Like Dataset.padded_batch(), this transformation combines multiple
consecutive elements of the dataset, which might have different
shapes, into a single element. The resulting element has three
components (indices, values, and dense_shape), which
comprise a tf.sparse.SparseTensor that represents the same data. The
row_shape represents the dense shape of each row in the
resulting tf.sparse.SparseTensor, to which the effective batch size is
prepended. For example:
# NOTE: The following examples use `{ ... }` to represent the# contents of a dataset.a={['a','b','c'],['a','b'],['a','b','c','d']}a.apply(tf.data.experimental.dense_to_sparse_batch(batch_size=2,row_shape=[6]))=={([[0,0],[0,1],[0,2],[1,0],[1,1]],# indices['a','b','c','a','b'],# values[2,6]),# dense_shape([[0,0],[0,1],[0,2],[0,3]],['a','b','c','d'],[1,6])}
Args
batch_size
A tf.int64 scalar tf.Tensor, representing the number of
consecutive elements of this dataset to combine in a single batch.
row_shape
A tf.TensorShape or tf.int64 vector tensor-like object
representing the equivalent dense shape of a row in the resulting
tf.sparse.SparseTensor. Each element of this dataset must have the same
rank as row_shape, and must have size less than or equal to row_shape
in each dimension.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.data.experimental.dense_to_sparse_batch\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/data/experimental/ops/batching.py#L94-L142) |\n\nA transformation that batches ragged elements into [`tf.sparse.SparseTensor`](../../../tf/sparse/SparseTensor)s. (deprecated)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.data.experimental.dense_to_sparse_batch`](https://www.tensorflow.org/api_docs/python/tf/data/experimental/dense_to_sparse_batch)\n\n\u003cbr /\u003e\n\n tf.data.experimental.dense_to_sparse_batch(\n batch_size, row_shape\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use [`tf.data.Dataset.sparse_batch`](../../../tf/data/Dataset#sparse_batch) instead.\n\nLike [`Dataset.padded_batch()`](../../../tf/data/Dataset#padded_batch), this transformation combines multiple\nconsecutive elements of the dataset, which might have different\nshapes, into a single element. The resulting element has three\ncomponents (`indices`, `values`, and `dense_shape`), which\ncomprise a [`tf.sparse.SparseTensor`](../../../tf/sparse/SparseTensor) that represents the same data. The\n`row_shape` represents the dense shape of each row in the\nresulting [`tf.sparse.SparseTensor`](../../../tf/sparse/SparseTensor), to which the effective batch size is\nprepended. For example: \n\n # NOTE: The following examples use `{ ... }` to represent the\n # contents of a dataset.\n a = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] }\n\n a.apply(tf.data.experimental.dense_to_sparse_batch(\n batch_size=2, row_shape=[6])) ==\n {\n ([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1]], # indices\n ['a', 'b', 'c', 'a', 'b'], # values\n [2, 6]), # dense_shape\n ([[0, 0], [0, 1], [0, 2], [0, 3]],\n ['a', 'b', 'c', 'd'],\n [1, 6])\n }\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `batch_size` | A [`tf.int64`](../../../tf#int64) scalar [`tf.Tensor`](../../../tf/Tensor), representing the number of consecutive elements of this dataset to combine in a single batch. |\n| `row_shape` | A [`tf.TensorShape`](../../../tf/TensorShape) or [`tf.int64`](../../../tf#int64) vector tensor-like object representing the equivalent dense shape of a row in the resulting [`tf.sparse.SparseTensor`](../../../tf/sparse/SparseTensor). Each element of this dataset must have the same rank as `row_shape`, and must have size less than or equal to `row_shape` in each dimension. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Dataset` transformation function, which can be passed to [`tf.data.Dataset.apply`](../../../tf/data/Dataset#apply). ||\n\n\u003cbr /\u003e"]]