seasons,
resulting in larger SCE uncertainties during those periods.
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There is no obvious bias in the misclassification of cloud-
contaminated pixels (Table 2), which indicates that using a
cut-off threshold of 50 % for the snow occurrence probabil-
ity (Peutoffs Eq. 4 and Table 1) to classify snow or nonsnow
conditions works well. Using a higher threshold (e.g., 60 %)
generally results in more snow pixels misclassified as land
pixels and vice versa.

Compared with in situ snow depth measurements from the
Alaskan SNOTEL sites, the 1 km MERRA-2 snow depth data
generated using the new downscaling algorithm showed an
overall improvement compared to the original spatial inter-
polation scheme used in Yi et al. (2018) (Table 3). The new
1 km snow depth data showed overall reduced RMSE and
lower bias except in Interior Alaska at elevations between
400 and 800 m. At these elevations the USGS DEM used
for spatial downscaling at the 1km grid shows large devia-
tions from the reported SNOTEL site elevations (Fig. S3),
which may account for the relatively poorer performance of
the new snow depth data set in this elevation band. In Arctic
Alaska, the new snow depth product has a modest improve-
ment over the Yi et al. (2018) product, with an RMSE of
0.16 m and bias of —0.01 m versus an RMSE of 0.18 m and
bias of —0.03 m for the original data set. However, there are
only eight SNOTEL sites in this region and only two sites at
the Alaska North Slope. Compared with the Yi et al. (2018)
product, the new MERRA-2 downscaled snow product cap-
tured more fine-scale details of spring snow melting and to-
pographically varying snow distribution, especially in moun-
tain areas (Figs. 5 and S4).

The snow offset and onset derived from the MODIS SCE
and downscaled MERRA-2 snow depth records show very
similar spatial patterns and trends over the 2001 to 2016
study period (Figs. S5 and S6). These results indicate that
the downscaled MERRA-2 snow depth data generally cap-
ture the regional variability in snow cover conditions dur-
ing the transitional season indicated from the MODIS obser-
vations. During the study period, the data sets show simi-
lar spring snow offset dates over Alaska (e.g., DOY 138 £7
for MODIS versus DOY 140 + 7 for downscaled MERRA-2
snow depth), while there is an approximate 10-day difference
in fall snow onset dates between the two data sets (MODIS:
DOY 284 + 5; MERRA-2: DOY 273 +5). The difference in
mean snow onset is likely due to different methods used to
determine snow onset for the two data sets. For the MODIS
SCE record, snow onset was chosen as the composite period
with more than three adjacent 8-day snow-covered periods
within a 40-day moving window, while snow onset was de-
fined from the downscaled snow depth record as the com-
posite period with a mean snow depth above a 0.05 m thresh-
old within a 24-day moving window. A higher snow depth
threshold results in a later snow onset date in the MERRA-2
data set. However, the two records show similar snow onset
patterns (Fig. S5) and interannual variability during the study
period (R = 0.79, p < 0.01). Both data sets show a generally
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Table 1. Key model parameters used in this study.

Parameters  Description Range This study  Note

Peutoff Critical value for snow proba- 0.4-1.0 0.5 Determined using trial and er-
bility occurrence (Eq. 4) ror method

b Shape parameter for the un- 0.1-1.0 0.63 Romanovsky and Osterkamp
frozen water content curve (2000); Schaefer and Jafarov
(Eq. 11) (2016)

8 Critical value of soil dielectric ~ 0-50 % 15 % Determined using trial and er-
constant changes at freeze-up ror method
(Eq. 12)

Teutoff Critical value of soil tempera- O0to—1.0°C —0.35°C  Determined using SoilSCAPE

ture at freeze-up measurements

Table 2. The accuracy of the spatial filter algorithm applied to the Aqua MODIS SCE data during spring (April to June) and fall (September
to November) transitions averaged over Alaska from 2003 to 2015. Pixels that identified cloud contamination in the Aqua MODIS record
but indicated clear conditions in the Terra MODIS were used for evaluation. The percentage of cloud-contaminated and evaluated pixels
were calculated for the entire Alaska domain, while the accuracy and misclassification were calculated as the percentage of the evaluated
pixels. Both Terra and Aqua MODIS SCE data show similar accuracy, while only the Aqua MODIS results are shown here due to a higher
percentage of cloud-contaminated pixels (available for evaluation) in the Aqua imagery.

Spring transitional season ‘ Fall transitional season

April May June ‘ September October  November
Cloud-contaminated pixels (%) 5.0£27 11.2+2.6 44423 8.8+4.0 132437 11.3£35
Evaluated pixels (%) 35+1.7 58+1.1 24+1.1 5.0+£2.0 9.1+23 72421
Accuracy (%) 92.0+33 80.0+£19 829440 | 81.8+23 86.2+35 97.0+2.2
Misclassification of land pixels (%) 41+14 82+0.9 6.7£14 8.6x1.1 6.7£14 20£13
Misclassification of snow pixels (%) 40420 11.8£1.3 103+29 9.6£1.9 T.14+2.2 1.1£1.0

earlier snow onset trend in Arctic Alaska over the study pe-
riod, which is discussed in Sect. 3.2.

3.1.2 Soil model simulations

Across the DHN transect, the soil model-simulated zero-
curtain period was significantly (p < 0.1) correlated with
the in situ observations, with a mean bias of 6.6 days and
RMSE of 19.0 days at 0.35m soil depth (Table 4). How-
ever, lower correspondence was found between the model
simulations and in situ observations at the DHN Happy Val-
ley site (R =0.48, p > 0.1). Relatively large RMSE differ-
ences in the estimated zero curtain period were mainly due to
large interannual variability in the soil freeze onset and zero-
curtain period during the study period (Fig. 6a). Both model-
simulated and in situ observed zero-curtain periods were
strongly correlated at different soil depths (e.g., R > 0.92 at
0.25 and 0.35m), except for the SagMAT site (R = 0.87).
Larger differences were observed in the model-simulated and
in situ observed zero-curtain period at the surface (< 0.15m)
and for deeper soil layers (> 0.45m) due to model limita-
tions in capturing a shorter zero-curtain period in surface
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soils on an 8-day temporal scale, and larger uncertainties
in both the in situ observations and model-simulated zero-
curtain period in deeper soils. Across the DHN transect, both
the model-simulated and in situ observed soil freeze onset
were strongly correlated (R > 0.9) with the zero-curtain pe-
riod at soil depths below 0.15 m (Figs. 6a, S7-S8); therefore,
the modeled soil freeze onset was not discussed separately.
The in situ observations also showed consistent interannual
variability in the soil freeze onset and zero-curtain period
across the GTN-P sites within the DHN transect, which spans
an approximate 2° latitudinal gradient (Table S1); the corre-
spondence was particularly strong for sites located north of
the Sagwon site (> 69.43° N), which is discussed further in
the next section (Sect. 3.2.1).

Across Arctic Alaska, model simulations slightly overes-
timate ALT compared with the available in situ ALT mea-
surements from 32 CALM sites, with a mean bias of 10.0 £+
13.2cm (~20% of mean ALT), and an RMSE of 15.6 +
7.7 cm. For the 23 CALM sites with at least 9 years of ALT
measurements, the correlations between model-simulated
ALT and the in situ measurements range from 0.20 to 0.69,
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Table 3. Statistics of 1 km MERRA-2 snow depth data generated using different spatial interpolation schemes compared with in situ snow
depth measurements at the Alaskan SNOTEL sites.

No. of sites R \ Bias (m) \ RMSE (m)

Yietal. (2018) this study ‘ Yietal. (2018)  this study ‘ Yietal. (2018) this study

Arctic Alaska 8 0.84 0.85 | —0.03 —0.01 | 0.18 0.16

Other areas

<400 m 19 0.78 0.81 0.01 0.01 0.39 0.28
400-800 m 18 0.86 0.91 —0.01 —0.09 0.44 0.41
> 800 m 10 0.84 0.88 —0.08 0.02 0.32 0.27
(a) (b) (c)
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Figure 5. Illustration of the snow data processing: the raw (a, d) and cloud-filtered (b, €) MODIS SCE images using an elevation-based
spatial filter and downscaled MERRA-2 snow depth (in meters) data (c, f) using the filtered MODIS SCE and DEM data during spring snow
melt (a—c: 23-30 April) and early snow accumulation (d—f: 30 September—7 October) period in 2007. In the MODIS images, snow-covered
areas are shown in gray, while land and cloud-covered areas are shown in black and white, respectively.

with 17 (73.9 %) of the sites showing significant correspon- gional sensitivity of model-simulated soil freeze onset and
dence (p < 0.1). zero-curtain period within the active-layer to early snow ac-

cumulation indicated by the MODIS SCE record across Arc-
3.2 Sensitivity of active-layer freezing to snow cover tic Alaska.

We first analyzed the sensitivity of active-layer freezing to ~ 3.2.1 Integrated analysis along the DHN airborne flight

seasonal snow cover using in situ observations, local-scale transect

airborne P-band radar retrievals, MODIS snow cover obser-

vations and model simulations, focusing on the DHN tran- For all sites along the DHN transect, both the model-
sect in the Alaska North Slope. We then evaluated the re- simulated and in situ observed zero-curtain periods at 0.25
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Table 4. Comparisons of model-simulated and in situ observed zero-curtain period at 0.35 m soil depth for sites along the DHN transect.
The model-simulated mean zero-curtain period was calculated from 2001 to 2016. The zero-curtain period calculated using in situ soil
temperatures at closely adjacent sites (e.g., the three Franklin Bluff sites, Table S1) were combined for a longer observational record.

WD DH FB SagMAT SagMNT HV GL
No. of year 10 8 15 8 9 7 11
R 0.62*  0.67*  0.82% 0.87* 0.71%* 048 0.73*
Bias (days) 14.40 6.25 527 14.12 18.11 —13.85 —1.83
RMSE (days) 19.15 19.38 13.73 15.83 26.5 22.20 18.75
Model mean zero-curtain period (days) 64.5 77.0 63.5 71.0 79.5 71.0 83.0

Note that the asterisk denotes p < 0.1, WD is West Dock, DH is Deadhorse, FB is Franklin Bluffs, SagMAT is Sagwon MAT, SagMNT is Sagwon
MNT, HV is Happy Valley and GL is Galbraith Lake. Imnaviat 1 and GL were closely adjacent sites and were combined to form a longer time series.
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Figure 6. Comparisons of soil-freezing characteristics derived from GTN-P soil temperature measurements and model simulations along
the DHN transect in northern Alaska: (a) interannual variations in zero-curtain period derived from in situ measurements, (b) variations of
model versus in situ zero-curtain period at 0.35 m soil depth relative to MODIS SCF averaged for the northern part of the DHN transect, (c,
d) changes in the soil freeze lag rate with depth at two DHN sites. Both sites have lower ALT in the earlier years shown here, ranging from
0.37 m in the earlier period to 0.43 m during later period of record for the WD1 site and from 0.47 to 0.57 m for the GL site.

and 0.35m soil depths showed significant positive corre-
lations (R =0.69£0.14, p <0.1) with MODIS SCF. The
zero-curtain period and SCF record showed similar interan-
nual variability across the DHN transect, particularly north
of Sagwon sites (> 69.4° N). Thus years with greater (less)
snow cover are associated with a generally longer (shorter)
zero-curtain period at these depths. The average zero-curtain
period at 0.35 m soil depth for the DHN transect sites located
from 70.4 to 69.4° N is shown along with the correspond-
ing MODIS SCF observations in Fig. 6b. These observations
show large interannual variability in early season snow ac-
cumulation in this area, with the fall (September—October)
SCF varying from 0.35 to 0.77 from 2001 to 2015. Corre-
spondingly, both the in situ and model-simulated zero curtain
show large variability throughout the study period; here, the
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in situ observations varied from 23.5 to 79.2 days at 0.25 m
and from 24.7 to 90.3 days at 0.35 m, while the model sim-
ulations ranged from 29.3 to 76.0 and 44.0 to 90.7 days for
the same soil depths.

The timing of early snow accumulation was the primary
factor affecting the freezing process of the top soils, while
ALT is more closely related to the length of zero-curtain pe-
riod in deeper soils, particularly in areas with a shallower
thaw depth. This can be seen from the delayed soil freezing
below 0.30 m soil depth at two monitoring sites (West dock
and Galbraith Lake) in years with larger ALT (Fig. 6¢—d).
Both monitoring sites show deeper ALT conditions during
the later years of the study period, which are also associated
with larger soil-freezing lag rates. Here, the soil-freezing lag
rate is defined as the ratio of the soil freeze onset difference
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Figure 7. Soil-freezing process indicated by the radar-retrieved
(Chen et al., 2019) soil dielectric constant (¢1) of surface soils
(~< 0.10m) at the DHN transect in August (a) and October (b),
and changes in ¢1 in relation to MODIS SCF (c). The ¢1 differ-
ences between August and October were binned to 0.1° latitudinal
bins, while SCF was calculated as the percentage of snow-covered
pixels indicated by MODIS SCE data for each 0.1° bin. The stan-
dard deviations of ¢1 differences for each 0.1° bin were shown as
error bars.

between two adjacent soil layers and the respective depth dif-
ference between the two layers. However, soil-freezing lag
rates derived from both the in situ measurements and model
simulations show large variability and are likely associated
with large uncertainty, especially for deeper soil layers. The
temporal coverage of the in situ observations used for esti-
mating the soil parameter conditions is also less extensive
than the model simulations, which may contribute additional
uncertainty.

The airborne P-band radar retrievals over the DHN flight
transect in early October (9 October in 2014, 1 October in
2015) showed a larger reduction in the surface soil dielec-
tric constant (1) in areas with shallower snow cover during
September than areas with deeper snow conditions (Fig. 7).
In both years, the ¢1 differences were negatively correlated
with MODIS SCF across the DHN latitudinal gradient (2014:
R =-0.69, 2015: R =-0.76, p <0.01, n =17). The re-
duction in ¢1 retrievals in early October was more obvi-
ous in the northern part (> 69.5° N) of the transect (2014:
—10.35+5.46, 2015: —6.64 + 1.94), which had a shallower
seasonal snow cover (mean SCF of 0.22 in 2014 and 0.38 in
2015) and relatively early onset of frozen conditions than the
southern part of the transect. Variation in vegetation cover
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may also contribute to the large contrast in the €1 retrievals
between the northern and southern portions of the transect,
though the large apparent changes in &1 between 2014 and
2015 in the northern portion of the transect provide a rel-
atively robust indicator of frozen soil conditions. A simi-
lar relationship between radar-retrieved dielectric constant
changes and MODIS SCF was observed over the Atqasuk
(ATQ) flight transect. However, the opposite pattern was ob-
served over the Ivotuk (IVO) transect, where €1 changes in-
creased with increasing seasonal snow cover at higher ele-
vations (Fig. S9). The IVO transect differs from the other
Alaska tundra transects by encompassing more variable to-
pography (Fig. 2) and higher elevations (614 & 75 m) than
both DHN (208 £ 36 m) and ATQ (34 + 7 m).

3.2.2 Model sensitivity analysis in Arctic Alaska

We first compared the model-simulated zero-curtain period
over Arctic Alaska for 2 selected years with relatively late
(2007) and early (2015) snowfall. These results indicate that
snow accumulation during the early cold season is a pri-
mary control on the zero-curtain period within the upper
(< 0.4m) soil layers (Fig. 8). The regional mean surface
freeze onset and snow onset based on the MODIS LST and
SCE observations was DOY 269 45 (surface freeze onset)
and 281 £9 (snow onset) in 2007, and DOY 259 £ 8 (sur-
face freeze onset) and 262 £ 12 (snow onset) in 2015. The
later snow cover establishment in 2007 resulted in an over-
all shorter zero-curtain period over most of the Arctic Alaska
region, with a model-simulated mean zero-curtain period of
49.3+25.1 days at 0.25m depth and 64.3 26.3 days at
0.35 m depth. In contrast, earlier snow accumulation in 2015
resulted in a longer zero-curtain period, ranging from 69.4 &
22.1 days at 0.25 m depth to 84.7425.2 days at 0.35 m depth.
The spatial pattern of the model-simulated zero-curtain pe-
riod also corresponded well with the snow accumulation pat-
tern indicated from the MODIS SCE observations, leading
up to full snow cover conditions.

During the study period, the spatial pattern of model-
simulated soil freeze onset and zero-curtain period trends
at 0.25 and 0.35m is closely associated with the trends of
MODIS snow onset (Fig. 9); areas with earlier snow onset
generally show later freeze onset and a longer zero-curtain
period. Further analysis indicates that early snow accumu-
lation is the main control on the soil freezing for the up-
per (~< 0.4 m) active-layer, while the zero-curtain period of
deeper soils is more related to ALT (Fig. 10). The model
simulations show an overall longer zero-curtain period in
areas with deeper ALT. Approximately 55 % of the Arctic
Alaska has a maximum thaw depth between 0.45 and 0.55 m.
In those areas, correlations between MODIS snow onset
and zero-curtain period generally decrease with increasing
soil depths below 0.4 m, which corresponds to an increas-
ing positive correlation between the ALT and zero-curtain
period. This reduction of the correlation between snow on-
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Figure 8. Model-simulated zero-curtain period at 0.35 m in relation to snow accumulation during the early snow season indicated by filtered
MODIS SCE images for 2 selected years with later (2007: a—c) and earlier (2015: d—f) snowfall. In the MODIS images, snow was shown in
dark gray, while land was shown in black and the areas masked out were shown in white.
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Figure 9. Trends in model-simulated soil freeze onset (a) and zero-curtain period (b) at 0.35 m depth from 2001 to 2016. The fall snow onset
trend for the same period derived from the MODIS SCE data is shown in (¢).

set and zero-curtain period is more pronounced in areas with
shallower ALT. Compared with the zero-curtain period, we
found a much weaker correlation between model-simulated
soil freeze onset in near-surface soils (< 0.1 m) and MODIS
snow onset but similar relationships for soil depths below
(> 0.2m) (Fig. S10). This is due to a positive correlation be-
tween surface freeze onset derived from MODIS LST and
MODIS snow onset (R =0.71, p <0.1) in Arctic Alaska
during the study period; earlier surface freezing leads to cold
underlying soil, while earlier snow onset generally leads to
warm soil in this area. Therefore, soil freeze onset for near-
surface soils has weaker correlations with MODIS snow on-
set compared with the middle of the active layer (~ 0.2—
0.4 m), while the soil freeze onset is subject to similar con-
trols as the zero-curtain period with soil depth increases.
These results indicate that the land-surface temperature or
F-T status may be a relatively poor indicator of soil-freezing
status and the zero curtain period in the deeper active layer
for the Arctic region.
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4 Discussion

4.1 Sensitivity of active-layer freezing process to recent
climate change

Our results show a strong correlation between the active-
layer freezing process and snow accumulation during the
early snow season in Arctic Alaska, especially within upper
(~< 0.4 m) soil layers. Earlier snow onset and establishment
of a complete snow cover generally delays active-layer freez-
ing and promotes a longer zero-curtain period (Figs. 8 and
9). Previous studies have highlighted the decoupling of sur-
face air and soil temperatures during the winter season in
the northern high latitudes due to strong insulating effects of
snow cover (Morse et al., 2012; Throop et al., 2012; Koven
et al., 2013; Smith et al., 2016). Changes in the rate of ac-
cumulation, timing, duration, density and amount of snow
cover play an important role in determining how soil F-T dy-
namics respond to surface warming (Zhang, 2005; Lawrence
and Slater, 2010). The relationship between fall snow on-
set and soil warming may vary depending on the timing and
magnitude of snowfall, and local climate conditions (Yi et
al., 2015). Early snow onset may enhance thermal buffering
of cold surface temperatures and promote soil warming in
colder climate zones such as Arctic Alaska. A shorter snow
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Figure 10. Regional statistics of model-simulated zero-curtain
period (a) and its sensitivity to MODIS snow onset and
model-simulated ALT (b—c) from 2001 to 2016: (a) regional
mean of model-simulated zero-curtain period at different depths;
(b) changes in correlations between snow onset and zero-curtain
period with depths; for both (a) and (b), the study area was di-
vided into four groups: soil column froze below 0.33, 0.45, 0.55
and 0.7 m. The soil column for the majority of the study area froze
below 0.7 m. (c¢) The proportion of pixels with a significant positive
correlation between the zero-curtain period and ALT at different
depths. The total number of unfrozen pixel was shown as “npixel”.

season may cool the soil in colder areas due to less insula-
tion from cold atmospheric temperatures but may warm the
soil in warmer areas by promoting greater heat transfer into
soils (Lawrence and Slater, 2010). The snow cover impact on
soil F-T dynamics will also depend on differences between
the timing of first surface freeze and snow cover establish-
ment, especially for near-surface (~< 0.1 m) soils (Kim et
al., 2015).

Our model simulations also show that the influence of
snow cover on soil freezing is weaker for deeper soil layers
(~> 0.5m), where the freeze onset and zero-curtain period
are more closely related to the summer maximum thaw depth
(i.e., ALT, Figs. 10 and S10). This can be largely explained
by a close link between ALT and the soil-freezing lag rate
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of deeper soils. During fall, active-layer freezing proceeds
both downward from the surface and upward from the un-
derlying permafrost table (Outcalt et al., 1990; Oechel et al.,
1997; Zona et al., 2016). This can be seen from the nega-
tive soil-freezing lag rate (related to differences in soil freeze
onset between two adjacent soil layers) at the bottom of the
active layer at the GTN-P sites (Fig. 6¢c—d), indicating that
the bottom of the active layer freezes first. Increases in ALT
can lead to abrupt changes in the soil-freezing lag rate at the
same soil depth, which can change from a negative value to a
small positive value and result in abrupt changes in the zero-
curtain period at the bottom active layer (e.g., at the WD1 and
WDN sites in Fig. S8b). Previous studies have also reported
a delayed soil freeze-up and thus longer zero curtain with in-
creasing ALT (Morse et al., 2012; Euskirchen et al., 2017).
Based on the GTN-P site measurements, deeper soils show a
general delay in soil freeze onset relative to shallower active
layer, with a mean lag rate of 0.79+0.52 dayscm ™" at 0.35m
depth; large variability in the soil-freezing lag rate is likely
associated with different soil structure and variable active-
layer soil moisture content (Throop et al., 2012). Therefore, a
deepening active layer associated with climate warming will
likely lead to a longer zero-curtain period in deeper soils.

The Arctic is expected to experience continued warming
and precipitation increases under projected climate trends
(IPCC, 2013), though the potential response of active-layer
freezing to these changes may vary depending on changes in
seasonal snow cover. Both surface warming and a changing
precipitation regime can modify seasonal snow cover, lead-
ing to a nonlinear response of soil temperatures to warm-
ing (Lawrence and Slater, 2010; Yi et al., 2015). Increases in
winter precipitation and snowpack deepening may enhance
soil warming, while a reduced snowpack may promote soil
cooling in colder climate areas. More frequent and intense
rain-on-snow events during fall and early winter have been
observed across the ABZ with recent warming trends (Ye et
al., 2008; Langlois et al., 2017). Therefore, how these cli-
mate trends will affect soil moisture and thermal dynamics is
a key challenge for accurately estimating soil F-T dynamics
and potential carbon and climate feedbacks. In addition, with
continued warming and ALT deepening, unfrozen conditions
may persist in the bottom of the active layer, resulting in a
perennially thawed subsurface soil layer or talik zone; once a
talik forms, it can greatly accelerate permafrost degradation
and result in large changes in surface hydrology and soil car-
bon decomposition (Yoshikawa and Hinzman, 2003; Parazoo
etal., 2018).

Our model simulations are associated with large uncertain-
ties, particularly regarding soil moisture effects on soil heat
transfer during the F-T period. Changes in liquid water con-
tent during soil freezing vary for different soil conditions,
while accurate simulation of this process is challenging due
to complex processes controlling ice formation, liquid wa-
ter movement and heat transfer in frozen soils (Outcalt et al.,
1990; Romanovsky and Osterkamp, 2000; Schaefer and Ja-
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farov, 2016). Our study used in situ soil dielectric constant ()
measurements to parameterize the unfrozen water curve and
determine the temperature threshold used to define soil freeze
onset and calculate the zero-curtain period. However, our re-
sults also show large ¢ variability in response to freezing
temperatures from the in situ SoilSCAPE measurements; the
relationship between ¢ and liquid water content in organic-
rich soils may also be different from mineral soils (Engstrom
et al., 2005; Mironov et al., 2010). A reliable soil dielectric
model characterizing the relations between unfrozen water
content and ¢ for organic soils will help reduce the uncer-
tainty in the estimated temperature threshold at soil freeze
onset; a model sensitivity analysis using different b values in
the unfrozen water curve (Eq. 11) may also help quantify un-
certainties in the model-simulated zero-curtain period and its
regional pattern. On the other hand, potential soil moisture
redistribution with active-layer deepening is not accounted
for in the current model, though this effect is likely small due
to small ALT trends in this area during the study period (Yi
et al., 2018). Increasing disturbance from thermokarst and
wildfire are expected to alter microclimate and soil moisture
conditions, vegetation cover and SOC stocks in the ABZ,
which will also likely influence the dynamics of ground-ice
evolution and permafrost degradation (Grosse et al., 2011;
Liljedahl et al., 2016).

4.2 Potential use of remote-sensing to improve regional
monitoring of soil F-T process

Large-scale satellite observations and global reanalysis data
generally have difficulty capturing finer-scale snow cover
variations and associated impacts on soil F-T dynamics.
These limitations are exacerbated in the Arctic due to a
paucity of regional climate stations and complex microcli-
mate and snow cover conditions influenced by local topog-
raphy, vegetation and winds (Liston and Sturm, 2002; Gis-
nas et al., 2016). Optical satellite remote sensing, includ-
ing Landsat and MODIS sensors, can provide accurate local-
scale information on the snow cover extent, though effective
regional monitoring from these observations is constrained
by persistent cloud cover and reduced solar illumination for
much of the year. Moreover, these observations do not in-
clude snow depth or water content information, which are
critical parameters for hydrologic and ecological applications
(Brown et al., 2010; Painter et al., 2016). Snow-covered areas
attenuate the emitted microwave radiation from the under-
lying surface, while the magnitude of microwave emissions
and attenuation depends on the sensor frequency, snow lig-
uid water content, snow grain size and shape. Thus, snow
properties, including snow water equivalent (SWE), may be
derived from passive microwave sensors, albeit at relatively
coarse spatial scale (Kelly et al., 2003; Armstrong et al.,
2005; Takala et al., 2011). However, its accuracy is limited
in deep snowpack conditions, and its applicability is limited
in forest areas and wet snow conditions (Frei et al., 2012).
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Compared with passive microwave sensors, active radars or
scatterometers such as Ku band are capable of much higher
spatial resolutions and can be particularly useful for regional
snow mapping (Yueh et al., 2009). However, more studies are
needed to clarify the multiple scattering effects from snow
microstructure variations and contributions from other ele-
ments within the sensor footprint including vegetation, soil
and open-water effects, to ensure accurate retrieval of snow
properties (King et al., 2018). Airborne laser altimeters (li-
dar) also show strong potential for mapping snow depth pat-
terns (Deems et al., 2013; Painter et al., 2016), while the re-
cently launched ICESat-2 is expected to provide new capa-
bilities of satellite lidar for regional snow mapping (Kwok
and Markus, 2018). In the near term, significant improve-
ments in acquiring geospatial information on snow proper-
ties in the Arctic will likely come from merging in situ and
modeling data sets with multi-sensor snow products (Painter
et al., 2016).

Another major challenge for regional permafrost model-
ing is the lack of information on subsurface properties, par-
ticularly for organic soils with distinct hydraulic and thermal
properties. Current permafrost models generally use regional
or global SOC inventory data to parameterize the SOC pro-
file following an exponentially decreasing curve (Lawrence
and Slater, 2008; Rawlins et al., 2013; Yi et al., 2018). How-
ever, large discrepancies are apparent from the available SOC
inventory records in the ABZ (Liu et al., 2013; Hugelius
et al., 2014). There is also large regional variability in the
vertical SOC distribution due to multiple processes affect-
ing the SOC distribution in cryoturbated soils (Mishra et
al., 2013; Hugelius et al., 2014; Hossain et al., 2015). Long
wavelength radar, including P-band (~ 70cm) and L-band
(~24cm), is sensitive to surface vegetation structure, soil
surface and subsurface dielectric properties (e.g., Dobson
et al., 1985; Mironov et al., 2010; Tabatabaeenejad et al.,
2015). Our model experiments and analysis using in situ di-
electric constant measurements and a P-band radar-retrieved
soil dielectric constant for soil-freezing studies, albeit sim-
ple, show the potential of longwave radar remote sensing
in mapping of SOC, active layer F-T and moisture profiles.
However, similarly to many other inversion problems, radar
retrievals suffer from ambiguity in the inversion parameter
definitions, mainly due to insufficient information on the sub-
surface profile (e.g., Tabatabaeenejad et al., 2015; Chen et al.,
2019). Therefore, new methodologies are needed to address
the underdetermined nature of the radar backscatter inversion
and associated land parameter retrievals, by either includ-
ing additional observations or other synergistic information
from soil physical models to reduce parameter dimensions
in the radar model (e.g., Sadeghi et al., 2016). The vegeta-
tion canopy also has a large impact on the radar backscat-
ter, especially at L-band and shorter wavelengths, while sep-
arating the radar contribution of subsurface soils from the
vegetation canopy remains a challenge. Radar measurements
with shorter wavelengths (e.g., X, C, L-bands) can be also
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useful for subsurface retrievals by providing contributing in-
formation on surface snow, soil and vegetation conditions
(Moghaddam et al., 2000; Yueh et al., 2009; King et al.,
2018), which can be used to reduce the uncertainties in the
longwave (e.g., P-band) radar soil parameter retrievals. How-
ever, more sophisticated modeling experiments capable of
representing complex landscapes and multi-frequency radar
backscatter characteristics are needed to fully clarify the
value of multi-frequency observations. Additional airborne
radar sampling targeting regional disturbance gradients may
also provide the necessary information for the regional mod-
eling framework to represent increasing disturbance regimes
and associated impacts on active-layer F-T dynamics in the
ABZ.

5 Conclusions

In this study, we used a remote-sensing-driven permafrost
model and a newly developed fine-resolution snow data set
to simulate the active-layer freezing process, including soil
freeze onset and zero-curtain period in Arctic Alaska dur-
ing the recent satellite period (2001-2016). The model sim-
ulations were combined with multiple in situ measurements
and local-scale soil dielectric constant retrievals derived from
airborne longwave (P-band) radar data to investigate the re-
gional sensitivity of soil freezing and zero-curtain period to
recent climate change. Our results indicate that (1) the soil
freeze onset and zero-curtain period in the upper soils (<
0.4m) are primarily affected by snow accumulation during
the early cold season, whereby areas with earlier snow on-
set generally show a delayed soil freeze onset and prolonged
zero-curtain period; (2) the influence of snow onset and accu-
mulation on the soil freezing decreases with increasing soil
depth and the zero-curtain period of deeper soils (> 0.5m)
are more closely related to ALT due to an increasing delay in
soil freezing with active-layer deepening. Therefore, a deep-
ening active layer associated with climate warming will very
likely lead to a longer unfrozen period in deeper soils and po-
tentially result in more cold-season carbon loss. These find-
ings highlight the importance of relatively fine-scale snow
cover and active-layer thickness products for a better under-
standing of potential carbon and climate feedbacks in per-
mafrost ecosystems. Our model experiments and analysis,
using in situ and radar-retrieved dielectric constant data to
characterize soil freezing, show the potential of longwave
radar remote sensing for landscape-level mapping of active-
layer soil properties, including SOC, F-T and soil moisture
profiles. Future satellite P- and L-band radar missions includ-
ing NISAR, Tandem-L and BIOMASS (Arcioni et al., 2014;
Moreira et al., 2015; Rosen et al., 2017) may enable sub-
stantial improvements in the way models represent fine-scale
soil processes and thus allow for more accurate predictions
of boreal and Arctic environmental changes.
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