tf.raw_ops.ParallelInterleaveDataset
Stay organized with collections
Save and categorize content based on your preferences.
Creates a dataset that applies f
to the outputs of input_dataset
.
tf.raw_ops.ParallelInterleaveDataset(
input_dataset,
other_arguments,
cycle_length,
block_length,
sloppy,
buffer_output_elements,
prefetch_input_elements,
f,
output_types,
output_shapes,
metadata='',
name=None
)
The resulting dataset is similar to the InterleaveDataset
, with the exception
that if retrieving the next value from a dataset would cause the requester to
block, it will skip that input dataset. This dataset is especially useful
when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it
allows the training step to proceed so long as some data is available.
!! WARNING !! If the sloppy
parameter is set to True
, the operation of this
dataset will not be deterministic!
This dataset has been superseded by ParallelInterleaveDatasetV2
. New code
should use ParallelInterleaveDatasetV2
.
The Python API tf.data.experimental.parallel_interleave
creates instances of
this op. tf.data.experimental.parallel_interleave
is a deprecated API.
Args |
input_dataset
|
A Tensor of type variant .
Dataset that produces a stream of arguments for the function f .
|
other_arguments
|
A list of Tensor objects.
Additional arguments to pass to f beyond those produced by input_dataset .
Evaluated once when the dataset is instantiated.
|
cycle_length
|
A Tensor of type int64 .
Number of datasets (each created by applying f to the elements of
input_dataset ) among which the ParallelInterleaveDataset will cycle in a
round-robin fashion.
|
block_length
|
A Tensor of type int64 .
Number of elements at a time to produce from each interleaved invocation of a
dataset returned by f .
|
sloppy
|
A Tensor of type bool .
If True , return elements as they become available, even if that means returning
these elements in a non-deterministic order. Sloppy operation may result in better
performance in the presence of stragglers, but the dataset will still block if
all of its open streams are blocked.
If False , always return elements in a deterministic order.
|
buffer_output_elements
|
A Tensor of type int64 .
The number of elements each iterator being interleaved should buffer (similar
to the .prefetch() transformation for each interleaved iterator).
|
prefetch_input_elements
|
A Tensor of type int64 .
Determines the number of iterators to prefetch, allowing buffers to warm up and
data to be pre-fetched without blocking the main thread.
|
f
|
A function decorated with @Defun.
A function mapping elements of input_dataset , concatenated with
other_arguments , to a Dataset variant that contains elements matching
output_types and output_shapes .
|
output_types
|
A list of tf.DTypes that has length >= 1 .
|
output_shapes
|
A list of shapes (each a tf.TensorShape or list of ints ) that has length >= 1 .
|
metadata
|
An optional string . Defaults to "" .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type variant .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.ParallelInterleaveDataset\n\n\u003cbr /\u003e\n\nCreates a dataset that applies `f` to the outputs of `input_dataset`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.ParallelInterleaveDataset`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/ParallelInterleaveDataset)\n\n\u003cbr /\u003e\n\n tf.raw_ops.ParallelInterleaveDataset(\n input_dataset,\n other_arguments,\n cycle_length,\n block_length,\n sloppy,\n buffer_output_elements,\n prefetch_input_elements,\n f,\n output_types,\n output_shapes,\n metadata='',\n name=None\n )\n\nThe resulting dataset is similar to the `InterleaveDataset`, with the exception\nthat if retrieving the next value from a dataset would cause the requester to\nblock, it will skip that input dataset. This dataset is especially useful\nwhen loading data from a variable-latency datastores (e.g. HDFS, GCS), as it\nallows the training step to proceed so long as some data is available.\n\n!! WARNING !! If the `sloppy` parameter is set to `True`, the operation of this\ndataset will not be deterministic!\n\nThis dataset has been superseded by `ParallelInterleaveDatasetV2`. New code\nshould use `ParallelInterleaveDatasetV2`.\n\nThe Python API [`tf.data.experimental.parallel_interleave`](../../tf/data/experimental/parallel_interleave) creates instances of\nthis op. [`tf.data.experimental.parallel_interleave`](../../tf/data/experimental/parallel_interleave) is a deprecated API.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_dataset` | A `Tensor` of type `variant`. Dataset that produces a stream of arguments for the function `f`. |\n| `other_arguments` | A list of `Tensor` objects. Additional arguments to pass to `f` beyond those produced by `input_dataset`. Evaluated once when the dataset is instantiated. |\n| `cycle_length` | A `Tensor` of type `int64`. Number of datasets (each created by applying `f` to the elements of `input_dataset`) among which the `ParallelInterleaveDataset` will cycle in a round-robin fashion. |\n| `block_length` | A `Tensor` of type `int64`. Number of elements at a time to produce from each interleaved invocation of a dataset returned by `f`. |\n| `sloppy` | A `Tensor` of type `bool`. If `True`, return elements as they become available, even if that means returning these elements in a non-deterministic order. Sloppy operation may result in better performance in the presence of stragglers, but the dataset will still block if all of its open streams are blocked. If `False`, always return elements in a deterministic order. |\n| `buffer_output_elements` | A `Tensor` of type `int64`. The number of elements each iterator being interleaved should buffer (similar to the `.prefetch()` transformation for each interleaved iterator). |\n| `prefetch_input_elements` | A `Tensor` of type `int64`. Determines the number of iterators to prefetch, allowing buffers to warm up and data to be pre-fetched without blocking the main thread. |\n| `f` | A function decorated with @Defun. A function mapping elements of `input_dataset`, concatenated with `other_arguments`, to a Dataset variant that contains elements matching `output_types` and `output_shapes`. |\n| `output_types` | A list of `tf.DTypes` that has length `\u003e= 1`. |\n| `output_shapes` | A list of shapes (each a [`tf.TensorShape`](../../tf/TensorShape) or list of `ints`) that has length `\u003e= 1`. |\n| `metadata` | An optional `string`. Defaults to `\"\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `variant`. ||\n\n\u003cbr /\u003e"]]