tf.linalg.solve
Stay organized with collections
Save and categorize content based on your preferences.
Solves systems of linear equations.
tf.linalg.solve(
matrix: Annotated[Any, TV_MatrixSolve_T],
rhs: Annotated[Any, TV_MatrixSolve_T],
adjoint: bool = False,
name=None
) -> Annotated[Any, TV_MatrixSolve_T]
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Matrix
is a tensor of shape [..., M, M]
whose inner-most 2 dimensions
form square matrices. Rhs
is a tensor of shape [..., M, K]
. The output
is
a tensor shape [..., M, K]
. If adjoint
is False
then each output matrix
satisfies matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]
.
If adjoint
is True
then each output matrix satisfies
adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :]
.
Args |
matrix
|
A Tensor . Must be one of the following types: float64 , float32 , half , complex64 , complex128 .
Shape is [..., M, M] .
|
rhs
|
A Tensor . Must have the same type as matrix .
Shape is [..., M, K] .
|
adjoint
|
An optional bool . Defaults to False .
Boolean indicating whether to solve with matrix or its (block-wise)
adjoint.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as matrix .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.linalg.solve\n\n\u003cbr /\u003e\n\nSolves systems of linear equations.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.linalg.solve`](https://www.tensorflow.org/api_docs/python/tf/linalg/solve), [`tf.compat.v1.matrix_solve`](https://www.tensorflow.org/api_docs/python/tf/linalg/solve)\n\n\u003cbr /\u003e\n\n tf.linalg.solve(\n matrix: Annotated[Any, TV_MatrixSolve_T],\n rhs: Annotated[Any, TV_MatrixSolve_T],\n adjoint: bool = False,\n name=None\n ) -\u003e Annotated[Any, TV_MatrixSolve_T]\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|\n| - [Advanced automatic differentiation](https://www.tensorflow.org/guide/advanced_autodiff) | - [A Tour of TensorFlow Probability](https://www.tensorflow.org/probability/examples/A_Tour_of_TensorFlow_Probability) |\n\n`Matrix` is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions\nform square matrices. `Rhs` is a tensor of shape `[..., M, K]`. The `output` is\na tensor shape `[..., M, K]`. If `adjoint` is `False` then each output matrix\nsatisfies `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]`.\nIf `adjoint` is `True` then each output matrix satisfies\n`adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :]`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|----------------------------------------------------------------------------------------------------------------------------------|\n| `matrix` | A `Tensor`. Must be one of the following types: `float64`, `float32`, `half`, `complex64`, `complex128`. Shape is `[..., M, M]`. |\n| `rhs` | A `Tensor`. Must have the same type as `matrix`. Shape is `[..., M, K]`. |\n| `adjoint` | An optional `bool`. Defaults to `False`. Boolean indicating whether to solve with `matrix` or its (block-wise) adjoint. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `matrix`. ||\n\n\u003cbr /\u003e"]]