This is the reduction operation for the elementwise tf.sparse.add op.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_sum(). In particular, this Op also returns a dense Tensor
instead of a sparse one.
Reduces sp_input along the dimensions given in reduction_axes. Unless
keepdims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keepdims is true, the reduced dimensions are retained
with length 1.
If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.
For example
'x' represents [[1, ?, 1]
[?, 1, ?]]
where ? is implicitly-zero.
x=tf.sparse.SparseTensor([[0,0],[0,2],[1,1]],[1,1,1],[2,3])tf.sparse.reduce_sum(x)<tf.Tensor:shape=(),dtype=int32,numpy=3>tf.sparse.reduce_sum(x,0)<tf.Tensor:shape=(3,),dtype=int32,numpy=array([1,1,1],dtype=int32)>tf.sparse.reduce_sum(x,1)# Can also use -1 as the axis<tf.Tensor:shape=(2,),dtype=int32,numpy=array([2,1],dtype=int32)>tf.sparse.reduce_sum(x,1,keepdims=True)<tf.Tensor:shape=(2,1),dtype=int32,numpy=array([[2],[1]],dtype=int32)>tf.sparse.reduce_sum(x,[0,1])<tf.Tensor:shape=(),dtype=int32,numpy=3>
Args
sp_input
The SparseTensor to reduce. Should have numeric type.
axis
The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.sparse_reduce_sum\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/sparse_ops.py#L1559-L1625) |\n\nComputes [`tf.sparse.add`](../../../tf/sparse/add) of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.sparse.reduce_sum`](https://www.tensorflow.org/api_docs/python/tf/compat/v1/sparse_reduce_sum)\n\n\u003cbr /\u003e\n\n tf.compat.v1.sparse_reduce_sum(\n sp_input, axis=None, keepdims=None, reduction_axes=None, keep_dims=None\n )\n\n| **Deprecated:** SOME ARGUMENTS ARE DEPRECATED: `(keep_dims)`. They will be removed in a future version. Instructions for updating: keep_dims is deprecated, use keepdims instead\n| **Deprecated:** SOME ARGUMENTS ARE DEPRECATED: `(reduction_axes)`. They will be removed in a future version. Instructions for updating: reduction_axes is deprecated, use axis instead\n\nThis is the reduction operation for the elementwise [`tf.sparse.add`](../../../tf/sparse/add) op.\n\nThis Op takes a SparseTensor and is the sparse counterpart to\n[`tf.reduce_sum()`](../../../tf/math/reduce_sum). In particular, this Op also returns a dense `Tensor`\ninstead of a sparse one.\n\nReduces `sp_input` along the dimensions given in `reduction_axes`. Unless\n`keepdims` is true, the rank of the tensor is reduced by 1 for each entry in\n`reduction_axes`. If `keepdims` is true, the reduced dimensions are retained\nwith length 1.\n\nIf `reduction_axes` has no entries, all dimensions are reduced, and a tensor\nwith a single element is returned. Additionally, the axes can be negative,\nsimilar to the indexing rules in Python.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| For example ----------- ||\n|---|---|\n| \u003cbr /\u003e 'x' represents \\[\\[1, ?, 1\\] ============================ \\[?, 1, ?\\]\\] ============= where ? is implicitly-zero. =========================== x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 1, 1], [2, 3]) tf.sparse.reduce_sum(x) \u003ctf.Tensor: shape=(), dtype=int32, numpy=3\u003e tf.sparse.reduce_sum(x, 0) \u003ctf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 1, 1], dtype=int32)\u003e tf.sparse.reduce_sum(x, 1) # Can also use -1 as the axis \u003ctf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 1], dtype=int32)\u003e tf.sparse.reduce_sum(x, 1, keepdims=True) \u003ctf.Tensor: shape=(2, 1), dtype=int32, numpy= array([[2], [1]], dtype=int32)\u003e tf.sparse.reduce_sum(x, [0, 1]) \u003ctf.Tensor: shape=(), dtype=int32, numpy=3\u003e \u003cbr /\u003e ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|--------------------------------------------------------------------------------------------|\n| `sp_input` | The SparseTensor to reduce. Should have numeric type. |\n| `axis` | The dimensions to reduce; list or scalar. If `None` (the default), reduces all dimensions. |\n| `keepdims` | If true, retain reduced dimensions with length 1. |\n| `reduction_axes` | Deprecated name of `axis`. |\n| `keep_dims` | Deprecated alias for `keepdims`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The reduced Tensor. ||\n\n\u003cbr /\u003e"]]