tf.keras.initializers.HeNormal
Stay organized with collections
Save and categorize content based on your preferences.
He normal initializer.
Inherits From: VarianceScaling
, Initializer
tf.keras.initializers.HeNormal(
seed=None
)
It draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / fan_in)
where fan_in
is the number of input units in
the weight tensor.
Examples:
# Standalone usage:
initializer = HeNormal()
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = HeNormal()
layer = Dense(3, kernel_initializer=initializer)
Args |
seed
|
A Python integer or instance of
keras.backend.SeedGenerator .
Used to make the behavior of the initializer
deterministic. Note that an initializer seeded with an integer
or None (unseeded) will produce the same random values
across multiple calls. To get different random values
across multiple calls, use as seed an instance
of keras.backend.SeedGenerator .
|
Reference:
Methods
clone
View source
clone()
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config() .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.initializers.HeNormal\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/random_initializers.py#L512-L553) |\n\nHe normal initializer.\n\nInherits From: [`VarianceScaling`](../../../tf/keras/initializers/VarianceScaling), [`Initializer`](../../../tf/keras/Initializer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.initializers.he_normal`](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeNormal)\n\n\u003cbr /\u003e\n\n tf.keras.initializers.HeNormal(\n seed=None\n )\n\nIt draws samples from a truncated normal distribution centered on 0 with\n`stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in\nthe weight tensor.\n\n#### Examples:\n\n # Standalone usage:\n initializer = HeNormal()\n values = initializer(shape=(2, 2))\n\n # Usage in a Keras layer:\n initializer = HeNormal()\n layer = Dense(3, kernel_initializer=initializer)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `seed` | A Python integer or instance of `keras.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras.backend.SeedGenerator`. |\n\n\u003cbr /\u003e\n\n#### Reference:\n\n- [He et al., 2015](https://arxiv.org/abs/1502.01852)\n\nMethods\n-------\n\n### `clone`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/initializer.py#L83-L84) \n\n clone()\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/initializer.py#L63-L81) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------|\n| `config` | A Python dictionary, the output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An `Initializer` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/random_initializers.py#L550-L553) \n\n get_config()\n\nReturns the initializer's configuration as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/random_initializers.py#L273-L296) \n\n __call__(\n shape, dtype=None\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|---------|-------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. |\n\n\u003cbr /\u003e"]]