Module: tfma.utils
Stay organized with collections
Save and categorize content based on your preferences.
Init module for TensorFlow Model Analysis utils.
Classes
class CombineFnWithModels
: Abstract class for CombineFns that need the shared models.
class DoFnWithModels
: Abstract class for DoFns that need the shared models.
Functions
calculate_confidence_interval(...)
: Calculate confidence intervals based 95% confidence level.
compound_key(...)
: Returns a compound key based on a list of keys.
create_keys_key(...)
: Creates secondary key representing the sparse keys associated with key.
create_values_key(...)
: Creates secondary key representing sparse values associated with key.
get_baseline_model_spec(...)
: Returns baseline model spec.
get_by_keys(...)
: Returns value with given key(s) in (possibly multi-level) dict.
get_model_spec(...)
: Returns model spec with given model name.
get_model_type(...)
: Returns model type for given model spec taking into account defaults.
get_non_baseline_model_specs(...)
: Returns non-baseline model specs.
has_change_threshold(...)
: Checks whether the eval_config has any change thresholds.
merge_extracts(...)
: Merges list of extracts into a single extract with multidimensional data.
model_construct_fn(...)
: Returns function for constructing shared models.
unique_key(...)
: Returns a unique key given a list of current keys.
update_eval_config_with_defaults(...)
: Returns a new config with default settings applied.
verify_and_update_eval_shared_models(...)
: Verifies eval shared models and normnalizes to produce a single list.
verify_eval_config(...)
: Verifies eval config.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# Module: tfma.utils\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/utils/__init__.py) |\n\nInit module for TensorFlow Model Analysis utils.\n\nClasses\n-------\n\n[`class CombineFnWithModels`](../tfma/utils/CombineFnWithModels): Abstract class for CombineFns that need the shared models.\n\n[`class DoFnWithModels`](../tfma/utils/DoFnWithModels): Abstract class for DoFns that need the shared models.\n\nFunctions\n---------\n\n[`calculate_confidence_interval(...)`](../tfma/utils/calculate_confidence_interval): Calculate confidence intervals based 95% confidence level.\n\n[`compound_key(...)`](../tfma/utils/compound_key): Returns a compound key based on a list of keys.\n\n[`create_keys_key(...)`](../tfma/utils/create_keys_key): Creates secondary key representing the sparse keys associated with key.\n\n[`create_values_key(...)`](../tfma/utils/create_values_key): Creates secondary key representing sparse values associated with key.\n\n[`get_baseline_model_spec(...)`](../tfma/utils/get_baseline_model_spec): Returns baseline model spec.\n\n[`get_by_keys(...)`](../tfma/utils/get_by_keys): Returns value with given key(s) in (possibly multi-level) dict.\n\n[`get_model_spec(...)`](../tfma/utils/get_model_spec): Returns model spec with given model name.\n\n[`get_model_type(...)`](../tfma/utils/get_model_type): Returns model type for given model spec taking into account defaults.\n\n[`get_non_baseline_model_specs(...)`](../tfma/utils/get_non_baseline_model_specs): Returns non-baseline model specs.\n\n[`has_change_threshold(...)`](../tfma/utils/has_change_threshold): Checks whether the eval_config has any change thresholds.\n\n[`merge_extracts(...)`](../tfma/utils/merge_extracts): Merges list of extracts into a single extract with multidimensional data.\n\n[`model_construct_fn(...)`](../tfma/utils/model_construct_fn): Returns function for constructing shared models.\n\n[`unique_key(...)`](../tfma/utils/unique_key): Returns a unique key given a list of current keys.\n\n[`update_eval_config_with_defaults(...)`](../tfma/utils/update_eval_config_with_defaults): Returns a new config with default settings applied.\n\n[`verify_and_update_eval_shared_models(...)`](../tfma/utils/verify_and_update_eval_shared_models): Verifies eval shared models and normnalizes to produce a single list.\n\n[`verify_eval_config(...)`](../tfma/utils/verify_eval_config): Verifies eval config."]]