tf.test.gpu_device_name
Stay organized with collections
Save and categorize content based on your preferences.
Returns the name of a GPU device if available or a empty string.
tf.test.gpu_device_name() -> str
Used in the notebooks
This method should only be used in tests written with tf.test.TestCase
.
class MyTest(tf.test.TestCase):
def test_add_on_gpu(self):
if not tf.test.is_built_with_gpu_support():
self.skipTest("test is only applicable on GPU")
with tf.device(tf.test.gpu_device_name()):
self.assertEqual(tf.math.add(1.0, 2.0), 3.0)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.test.gpu_device_name\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/framework/test_util.py#L170-L189) |\n\nReturns the name of a GPU device if available or a empty string.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.test.gpu_device_name`](https://www.tensorflow.org/api_docs/python/tf/test/gpu_device_name)\n\n\u003cbr /\u003e\n\n tf.test.gpu_device_name() -\u003e str\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Fitting Generalized Linear Mixed-effects Models Using Variational Inference](https://www.tensorflow.org/probability/examples/Linear_Mixed_Effects_Model_Variational_Inference) - [Linear Mixed Effects Models](https://www.tensorflow.org/probability/examples/Linear_Mixed_Effects_Models) - [Bayesian Modeling with Joint Distribution](https://www.tensorflow.org/probability/examples/Modeling_with_JointDistribution) - [TFP Probabilistic Layers: Regression](https://www.tensorflow.org/probability/examples/Probabilistic_Layers_Regression) - [TFP Probabilistic Layers: Variational Auto Encoder](https://www.tensorflow.org/probability/examples/Probabilistic_Layers_VAE) |\n\nThis method should only be used in tests written with [`tf.test.TestCase`](../../tf/test/TestCase). \n\n class MyTest(tf.test.TestCase):\n\n def test_add_on_gpu(self):\n if not tf.test.is_built_with_gpu_support():\n self.skipTest(\"test is only applicable on GPU\")\n\n with tf.device(tf.test.gpu_device_name()):\n self.assertEqual(tf.math.add(1.0, 2.0), 3.0)"]]