
Matchings, Relaxed Popularity, and Optimality⋆

Telikepalli Kavitha

Tata Institute of Fundamental Research, Mumbai, India
kavitha@tifr.res.in

Abstract. We consider a matching problem in a bipartite graph G = (A ∪B,E) where vertices have
strict preferences over their neighbors. A matching M is popular if for any matching N , the number of
vertices that prefer M to N is at least the number that prefer N to M ; thus M does not lose a head-
to-head election against any matching where vertices are voters. It is easy to find popular matchings –
however when there are edge costs, it is NP-hard to find (or approximate) a min-cost popular matching.
This hardness motivates relaxations of popularity.
Here we introduce fairly popular matchings. A fairly popular matching may lose elections but there is
no good matching (wrt popularity) that defeats a fairly popular matching. In particular, any matching
that defeats a fairly popular matching does not occur in the support of a popular mixed matching.
We show that a min-cost fairly popular matching can be computed in polynomial time and the fairly
popular matching polytope has a compact extended formulation.
We also show it is NP-complete to decide if there exists a popular matching that is more popular than a
given matching. Interestingly, there exists a set of at most m popular matchings in G (where |E| = m)
such that if a matching is defeated by some popular matching in G then it has to be defeated by one
of the matchings in this set.

1 Introduction

Our input is a bipartite graph G = (A ∪ B,E) on n vertices and m edges where every vertex has
a strict ranking of its neighbors. Such a graph is also called a marriage instance and this is a very
well-studied model in two-sided matching markets. A matching M is stable if no edge blocks it;
edge (a, b) blocks M if (i) either a is unmatched or prefers b to its partner in M and (ii) either
b is unmatched or prefers a to its partner in M . The existence of stable matchings in a marriage
instance and the Gale-Shapley algorithm [17] to find one are classic results in algorithms.

Stable matchings are used in many real-world applications such as matching students to schools
and colleges [1,3] and medical residents to hospitals [7,32]. Stability is a rather strict notion—all
stable matchings match the same subset of vertices [18] and the size of a stable matching might be
only half the size of a maximum matching. In applications such as matching students to advisers,
the notion of stability can be relaxed to a less demanding notion for the sake of collective welfare.

Popularity is a meaningful relaxation of stability based on empowering matchings (instead of
edges) to block other matchings. Any pair of matchings, say M and N , can be compared by
holding an election between them where every vertex v either casts a vote for the matching in
{M,N} where it gets a better partner (and being unmatched is its worst choice) or abstains from
voting if it is indifferent between M and N . Let ϕ(M,N) (resp., ϕ(N,M)) be the number of votes
for M (resp., N). Matching N is more popular than matching M (equivalently, N defeats M) if
ϕ(N,M) > ϕ(M,N). Let ∆(M,N) = ϕ(M,N)− ϕ(N,M).

⋆ A preliminary version of this paper appeared in STACS 2022 as “Fairly popular matchings and optimality” [28].
Funding. Supported by the Department of Atomic Energy, Government of India, under project no. RTI4001.
Acknowledgments. Thanks to Yuri Faenza and Jaikumar Radhakrishnan for useful discussions. Thanks to the
reviewers of this version and also of the conference version of the paper for their helpful comments and suggestions.



Definition 1. A matching M is popular if there is no matching more popular than M , i.e.,
∆(M,N) ≥ 0 for all matchings N in G.

Gärdenfors [19] introduced the notion of popularity in 1975 where he observed that every stable
matching is popular. In fact, stable matchings are min-size popular matchings [21]. Hence relaxing
stability to popularity allows larger matchings and more generally, matchings with lower cost (when
every edge has a cost) to be feasible.

Several algorithmic and hardness results for popular matchings have been obtained during
the last decade and we refer to [9] for a survey. We know efficient algorithms for only a few
popular matching problems such as the max-size popular matching problem and the popular edge
problem [10,21,24]. Many natural optimization problems in popular matchings such as the min-cost
popular matching problem are NP-hard [13]; moreover, this problem is NP-hard to approximate to
any multiplicative factor. Though relaxing stability to popularity promises matchings with improved
optimality with respect to cost, finding these matchings is hard.

The extension complexity of the popular matching polytope of G is 2Ω(m/logm) [12]. Thus
formulating the convex hull of edge incidence vectors of matchings M that satisfy ∆(M,N) ≥ 0
for all matchings N is hard. This motivates relaxing popularity, i.e., let us waive some constraints
∆(M,N) ≥ 0. For what matchings N would it be justified to do so?

Suppose N is “very unpopular”—then N is not a viable alternative and it seems fair to not
give N the power to block other matchings. Forbidding very unpopular matchings from blocking
others is similar in spirit to legal assignments [11] (a relaxation of stable matchings) where only
edges that belong to legal assignments are allowed to block matchings. Thus our goal is to come
up with a filter that tests matchings for “mild popularity” and forbid the ones that fail our test to
block matchings. So we seek to identify a subset S of the set of all matchings in G such that:

(a) Every matching outside S fails our test that checks for “mild popularity”.
(b) We can efficiently optimize over matchings M that satisfy ∆(M,S) ≥ 0 for all S ∈ S.
(c) For any matching N /∈ S, there is at least one matching S ∈ S such that ∆(N,S) < 0.

Remark 1. Note that property (c) is independent of property (a); the latter says that every matching
N /∈ S has to fail our test of mild popularity (this test is yet to be defined) while the former says
that any matching N /∈ S has to be defeated by a matching in S. Property (c) will ensure that our
matching M (so ∆(M,S) ≥ 0 for all S ∈ S) is in S. Without property (c), we may end up with a
matching that does not pass our test of mild popularity.

Thus we should define our test of mild popularity such that any matching M that satisfies
∆(M,S) ≥ 0 for all S ∈ S will pass this test. For example, if S = {popular matchings}, then
it is not the case that every matching undefeated by all popular matchings has to be popular—
Section 1.2 has such an example. Thus property (c) does not hold if we set popularity as our criterion
of mild popularity.

The unpopularity of a matchingM is typically measured by its unpopularity factor [31], which is
defined as u(M) = maxN ̸=M ϕ(N,M)/ϕ(M,N). A matching M is popular if and only if u(M) ≤ 1.

Suppose we define a matching M to be very unpopular if u(M) = ∞, in other words, let
S = {Pareto optimal matchings}.1 Observe that any matching M undefeated by all Pareto optimal
matchings has to be Pareto optimal, in fact,M has to be popular. So it is NP-hard to find a min-cost
matching M such that ∆(M,S) ≥ 0 for all S ∈ {Pareto optimal matchings}. Hence property (b)
does not hold if we set Pareto optimality as our criterion of mild popularity.

1 A matching M is Pareto optimal if there is no matching N such that ϕ(N,M) > 0 and ϕ(M,N) = 0.
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1.1 Our main results

A mixed matching Π is a probability distribution or a lottery over matchings, so Π = {(M0, p0), . . . ,
(Mk, pk)} where M0, . . . ,Mk are matchings, pi > 0 for all i, and

∑k
i=0 pi = 1. The notion of

popularity can be extended to mixed matchings [30]; the mixed matchingΠ is popular if∆(Π,N) =∑k
i=0 pi ·∆(Mi, N) ≥ 0 for all matchings N . We will use popular mixed matchings to define a natural

relaxation of popularity.

The matchings M0, . . . ,Mk are said to be in the support of Π = {(M0, p0), . . . , (Mk, pk)}.
Let us call a matching M supporting if there exists a popular mixed matching Π whose support
contains M . So every supporting matching participates in some popular lottery over matchings,
thus the “supporting” property is a natural relaxation of popularity—we will use this property as
our condition for mild popularity. So our set S of relevant matchings will be the set of all supporting
matchings, i.e., S = {S : S is a supporting matching}. It is easy to see that the set S is sandwiched
between the set of popular matchings and the set of Pareto optimal matchings.

We are ready to define fairly popular matchings now.

Definition 2. A matching M is fairly popular if ∆(M,S) ≥ 0 for all S ∈ S where S is the set of
supporting matchings.

For any matching N that defeats a fairly popular matching M , it is the case that even with
the help of other matchings, N cannot form a popular mixture. Thus it is natural to regard a non-
supporting matching N as being “very unpopular”. Hence elections against non-supporting match-
ings will not be relevant. Intriguingly, waiving the constraints ∆(M,N) ≥ 0 for non-supporting
matchings N makes the resulting polytope easy to describe.

Theorem 1. Given a marriage instance G = (A∪B,E) with edge costs, a min-cost fairly popular
matching can be computed in polynomial time. Furthermore, the convex hull of edge incidence
vectors of fairly popular matchings has a compact extended formulation.

Key to the above theorem is our characterization of supporting matchings (see Theorem 2).
Any point x⃗ ∈ Rm

≥0 such that
∑

e∈δ(v) xe ≤ 1 for each vertex v is a fractional matching and x⃗ is
equivalent to a mixed matching (Birkhoff-von Neumann theorem [8]). A fractional matching x⃗ is
popular if Π is a popular mixed matching, where Π is any mixed matching that corresponds to x⃗
(see [30]). The following terms will be useful to us.

– An edge e is a popular fractional edge if there exists a popular fractional matching x⃗ with xe > 0.

– A vertex v is stable if v is matched in any stable matching in G. All stable matchings match the
same subset of vertices [18], so unstable vertices are left unmatched in every stable matching.

Theorem 2. Let G = (A ∪ B,E) be a marriage instance and let M be a matching in G. The
following three statements are equivalent.

1. M is supporting, i.e., M occurs in the support of some popular mixed matching.

2. No popular mixed matching defeats M , i.e., ∆(Π,M) ≤ 0 for all popular mixed matchings Π.2

3. M matches all stable vertices and M ⊆ Ep, where Ep is the set of popular fractional edges.

2 Equivalently, ∆(Π,M) = 0 since ∆(Π,M) ≥ 0 for all matchings M because Π is a popular mixed matching.
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Remark 2. Theorem 2 implies that any matching that is non-supporting is defeated by some popular
mixed matching and thus, by some supporting matching (since every popular mixed matching is a
lottery over supporting matchings). Thus by Theorem 1 and Theorem 2, the set S = {supporting
matchings} satisfies properties (b) and (c) stated earlier. Hence every fairly popular matching is
also supporting since no supporting matching defeats a fairly popular matching (by definition).

1.2 Our other results

Consider the following instance from [22] where A = {a0, a1, a2}, B = {b0, b1}, and vertex prefer-
ences are as follows:

a0 : b0 ≻ b1 a1 : b0 ≻ b1 a2 : b1

b0 : a0 ≻ a1 b1 : a0 ≻ a1 ≻ a2

Here a0 and b0 are each other’s top choice neighbors and a0’s second choice is b1 and b0’s
second choice is a1 and so on. This instance has only one popular matching P = {(a0, b0), (a1, b1)}.
Observe that P is more popular than N = {(a0, b0), (a2, b1)} and N is more popular than M =
{(a0, b1), (a1, b0)}, but P is not more popular than M . Thus M is undefeated by the only popular
matching P . So it is not the case that every unpopular matching has to be defeated by some popular
matching.

Interestingly, M is a supporting matching since the mixed matching Π = {(M, 12), (P,
1
2)} is

popular. Moreover, M is fairly popular since N is the only matching that defeats M and note that
N is not a supporting matching (since N leaves the stable vertex a1 unmatched).

Suppose we had defined our set of relevant matchings to be the set of matchings undefeated by
popular matchings. This is a superset of our set S which—by Theorem 2—is the set of matchings
undefeated by a larger set: the set of popular mixed matchings. To be undefeated by popular
matchings is a natural threshold for mild popularity as any matching defeated by a popular matching
can be considered to be very unpopular.

Before we check whether such a set of relevant matchings obeys the desired properties (b)-(c)
stated earlier, let us ask how easy it is to test membership in this set. That is, given a matching N ,
is it easy to determine if there exists a popular matching that defeats N? Interestingly, we can show
a “compactness” result. Note that G may have more than 2n popular matchings [36].

Proposition 1. There is a set of at most m popular matchings in G such that any matching
defeated by some popular matching in G has to be defeated by one of these m popular matchings.

However, deciding if a given matching is undefeated by all popular matchings is coNP-complete.

Theorem 3. Given a marriage instance G = (A∪B,E) and a matching N in G, it is NP-complete
to decide if there exists any popular matching that is more popular than N .

So if we had defined our set S of relevant matchings to be those undefeated by popular match-
ings, then it would have been coNP-hard to identify which matchings are in S (by Theorem 3). By
letting S = {matchings undefeated by popular mixed matchings}, we have a natural strengthening
of the above notion of mild popularity. Moreover, as shown in Theorem 2, the matchings in our set
S satisfy another natural and our original notion of mild popularity (property 1 of Theorem 2) and
have a simple and clean combinatorial characterization (property 3 of Theorem 2).
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1.3 Related results

The min-cost stable matching problem is very well-studied with several polynomial time algo-
rithms [14,15,16,23,37] to solve this problem; furthermore, the stable matching polytope has a
simple and elegant linear size formulation in Rm [33,35]. In contrast to this, as mentioned earlier,
the extension complexity of the popular matching polytope of G is 2Ω(m/logm) [12]. It is known
that the popular fractional matching polytope of G is half-integral [22].

A min-cost popular matching in G can be computed in O∗(2n/4) time [27]. The intractability of
the min-cost popular matching problem has motivated relaxations such as quasi-popularity [12] and
semi-popularity [27]. A matching M is quasi-popular if u(M) ≤ 2. Computing a min-cost quasi-
popular matching is NP-hard; however a quasi-popular matching of cost at most that of a min-cost
popular matching can be computed in polynomial time [12]. A matching M is semi-popular if
∆(M,N) ≥ 0 for at least half the matchings N in G. A bicriteria approximation algorithm was
given in [27] to find an almost semi-popular matching whose cost is at most twice the cost of a
min-cost popular matching.

Popular mixed matchings were introduced in [30] in the setting of one-sided popular matchings
in a bipartite instance G = (A ∪ B,E). So it is only vertices in A that have preferences—popular
matchings need not always exist in such a setting. It was shown in [30] that popular mixed matchings
always exist and such a mixed matching can be computed in polynomial time.

1.4 Our techniques

Our main novelty is in our characterization of supporting matchings—this leads to a characteriza-
tion of fairly popular matchings. The characterization of supporting matchings (given in Section 2)
uses the half-integrality of the popular fractional matching polytope in a marriage instance [22]
along with Hall’s marriage theorem on perfect matchings in bipartite graphs. The main technical
lemma here is based on the existence of certain helpful stable matchings as shown in [20].

Our characterization of supporting matchings implies that a matchingM is fairly popular if and
only if M = ∪CMc, where C is a connected component in the subgraph whose edge set is restricted
to the set Ep of popular fractional edges. Every matching Mc in the decomposition M = ∪CMc has
a certain witness that is obtained via LP duality. The LP-machinery for popular matchings was
introduced in [30] and used in [22,25] to study popular fractional matchings.

We define two colorful multigraphs G′
c and G

′′
c where each edge is assigned a color—these multi-

graphs are inspired by instances from [26,29] that solve variants of the popular matching problem
by modeling them as stable matching problems in appropriate graphs. In particular, the min-cost
popular maximum matching problem was studied in [29]. It was shown in [24] that there always
exists a maximum matching that is popular within the set of maximum matchings and a polynomial
time algorithm to find a min-cost such matching was given in [29] by modeling it as a min-cost
stable matching problem in an appropriate multigraph.

Our algorithm follows the same outline as in [29]. However there is no single graph that we can
construct such that every fairly popular matching M is a stable matching in the new graph. We
use witnesses (mentioned earlier) for matchings Mc in M = ∪CMc to show a surjective mapping
from the union of sets of stable matchings in the colorful multigraphs G′

c and G
′′
c to the set of such

matchings Mc. Let S ′
c (resp., S ′′

c ) be the stable matching polytope of G′
c (resp., G′′

c ). The convex
hull of S ′

c ∪ S ′′
c is an extension of the convex hull of edge incidence vectors of such matchings Mc.

Using Balas’ theorem [2] (stated in Section 3.3) to formulate the convex hull of S ′
c ∪ S ′′

c leads to
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Theorem 1 (proved in Section 3). Thus, unlike the popular matching polytope, the fairly popular
matching polytope F has a compact extended formulation.

Our NP-hardness proof is given in Section 4. This is based on the NP-hardness (from [13]) of
deciding if there exists a popular matching that contains two forced edges.

2 A Characterization of Supporting Matchings

We prove Theorem 2 in this section. Before we characterize supporting matchings, it will be useful
to recall some properties of popular fractional matchings in a marriage instance G = (A ∪B,E).

Fractional matchings. A fractional matching x⃗ in G is a convex combination of matchings (by
Birkhoff-von Neumann theorem [8]). Recall that x⃗ is popular if Π is a popular mixed matching,
where Π is any mixed matching that is equivalent to x⃗.

Alternatively, as shown in [30], x⃗ is popular if ∆(x⃗,M) ≥ 0 for all matchings M . In order to
define ∆(x⃗,M), we need to first define the function voteu(v,M).

– For any vertex u and a neighbor v of u, the value voteu(v,M) is 1 if u prefers v to its assignment
in M , it is −1 if u prefers its assignment in M to v, and it is 0 otherwise (i.e., v =M(u)).

It will be convenient to assume that x⃗ fully matches u, so let us set x(u,u) = 1−
∑

e∈δ(u) xe where
δ(u) is the set of edges incident to u in G. Thus x⃗ matches u to itself with fractional weight x(u,u)
and u considers being matched to itself as its worst choice (i.e., equivalent to being left unmatched).

Let voteu(x⃗,M) =
∑

(u,v)∈δ(u)∪{(u,u)}

x(u,v) · voteu(v,M).

Let ∆(x⃗,M) =
∑

u∈A∪B voteu(x⃗,M). Recall that x⃗ is popular if ∆(x⃗,M) ≥ 0 for all match-
ings M . The popular fractional matching polytope of G is the convex hull of all popular fractional
matchings x⃗ in G. It was shown in [22] that the popular fractional matching polytope of G is
half-integral. This proof of half-integrality uses the graph H = (AH ∪BH , EH) defined below.

The graph H. The graph H can be regarded as consisting of two copies of G = (A ∪ B,E)
(see Fig. 1). The vertex set AH = A0 ∪ B1 and BH = B0 ∪ A1, where Ai = {ai : a ∈ A} and
Bi = {bi : b ∈ B} for i = 0, 1. The edge set EH of H is described below.

– For every (a, b) ∈ E, there are 2 edges (a0, b0) and (a1, b1) in EH .

– For every u ∈ A ∪B, there is a single edge (u0, u1) in EH .

For any u ∈ A ∪ B: if u’s preference order in G is v ≻ v′ ≻ · · · ≻ v′′ then ui’s preference order
(for i = 0, 1) in H is vi ≻ v′i ≻ · · · ≻ v′′i ≻ u1−i; so ui’s last choice neighbor is u1−i.

Let N be any matching in G. Corresponding to N , there is a perfect matching N ′ in H defined
as {(a0, b0), (a1, b1) : (a, b) ∈ N}∪{(u0, u1) : u is unmatched in N}. If N is a stable matching in G,
then it is easy to see that N ′ is a stable matching in H. Thus H admits a perfect stable matching,
i.e., one that matches all vertices. It was shown in [22, Theorem 2] that if a marriage instance has a
perfect stable matching then its popular fractional matching polytope is integral. Thus the popular
fractional matching polytope of H is integral.
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AH BH

A0 B0

A1B1

a1

b0

b1

a0

Fig. 1. The vertex set of H has 2 copies u0 and u1 of every vertex u in G and 2 copies (a0, b0), (a1, b1) of each edge
(a, b) in G along with the edges (u0, u1) for all u (these are the dashed edges).

The above map from matchings in G to matchings in H extends to fractional matchings. So for
any fractional matching x⃗ in G, there is a corresponding fractional matching x⃗′ in H where

x′(u0,v0)
= x′(u1,v1)

= x(u,v) ∀ (u, v) ∈ E;

x′(u0,u1)
= x(u,u) = 1−

∑
e∈δ(u)

xe ∀u ∈ A ∪B.

The following claim will be useful. Note that an edge e is said to be a popular edge if there is a
popular matching containing e.

Claim 1 The edge (a, b) ∈ Ep if and only if (a0, b0) and (a1, b1) are popular edges in H.

Proof. If x⃗ is a popular fractional matching in G then observe that x⃗′ is a popular fractional
matching in H. This is because for any matching N in H, ∆(x⃗′, N) = ∆(x⃗, N0) +∆(x⃗, N1) where
for i ∈ {0, 1}, Ni is the subset of N in the subgraph of H induced on subscript i vertices. Hence
if (a, b) ∈ Ep, i.e., if (a, b) is a popular fractional edge in G, then (a0, b0) and (a1, b1) are popular
fractional edges in H. Since the popular fractional matching polytope of H is integral, it follows
that (a0, b0) and (a1, b1) are popular edges in H.

Conversely, suppose (a0, b0) is a popular edge in H. Then there is a popular matching P in H
containing the edge (a0, b0). Note that P is a perfect matching and let p⃗ be its edge incidence vector.
Define the fractional matching r⃗ in G as follows: r(u,v) = (p(u0,v0)+p(u1,v1))/2 for any (u, v) ∈ E and
r(u,u) = p(u0,u1) for any u ∈ A ∪B. For any matching N in G, observe that ∆(r⃗, N) = ∆(P,N ′)/2.
Since P is popular in H, we have ∆(P,N ′) ≥ 0 and thus ∆(r⃗, N) ≥ 0. Hence r⃗ is a popular
fractional matching in G, so (a, b) ∈ Ep. ⊓⊔

Remark 3. Note that the edge (u0, u1) is popular in H if and only if u is an unstable vertex in G.
For any stable matching S in G, recall that the matching S′ is stable (hence, popular) in H and it
contains the edges (u0, u1) for all unstable vertices u; moreover, (v, v) /∈ Ep for any stable vertex v
[22, Footnote 2].

2.1 Proof of Theorem 2

We need to show the following three statements are equivalent in G = (A ∪B,E).

1. M is supporting.
2. No popular mixed matching defeats M .
3. M matches all stable vertices and M ⊆ Ep.
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Proof of 1⇒2. Let M be a supporting matching. Then there exists a popular mixed matching
Π = {(M0, p0), . . . , (Mk, pk)} whereM =Mi for some i. Suppose there is a popular mixed matching
Π ′ that defeats M , i.e., ∆(Π ′,M) > 0.

Since both Π and Π ′ are popular mixed matchings, we have ∆(Π ′, Π) =
∑

j pj ·∆(Π ′,Mj) = 0.
Because ∆(Π ′,Mi) > 0 and ∆(Π ′, Π) = 0, there has to exist some matching Mj on which Π has
support such that ∆(Π ′,Mj) < 0. However this contradicts Π ′’s popularity, thus 1⇒ 2.

Proof of 2⇒3. This part needs the following technical lemma. Call an edge e unpopular if there
exists no popular matching that contains e.

Lemma 1. Any matching in H that contains an unpopular edge is defeated by some popular match-
ing in H.

For now, we will assume Lemma 1 and finish the proof of Theorem 2. The proof of Lemma 1 is
given in Section 2.2.

Let M be a matching in G such that either M has an edge not in Ep or some stable vertex
is left unmatched in M . So the matching M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u is
unmatched in M} in H has an unpopular edge (by Claim 1). Thus some popular matching P in H
defeats M ′ (by Lemma 1).

Let p⃗ be the edge incidence vector of P . Define the fractional matching r⃗ in G as follows:
r(a,b) = (p(a0,b0) + p(a1,b1))/2 for any (a, b) ∈ E and r(u,u) = p(u0,u1) for any u ∈ A ∪ B. We have
∆(r⃗, N) = ∆(P,N ′)/2 for any matching N in G, so r⃗ is a popular fractional matching in G.
Furthermore, we have ∆(r⃗,M) > 0 since ∆(P,M ′) > 0. The fractional matching r⃗ is equivalent
to a mixed matching Π, note that Π is popular since r⃗ is popular. Thus there is a popular mixed
matching Π more popular than M , a contradiction to M satisfying property 2. Thus 2⇒ 3.

Proof of 3⇒1. Every vertex left unmatched inM is unstable in G, so there is a popular matching
S′ in H that contains all the edges (u0, u1) where u is unmatched in M (see Remark 3). Each edge
e = (a, b) ∈ M belongs to Ep (because M ⊆ Ep). So there are popular matchings M0

e and M1
e in

H that contain (a0, b0) and (a1, b1), respectively (by Claim 1).
Let M = {e1, . . . , eℓ}. Consider the 2ℓ matchings M0

e1 , . . . ,M
0
eℓ
,M1

e1 , . . . ,M
1
eℓ

analogous to the
matchings M0

e and M1
e , defined above in the graph H. Let H ′ be the graph whose edge set is the

multiset of edges present in these 2ℓ popular matchings and the popular matching S′. So multiple
copies of an edge are present in this edge set if this edge is present in more than one matching. The
graph H ′ is (2ℓ+1)-regular since each of these 2ℓ+1 matchings is popular and hence, perfect in H
(recall that H has a perfect stable matching and stable matchings are min-size popular matchings).

Observe that M ′ = {(a0, b0), (a1, b1) : (a, b) ∈ M} ∪ {(u0, u1) : u is unmatched in M} belongs
to H ′. Delete M ′ from H ′. Since M ′ is a perfect matching in H ′, the resulting graph H ′′ = H ′ \M ′

is 2ℓ-regular. It follows from Hall’s marriage theorem that H ′′ can be decomposed into 2ℓ perfect
matchings N ′

1, . . . , N
′
2ℓ [5, Exercise 11.12]. Thus we have:

IM ′ + IN ′
1
+ · · ·+ IN ′

2ℓ
= IM0

e1
+ · · ·+ IM0

eℓ
+ IM1

e1
+ · · ·+ IM1

eℓ
+ IS′ ,

where for any matching N , the vector IN is its edge incidence vector.
The 2ℓ+ 1 matchings M0

e1 , . . . ,M
1
eℓ
, S′ (on the right hand side above) are popular in H. Hence

the fractional matching q⃗ = (IM0
e1

+ · · · + IS′)/(2ℓ + 1), which is a convex combination of these

matchings, is popular in H. Note that q⃗ can also be written as (IM ′ + IN ′
1
+ · · · + IN ′

2ℓ
)/(2ℓ + 1),

where M ′, N ′
1, . . . , N

′
2ℓ are the matchings on the left hand side of this equation.
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Consider the fractional matching r⃗ in G defined as r(a,b) = (q(a0,b0)+q(a1,b1))/2 for any (a, b) ∈ E
and r(u,u) = q(u0,u1) for any u ∈ A ∪ B. As seen in the proof of Claim 1, the popularity of q⃗ in

H implies the popularity of r⃗ in G. Consider the mixed matching Π = {(M, 1
2ℓ+1), . . .} that is

equivalent to r⃗. Since r⃗ is popular, Π is popular and Π has support on M . Thus M is a supporting
matching. Hence 3⇒ 1. ⊓⊔

2.2 Proof of Lemma 1

We need to show that any matching in H that contains an unpopular edge is defeated by some
popular matching in H. Before we formally prove this lemma, we give a high level intuition of its
proof. Any popular matchingM (augmented with self-loops at unmatched vertices) is a max-weight
perfect matching as per a certain edge weight function wtM defined below. Thus M can be realized
as an optimal solution to a linear program (see (LP1) below).

An optimal solution to the dual LP is a dual certificate forM . As proved in Theorem 4, a popular
matching M in a marriage instance on k vertices admits a dual certificate in {0,±1}k. Popular
matchings in the instance H are perfect matchings and they admit dual certificates in {±1}2n [22]
(recall that H has 2n vertices). This simpler dual certificate allows us to realize any popular
matching in H as a stable matching in an auxiliary marriage instance H∗ [10]. An unpopular edge
in H becomes an unstable edge in H∗, i.e., no stable matching contains it.

Now we can use the machinery of stable matchings. It was shown in [20] that if (s, t) is an
unstable edge in a marriage instance such that (s, t0) and (s, t1) are stable edges for some neighbors
t0, t1 of s where t1 ≻s t ≻s t0 then there exists a stable matching where both s and t prefer their
partners to each other. This stable matching in H∗ will lead to our desired popular matching in H.

We now formally discuss the preliminaries that will be used in our proof. Let H̃ = (AH∪BH , ẼH)
be the graph H augmented with self-loops at all vertices. So each vertex u regards itself as its last
choice neighbor and any matching M in H becomes a perfect matching M̃ in H̃ by augmenting M
with self-loops at vertices left unmatched in M . For any matching M , the following edge weight
function wtM can be defined. For each edge (a, b) ∈ EH :

let wtM (a, b) =


2 if (a, b) is a blocking edge to M ;

−2 if a and b prefer their partners in M to each other;

0 otherwise.

Observe that wtM (u, v) = voteu(v,M) + votev(u,M) for any edge (u, v) ∈ EH , where the function
voteu(v,M) was defined earlier in Section 2. For each vertex u, let wtM (u, u) = 0 if u is left
unmatched in M , else wtM (u, u) = −1. So for any u ∈ AH ∪BH , we have wtM (u, u) = voteu(u,M).

Let N be any matching in H. We have:

wtM (Ñ) =
∑

u∈AH∪BH

voteu(Ñ(u), M̃(u)) = ϕ(N,M)− ϕ(M,N) = ∆(N,M).

So M is popular in H if and only if wtM (Ñ) ≤ 0 for all matchings N in H. Consider the following
linear program where δH(u) is the set of edges incident to u in H.

maximize
∑
e∈ẼH

wtM (e) · xe (LP1)

9



subject to ∑
e∈δH(u)∪{(u,u)}

xe = 1 ∀u ∈ AH ∪BH and xe ≥ 0 ∀ e ∈ ẼH .

The constraint matrix of (LP1) is totally unimodular. This is because H is a bipartite graph
and adding self-loops to this graph preserves the total unimodularity of the constraint matrix. So
this LP computes a max-weight perfect matching in H̃ with respect to the edge weight function
wtM . Thus matching M is popular in H if and only if the optimal value of (LP1) is at most 0. In
fact, the optimal value is exactly 0 since M̃ is a perfect matching in H̃ and wtM (M̃) = 0 because
wtM (e) = 0 for each edge/self-loop e in M̃ .

The linear program (LP2) is the dual LP. By LP duality, M is popular in H if and only if there
exists a dual feasible solution y⃗ ∈ R2n such that

∑
u∈AH∪BH

yu = 0 (recall that |AH ∪BH | = 2n).

minimize
∑

u∈AH∪BH

yu (LP2)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ EH and yu ≥ wtM (u, u) ∀u ∈ AH ∪BH .

Theorem 4 ([25]). A matching M in H = (AH ∪ BH , EH) is popular if and only if there exists
y⃗ ∈ {0,±1}2n such that

∑
u∈AH∪BH

yu = 0 along with ya + yb ≥ wtM (a, b) for all (a, b) ∈ EH and
yu ≥ wtM (u, u) for all u ∈ AH ∪BH .

Proof. The constraint matrix of (LP2) is totally unimodular. So (LP2) admits an optimal solution
that is integral. Let y⃗ be an integral optimal solution of (LP2). Thus y⃗ ∈ Z2n.

We need to show that y⃗ ∈ {0,±1}2n. We have yu ≥ wtM (u, u) ≥ −1 for all u ∈ AH ∪BH . Since
M̃ is an optimal solution to (LP1), complementary slackness implies that yu + yv = wtM (u, v) = 0
for every (u, v) ∈ M̃ . Thus yu = −yv ≤ 1 for every vertex u matched to a non-trivial neighbor v
in M̃ . Regarding any vertex u such that (u, u) ∈ M̃ , we again have by complementary slackness
yu = wtM (u, u) = 0. Hence y⃗ ∈ {0,±1}2n. ⊓⊔

We will call a vector y⃗, as given in Theorem 4, a dual certificate for popular matching M . It
was shown in [22, Lemma 2] that every popular matching in H has a dual certificate y⃗ ∈ {±1}2n
(this uses the fact that H admits a perfect stable matching).

An auxiliary instance. Since every popular matching in H is perfect, there is a surjective map
(as shown in [10]) from the set of stable matchings in an auxiliary instance H∗ = (A′

H ∪ B′
H , E

′
H)

to the set of popular matchings in H. The sets A′
H and B′

H are defined below.

– Every a ∈ AH has two copies a and a′ in A′
H . So A′

H = {a, a′ : a ∈ AH}.
– Every vertex of BH is present in B′

H and moreover, for every a ∈ AH , there is a dummy vertex
d(a) in B′

H . So B′
H = BH ∪ {d(a) : a ∈ AH}.

Every (a, b) ∈ EH has two copies (a, b) and (a′, b) in E′
H . For any a ∈ AH , the vertex d(a) has

only two neighbors a, a′ and d(a) prefers a to a′. Suppose a’s preference order in H is b1 ≻ · · · ≻ br.
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– Then the preference order of a in H∗ is b1 ≻ · · · ≻ br ≻ d(a).
– And the preference order of a′ in H∗ is d(a) ≻ b1 ≻ · · · ≻ br.

Let b ∈ BH . Suppose b’s preference order in H is a1 ≻ · · · ≻ ak.

– Then the preference order of b in H∗ is a′1 ≻ · · · ≻ a′k ≻ a1 ≻ · · · ≻ ak, i.e., all its primed
neighbors followed by all its unprimed neighbors, where the order among primed/unprimed
neighbors is b’s original order in H.

Recall that any popular matching M in H has a dual certificate y⃗ ∈ {±1}2n.

Let M ′ =
⋃

a∈AH
ya=1

{(a, b), (a′, d(a)) : (a, b) ∈M}
⋃

a∈AH
ya=−1

{(a′, b), (a, d(a)) : (a, b) ∈M}.

It was shown in [10, Lemma 5] thatM ′ is a stable matching in H∗. Conversely, letM ′ be any stable
matching in H∗. Then M ′ projects to the matching M = {(a, b) : (a, b) or (a′, b) is in M ′} in H.
The popularity of M in H can be proved via the following vector y⃗:

1. For a ∈ AH : if (a′, d(a)) ∈M ′ then ya = 1; else ya = −1.
2. For b ∈ BH : if b’s partner in M ′ is a primed vertex (such as a′) then yb = 1; else yb = −1.

Observe that ya + yb = 0 for each edge (a, b) ∈ M . Since M is a perfect matching, we have∑
u∈AH∪BH

yu = 0. We refer to [22, Section 3] for the details that y⃗ is a feasible solution to (LP2).

Since wtM (M̃) =
∑

u∈AH∪BH
yu = 0, it follows that the incidence vector of M̃ is an optimal solution

to (LP1) and y⃗ is an optimal solution to (LP2). Thus M is a popular matching in H with y⃗ as a
dual certificate.

We are now ready to prove Lemma 1. Let (s, t) be an unpopular edge in H. For any matching N
that contains (s, t), we will show a popular matching more popular than N . The following result
on stable matchings in a marriage instance will be useful to us. Call an edge e stable if there is a
stable matching in H that contains e.

Proposition 2. [20, proof of Lemma 2.5.1] Suppose (s, t0) and (s, t1) are stable edges while (s, t)
is not a stable edge where t1 ≻s t ≻s t0. Then there is a stable matching M where both s and t
prefer their respective partners in M to each other.

We will consider three cases based on the position of t in s’s preference order on its neighbors
in H. In each case we will use Proposition 2 to construct a desired popular matching in H.

Proof of Lemma 1. Let N be a matching in H that contains an unpopular edge (s, t). Let tℓ be
the partner of s in the AH -optimal stable matching Mℓ in H and let tr be the partner of s in the
BH -optimal stable matching Mr in H.

Case 1. Suppose tℓ ≻s t ≻s tr. Since the edge (s, t) is not stable while (s, tℓ) and (s, tr) are stable
edges, there is a stable matching M in H such that both s and t prefer their partners in M to each
other (by Proposition 2). So wtM (s, t) = −2. Observe that the edge (s, t) is slack with respect to
the popular matching M and its dual certificate y⃗ = 0⃗.3 That is:

wtM (s, t) = −2 < 0 = ys + yt.

3 Since matching M is stable, we have wtM (e) ≤ 0 for all edges e; thus the vector 0⃗ is a dual certificate for M .
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So we have wtM (Ñ) =
∑

e∈Ñ wtM (e) <
∑

u yu = 0 since wtM (s, t) < ys + yt and wtM (a, b) ≤
ya + yb for all edges (a, b) (since y⃗ is a feasible solution to (LP2)). Thus ∆(N,M) < 0, i.e., the
stable matching M defeats N .

Case 2. Suppose t ≻s tℓ. That is, s prefers t to its most preferred stable partner tℓ in H. Consider
the following two stable matchings in H∗ = (A′

H ∪B′
H , E

′
H):

M ′
r = {(a, b) : (a, b) ∈Mr} ∪ {(a′, d(a)) : a ∈ AH}

M ′
ℓ = {(a′, b) : (a, b) ∈Mℓ} ∪ {(a, d(a)) : a ∈ AH}.

The vertex s′ is matched to its top choice neighbor d(s) in M ′
r and it is matched to tℓ in M ′

ℓ.
Recall that in the graph H∗, we have d(s) ≻s′ t ≻s′ tℓ. We know that (s′, d(s)) and (s′, tℓ) are stable
edges in H∗ since (s′, d(s)) ∈M ′

r and (s′, tℓ) ∈M ′
ℓ. However, (s

′, t) is not a stable edge in H∗ since
(s, t) is not a popular edge in H. Hence there exists a stable matching M ′ in H∗ such that both s′

and t prefer their respective partners in M ′ to each other (by Proposition 2).
Observe that t’s partner in M ′ has to be a primed neighbor (call it v′) since t cannot prefer

an unprimed neighbor to s′. So M ′ contains edges (s′, u) and (v′, t) where s′ and t prefer their
respective partners (u and v′) to each other.

The stable matching M ′ in H∗ projects to a popular matching M in H; let y⃗ ∈ {±1}2n be M ’s
witness as described in points 1 and 2 just before the proof of Lemma 1. There are two subcases.

– The vertex u = d(s). So M ′ contains (s, b) (for some b ∈ BH) and (v′, t) where t prefers v′ to s′,
i.e., t prefers v to s. The edges (s, b), (v, t) are in M , where wtM (s, t) ≤ 0. We have ys = yt = 1
by the definition of y⃗. Hence wtM (s, t) ≤ 0 < 2 = ys + yt.

– The vertex u ̸= d(s). So M ′ contains (s′, u) and (v′, t) where s prefers u to t and similarly, t
prefers v to s. The edges (s, u), (v, t) are inM and wtM (s, t) = −2. We have ys = −1 and yt = 1
by the definition of y⃗. Hence wtM (s, t) = −2 < 0 = ys + yt.

So in both cases, the edge (s, t) is slack with respect to M and its witness y⃗. So complementary
slackness (the same argument as given in case 1) implies that ∆(N,M) < 0, i.e., the popular
matching M defeats N .

Case 3. The last case is tr ≻s t. So s prefers its least preferred stable partner to t. Consider again
the two stable matchings M ′

r and M ′
ℓ defined earlier (see case 2) in H∗ = (A′

H ∪ B′
H , E

′
H). The

vertex s is matched to tr in M ′
r and it is matched to its worst neighbor d(s) in M ′

ℓ.
In the graph H∗ we have tr ≻s t ≻s d(s). We know that (s, tr) and (s, d(s)) are stable edges in

H∗ since (s, tr) ∈ M ′
r and (s, d(s)) ∈ M ′

ℓ. However, (s, t) is not a stable edge in H∗ since (s, t) is
not a popular edge in H. Hence there exists a stable matching M ′ in H∗ such that both s and t
prefer their respective partners in M ′ to each other (by Proposition 2).

The stable matching M ′ in H∗ projects to a popular matching M in H; let y⃗ ∈ {±1}2n be M ’s
witness as described earlier. There are again two subcases.

– The partner of t in M ′ is a primed vertex.4 We have ys = yt = 1 by the definition of y⃗. Note
that wtM (s, t) ≤ 0 since s prefers its partner in M to t. Hence wtM (s, t) ≤ 0 < 2 = ys + yt.

– The partner of t in M ′ is an unprimed vertex. We have ys = 1 and yt = −1 by the definition
of y⃗. Both s and t prefer their respective partners in M to each other. Thus wtM (s, t) = −2.
Hence wtM (s, t) = −2 < 0 = ys + yt.

4 Recall that vertices in B′
H prefer any primed neighbor to any unprimed neighbor.
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So in both cases, the edge (s, t) is slack with respect to M and its witness y⃗. So complementary
slackness (the same argument as given in case 1) implies that ∆(N,M) < 0, i.e., the popular
matching M defeats N . This finishes the proof of the lemma. ⊓⊔

3 The Fairly Popular Matching Polytope

We will prove Theorem 1 in this section. The high-level intuition for this proof is similar to that of
Lemma 1. We would like to construct a new marriage instance G′ (analogous to H∗) so that there
is a surjective mapping from the set of stable matchings in G′ to the set of fairly popular matchings
in G. The key to this mapping in Section 2.2 was Theorem 4 (in fact, a sharper version from [22]).

Theorem 2 tells us that a matchingM is fairly popular if and only if M̃ , which isM augmented
with self-loops at unmatched vertices, is a perfect matching in the graph Gp whose edge set is the set
of popular fractional edges along with self-loops at unstable vertices. Thus, as done in Section 2.2,
we can capture a fairly popular matching M as an optimal solution to a certain LP (see (LP3)).
An optimal solution to the dual LP will be a dual certificate for M . We have a result analogous to
Theorem 4 for fairly popular matchings (see Lemma 2).

As we will see, dual certificates for fairly popular matchings are more complicated than dual
certificates for popular matchings. So rather than one marriage instance G′, for each connected
component C in Gp, we construct two instances G′

c and G′′
c such that the restriction of any fairly

popular matching M to the edge set of component C (call this matching Mc) can be realized as
a stable matching either in instance G′

c or in instance G′′
c . Thus we can compute a min-cost fairly

popular matching as M = ∪CMc for appropriate matchings Mc.
We will see the LP framework for fairly popular matchings in Section 3.1. Our characterization

of fairly popular matchings is in Section 3.2. This characterization will be used in Section 3.3 to
solve the min-cost fairly popular matching problem in polynomial time. Section 3.4 has the missing
proofs from Section 3.3.

3.1 An LP framework

Our input instance is G = (A∪B,E). Let Ep ⊆ E be the set of popular fractional edges in G. The
set Ep can be computed in linear time by running the popular edge algorithm (from [10]) in the
instance H described in Section 2.

Let Ẽp = Ep ∪ {(u, u) : u is an unstable vertex in G} and let Gp = (A ∪ B, Ẽp). We know
from Theorem 2 that every perfect matching Ñ in Gp is a supporting matching N augmented with
self-loops at vertices left unmatched in N ; conversely, every supporting matching N augmented
with self-loops at unmatched vertices is a perfect matching Ñ in Gp.

Let M be any matching in G. In order to decide if there exists a supporting matching that
defeats M , we will use the edge weight function wtM defined in Section 2.2. This function is now
defined on E ∪ {(u, u) : u ∈ A ∪ B} and we focus on the subset Ẽp. For any (a, b) ∈ Ep, we have
wtM (a, b) ∈ {±2, 0} and for any unstable vertex u, we have wtM (u, u) ∈ {−1, 0}.

Consider the following linear program (LP3) analogous to (LP1) from Section 2.2. For each
vertex v, let δp(v) be the set of edges incident to v in Gp.

maximize
∑
e∈Ẽp

wtM (e) · xe (LP3)
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subject to ∑
e∈δp(v)

xe = 1 ∀ v ∈ A ∪B and xe ≥ 0 ∀ e ∈ Ẽp.

The above linear program computes a max-weight (wrt wtM ) perfect matching S̃ in Gp. It
follows from Theorem 2 that S is a supporting matching. We have wtM (S̃) = ∆(S,M). Thus if
the optimal value of (LP3) is positive then there exists a supporting matching that defeats M ; else
∆(S,M) ≤ 0 for all supporting matchings S, so M is fairly popular.

For any stable matching S in G, note that ∆(S,M) ≥ 0. Since S̃ ⊆ Ẽp, the optimal value of
(LP3) has to be at least 0. Hence M is fairly popular if and only if the optimal value of (LP3) is 0.

Let U ⊆ A ∪B be the set of unstable vertices in G. The linear program (LP4) is the dual LP.

minimize
∑

v∈A∪B
αv (LP4)

subject to

αa + αb ≥ wtM (a, b) ∀ (a, b) ∈ Ep and αu ≥ wtM (u, u) ∀u ∈ U.

Hence M is fairly popular if and only if there exists a feasible solution α⃗ to (LP4) such that∑
v∈A∪B αv = 0.

3.2 Witnesses for fairly popular matchings

Let C be any connected component in Gp = (A ∪ B, Ẽp). Since all stable matchings in G match
the stable vertices of C among themselves, the number of stable vertices in Ac = A∩C is the same
as the number of stable vertices in Bc = B ∩C. Hence there are k stable vertices in Ac if and only
if there are k stable vertices in Bc.

Lemma 2. A matching M is fairly popular if and only if there exists a feasible solution α⃗ to (LP4)
such that for every connected component C in Gp, we have

∑
v∈C αv = 0 and furthermore,

– either αv ∈ {0,±2,±4, . . . , ±(2k − 2)} for all v ∈ C

– or αv ∈ {±1,±3,±5, . . . ,±(2k − 1)} for all v ∈ C,

where 2k is the number of stable vertices in C.

We will first prove the following claim which will be used in the proof of Lemma 2. Let M be
a fairly popular matching in G and let α⃗ be an optimal solution to (LP4). The constraint matrix
of (LP4) is totally unimodular, so we can assume that α⃗ ∈ Zn.

Claim 2 For any connected component C in Gp,
∑

v∈C αv = 0. Furthermore, the α-values of all
the vertices in C have the same parity.

Proof. Let S be any stable matching in G. Let Sc = S ∩ (C ×C) and let Mc =M ∩ (C ×C). Since
Sc is a stable matching in C, it is a popular matching in C; hence ϕ(Sc,Mc) ≥ ϕ(Mc, Sc). That is,
∆(Sc,Mc) ≥ 0 or equivalently, wtMc(S̃c) = wtM (S̃c) ≥ 0. Thus

∑
v∈C αv ≥ 0.

14



Consider
∑

C

∑
v∈C αv where the sum is over all connected components C inGp. This sum equals∑

v∈A∪B αv. Since M is fairly popular,
∑

v∈A∪B αv = 0. Since
∑

v∈C αv ≥ 0 for each connected
component C, it has to be the case that

∑
v∈C αv = 0 for each connected component C in Gp.

Every edge in Ep belongs to some popular fractional matching in G. Let q⃗ be the popular
fractional matching that edge (a, b) ∈ Ep belongs to, where a and b are in C. We have ∆(q⃗,M) = 0
since q⃗ is a popular fractional matching, thus q⃗ is an optimal solution to (LP3). Because α⃗ is an
optimal solution to (LP4), we have αa + αb = wtM (a, b) by complementary slackness, i.e., every
edge in Gp is tight. So αa + αb = wtM (a, b) ∈ {0,±2} for all (a, b) ∈ Ep. Hence the α-values of all
the vertices in C have the same parity. ⊓⊔

Proof of Lemma 2. Let M be a matching such that there exists a feasible solution α⃗ to (LP4)
with

∑
v∈C αv = 0 for every connected component C in Gp. Then

∑
v∈A∪B αv = 0 and so M is

fairly popular.

Conversely, let M be a fairly popular matching in G and let α⃗ be an integral optimal solution
to (LP4). By Claim 2,

∑
v∈C αv = 0 and the α-values of all the vertices in C have the same parity.

Case 1: Suppose every vertex in C is stable. Then we can update the α-values of vertices in C as
follows for any value t: let αa = αa − t for all a ∈ Ac and αb = αb + t for all b ∈ Bc. The updated
α-values are also a feasible solution to (LP4) since αa + αb for any (a, b) ∈ Ep (where a, b ∈ C)
is unchanged by this update; moreover, we assumed that C has no unstable vertex, so there is no
constraint αu ≥ wtM (u, u) for any u ∈ C.

The sum of α-values of all vertices in C is unchanged by this update since |Ac| = |Bc| = k
(because C has only stable vertices), so

∑
v∈C αv = 0. Thus we can preserve optimality and shift

α-values so as to make αv = 0 for some v ∈ C. All the edges in Gp are tight by complementary
slackness (see the proof of Claim 2), so the matched partners of vertices with α-value 0 also have
α-value 0 and all neighbors in C of vertices with α-value 0 have their α-values in {0,±2}. Their
partners have α-values in {0,±2} and neighbors of these vertices have α-values in {0,±2,±4} and
so on. Since the number of stable vertices in Ac (and also in Bc) is k, we can conclude that there
exists an optimal solution α⃗ to (LP4) such that αv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C.

Case 2: Let us now assume that C has at least one unstable vertex. Consider the matching
S̃ = S ∪ {(u, u) : u ∈ U}, where S is any stable matching in G and U is the set of unstable
vertices in G. The matching S̃ is an optimal solution to (LP3). By complementary slackness, we
have αu = wtM (u, u) for every u ∈ U . Hence αu ∈ {0,−1} for every u ∈ U . Since the α-values of
all the vertices in C have the same parity, we have the following two cases.

Case 2.1. The α-values of all the vertices in C are even. Then αu = 0 for every u ∈ U ∩ C. As
argued above (when C had no unstable vertex), this implies that αv ∈ {0,±2, . . . ,±(2k − 2)} for
all v ∈ C.

Case 2.2: The α-values of all the vertices in C are odd. Then αu = −1 for every u ∈ U ∩C. An
analogous argument to the one above shows that αv ∈ {±1,±3, . . . ,±(2k − 1)} for all v ∈ C. ⊓⊔

A characterization of fairly popular matchings. By Lemma 2, a matchingM is fairly popular
if and only if M = ∪CMc where for every connected component C in Gp, there exists γ⃗ (this is the
vector α⃗ in Lemma 2 restricted to vertices in C) such that:

1.
∑

v∈C γv = 0;

2. γa + γb ≥ wtMc(a, b) for (a, b) ∈ Ep ∩ (C × C) and γu ≥ wtMc(u, u) for u ∈ U ∩ C;
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3. either γv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C or γv ∈ {±1,±3, . . . ,±(2k − 1)} for all v ∈ C,
where 2k is the number of stable vertices in C.

Witnesses. We know that M is fairly popular if and only if for each connected component C in
Gp, there exists γ⃗ such that Mc = M ∩ (C × C) and γ⃗ satisfy properties 1-3 given above. Such a
vector γ⃗ will be called a witness of Mc. Let Gc = (C,Ec) where Ec = Ep ∩ (C × C).

Definition 3. Call a matching Mc in Gc valid if it has a witness, i.e., there exists a vector γ⃗ such
that Mc and γ⃗ satisfy properties 1-3 given above.

Let Fc be the convex hull of edge incidence vectors of all valid matchings in Gc. By Lemma 2,
Fc is the convex hull of F0

c ∪ F1
c where:

– F0
c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ⃗ such

that γv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C.
– F1

c is the convex hull of edge incidence vectors of valid matchings in Gc with a witness γ⃗ such
that γv ∈ {±1,±3, . . . ,±(2k − 1)} for all v ∈ C.

3.3 The fairly popular matching polytope

Let C be any connected component in Gp with |C| ≥ 2. We will now describe instances G′
c and G

′′
c

such that the stable matching polytope of G′
c (resp., G′′

c ) is an extension of F0
c (resp., F1

c ). Let K
be the set of stable vertices in G and let |K ∩ C| = 2k.

A colorful multigraph. We will construct a multigraph G′
c on vertex set Ac ∪ Bc. Its edge set

E′
c is described below. Furthermore, each edge in E′

c has a color associated with it. Corresponding
to every edge (a, b) ∈ Ec, the following parallel colored edges are in E′

c:

– If both a and b are in K (i.e., both are stable vertices in G) then there are 2k− 1 parallel edges
(a, b) in E′

c. Each copy of the edge (a, b) has a distinct color in {0,±1, . . . ,±(k−1)} (see Fig. 2).

ba . . .

Fig. 2. G′
c has 2k − 1 parallel colored copies of (a, b) ∈ Ec where a and b are stable vertices.

– If one of a, b is an unstable vertex in G then there is only one edge (a, b) in E′
c and it has color 0.

Since unstable vertices form an independent set, for any edge (a, b) ∈ Ec, note that at least one
of a, b has to be in the set K of stable vertices. In the multigraph G′

c, the preference order of a
vertex over its incident edges is as follows.

– each vertex in A prefers any lower colored edge to any higher colored edge;
– each vertex in B prefers any higher colored edge to any lower colored edge.

For any color i, the preference order of any vertex v among color i edges is exactly as per its
preference order of the corresponding neighbors in G.
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Stable matchings in G′
c. A matching N in the multigraph G′

c is a subset of E′
c such that each

vertex in Ac ∪Bc has at most one edge of N is incident to it. An edge e = (a, b) (say, of color i) in
G′

c blocks matching N if the following two conditions hold:

– Condition 1: (i) a is unmatched in N or (ii) a is matched in N along a color j edge where j > i
or (iii) a is matched in N along a color i edge to a neighbor worse than b.

– Condition 2: (i) b is unmatched in N or (ii) b is matched in N along a color j edge where j < i
or (iii) b is matched in N along a color i edge to a neighbor worse than a.

Matching N is stable in G′
c if there is no edge in E′

c that blocks N .

Valid matchings. Recall valid matchings in the instance Gc (see Definition 3). For any valid
matching Mc in Gc with a witness γ⃗ such that γv ∈ {0,±2, . . . ,±(2k− 2)} for all v ∈ C, define the
matching M ′

c in G
′
c as follows.

– For every edge (a, b) ∈Mc: include the edge (a, b) colored i in M ′
c where γb = 2i.

We will show in Theorem 5 thatM ′
c is a stable matching in G′

c. Conversely, letM
′
c be any stable

matching in G′
c. Let Mc be the colorless M ′

c, i.e., the colors of edges in M ′
c are ignored. So Mc is a

matching in Gc. Theorem 5 shows that Mc is a valid matching in Gc. The proof of Theorem 5 uses
ideas from [26,29] and is given in Section 3.4.

Theorem 5. Mc is a valid matching in Gc with a witness γ⃗ such that γv ∈ {0,±2, . . . ,±(2k− 2)}
for all v ∈ C if and only if M ′

c is a stable matching in G′
c.

An extension of F0
c . For any vertex v in G′

c, let δ
′
c(v) be the set of edges incident to v in G′

c. For
any edge (a, b) ∈ Ec and i ∈ {0,±1, . . . ,±(k − 1)} such that there is an edge (a, b) colored i in G′

c,
let (a, b)i denote the copy of the edge (a, b) colored i in G′

c.
For v ∈ {a, b}, let {e : e ≻v (a, b)i} ⊆ δ′c(v) be the set of all edges in E′

c that v prefers to (a, b)i.
Consider constraints (1)-(2) in variables xe where e ∈ E′

c and λc (this variable will be defined later).

∑
e: e≻a(a,b)i

xe +
∑

e′: e′≻b(a,b)i

xe′ + x(a,b)i ≥ λc ∀(a, b)i ∈ E′
c (1)

xe ≥ 0 ∀e ∈ E′
c and

∑
e∈δ′c(v)

xe ≤ λc ∀v ∈ A′
c ∪B′

c. (2)

The constraints in (2) with 1 replacing λc describe the matching polytope of G′
c and for each

edge (a, b)i ∈ E′
c, we get the stability constraint for edge (a, b)i by replacing λc with 1 in con-

straint (1). Thus constraints (1)-(2) with 1 replacing λc (wherever λc occurs) describe the stable
matching polytope S ′

c of G
′
c (by [33]). There are several proofs of this and these proofs also hold for

multigraphs—recall that G′
c is a multigraph. More concretely, it is easy to check that the simple

proof given in [35, Theorem 1] holds for a multigraph.
By Theorem 5, the constraints formulating S ′

c along with x(a,b) =
∑

i x(a,b)i for each edge (a, b)
in Ec where i ranges over the colors of all the copies5 of edge (a, b) in G′

c describe an extension
of F0

c , where F0
c is the convex hull of the edge incidence vectors of valid matchings in Gc with a

witness γ⃗ such that γv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C.

5 So i ∈ {0,±1, . . . ,±(k − 1)} if both a and b are stable vertices and i = 0 if one of them is unstable.
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Another colorful multigraph. We will now construct another multigraph G′′
c on vertex set

Ac ∪ Bc. Its edge set E′′
c is defined below. As before, each edge in E′′

c has a color associated with
it. Corresponding to each edge (a, b) ∈ Ec, the following colored edges are in E′′

c :

– If both a and b are in K then there are 2k parallel edges (a, b) in E′
c. Each copy of the edge

(a, b) has a distinct color in {0,±1, . . . ,±(k − 1), k}.
– If one of a, b is an unstable vertex in G then there are two edges (a, b) in E′

c. One of these edges
has color 0 and the other has color 1.

Regarding the preferences of a vertex over its incident edges, as before:

– each vertex in A prefers any lower colored edge to any higher colored edge;

– each vertex in B prefers any higher colored edge to any lower colored edge.

For any color i, the preference order of any vertex v among color i edges is exactly as per its
preference order of the corresponding neighbors in G. The definition of a stable matching in the
multigraph G′′

c is the same as given earlier for multigraph G′
c.

For any valid matching Mc in Gc with a witness γ⃗ where γv ∈ {±1,±3, . . . ,±(2k − 1)} for all
v ∈ C, define the matching M ′′

c in G′′
c as follows.

– For every edge (a, b) ∈Mc: include the edge (a, b) colored i in M ′′
c where γb = 2i− 1.

We will show in Theorem 6 that M ′′
c is a stable matching in G′′

c . Conversely, let M
′′
c be any

stable matching in G′′
c . Let Mc be the colorless M ′′

c , i.e., the colors of edges in M ′′
c are ignored. So

Mc is a matching in Gc. Theorem 6 (proof given in Section 3.4) shows that Mc is a valid matching
in Gc.

Theorem 6. Mc is a valid matching in Gc with a witness γ⃗ such that γv ∈ {±1,±3, . . . , ±(2k−1)}
for all v ∈ C if and only if M ′′

c is a stable matching in G′′
c .

An extension of F1
c . For any vertex v in G′′

c , let δ
′′
c (v) be the set of edges incident to v in G′′

c .
Consider constraints (3)-(4) in variables ye where e ∈ E′′

c and λc.

∑
e: e≻a(a,b)i

ye +
∑

e′: e′≻b(a,b)i

ye′ + y(a,b)i ≥ 1− λc ∀(a, b)i ∈ E′′
c (3)

ye ≥ 0 ∀e ∈ E′′
c and

∑
e∈δ′′c (v)

ye ≤ 1− λc ∀v ∈ A′′
c ∪B′′

c . (4)

Constraints (3)-(4) with 0 replacing λc (wherever λc occurs) describe the stable matching poly-
tope S ′′

c of G′′
c (by [33]). The stability constraint for edge (a, b)i in E′′

c is given by (3) with 0
replacing λc and the constraints in (4) with 0 replacing λc describe the matching polytope of G′′

c .
By Theorem 6, the constraints formulating S ′′

c along with y(a,b) =
∑

i y(a,b)i for (a, b) ∈ Ec where
i ranges over the colors of all the copies6 of edge (a, b) in G′′

c describe an extension of F1
c . Recall

that F1
c is the convex hull of the edge incidence vectors of valid matchings in Gc with a witness γ⃗

such that γv ∈ {±1,±3, . . . ,±(2k − 1)} for all v ∈ C.

6 So i ∈ {0,±1, . . . ,±(k − 1), k} if both a and b are stable vertices and i ∈ {0, 1} if one of them is unstable.
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The valid matching polytope. We know from Lemma 2 that any valid matching in C has a
witness γ⃗ where either (i) γv ∈ {0, . . . ,±(2k− 2)} for all v ∈ C or (ii) γv ∈ {±1, . . . ,±(2k− 1)} for
all v ∈ C. So the convex hull of F0

c ∪ F1
c is the valid matching polytope Fc of Gc.

Balas’ theorem [2] on the convex hull of F0
c ∪ F1

c says this polytope is described as follows:

conv(F0
c∪F1

c ) = {z : ∃(x, y, λc) such that z = xλc+y(1−λc) where x ∈ F0
c , y ∈ F1

c , and 0 ≤ λc ≤ 1}.

Thus the variable λc ∈ [0, 1] gets introduced and we get constraints (1)-(6) where constraints (1)-(4)
are given above and constraints (5)-(6) are given below.

z(a,b) = x(a,b) + y(a,b) ∀(a, b) ∈ Ec (5)

ze = 0 ∀e ∈ (E ∩ (C × C)) \ Ec and 0 ≤ λc ≤ 1 (6)

Hence the polytope defined by (1)-(6) is an extension of the polytope Fc. Thus Theorem 7
stated below follows.

Theorem 7. The polytope Pc defined by constraints (1)-(6) is an extension of the convex hull Fc

of edge incidence vectors of valid matchings in Gc.

For any two distinct connected components C and C ′ in Gp, the variables in the formulation
of Pc and those in the formulation of Pc′ are distinct. By listing the constraints in the formulation
of Pc over all the non-trivial connected components C in Gp (i.e., |C| ≥ 2) along with ze = 0
for e ∈ E \ ∪CEc (where the union is over all the non-trivial connected components C in Gp),
we obtain a compact extended formulation for the fairly popular matching polytope of G. Linear
programming on this formulation finds a min-cost fairly popular matching in G in polynomial time.
This proves Theorem 1 stated in Section 1.

3.4 Proofs of Theorem 5 and Theorem 6

We will first prove Theorem 5. This will be proved in two parts: Lemma 3 and Lemma 4.

Lemma 3. LetMc be a valid matching in Gc with a witness γ⃗ such that γv ∈ {0,±2, . . . ,±(2k−2)}
for all v ∈ C. Then M ′

c is a stable matching in G′
c.

Before we prove the above lemma, we will prove the following claim. Recall that K (resp., U) is
the set of stable (resp., unstable) vertices in G.

Claim 3 All vertices in K ∩ C are matched in Mc and no vertex in U ∩ C is matched in Mc.

Proof. Consider (LP3) with Mc replacing M and Ẽc = Ẽp ∩ (C × C) replacing Ẽp. The optimal
value of this LP is at most 0 since there exists a dual feasible solution γ⃗ with

∑
u∈C γu = 0 (recall

that γ⃗ obeys properties 1-3). This means no supporting matching in Gc defeats Mc, so Mc is fairly
popular in Gc and thus it is a supporting matching. So Mc has to match all stable vertices in Gc

(by Theorem 2). The set of stable vertices in Gc is K ∩ C since the set of vertices matched in the
stable matching Sc in Gc is K ∩ C, where S is any stable matching in G and Sc = S ∩ (C × C).

We now need to show that no vertex in U ∩ C is matched in Mc. Observe that wtM (S̃c) =
∆(Sc,Mc) = 0 (since Sc is popular inGc). So S̃c is an optimal solution to (LP3) withMc replacingM
and Ẽc replacing Ẽ. For any u ∈ U ∩ C, the self-loop (u, u) ∈ S̃c. Since γ⃗ is an optimal solution
to the dual LP, the constraint γu ≥ wtMc(u, u) is tight (by complementary slackness). Because
wtMc(u, u) ∈ {0,−1} and γu is even, it has to be the case that γu = wtMc(u, u) = 0, i.e., u is left
unmatched in Mc. ⊓⊔
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We are now ready to prove Lemma 3. We need to show the matchingM ′
c is stable in the colorful

graph G′
c. Hence for any edge (a, b) in Gc and any color i such that (a, b)i is present in G′

c,
7 we

need to show the edge (a, b)i does not block M ′
c. There are three cases based on the values of γa

and γb: in each case we show none of the parallel edges (a, b)i blocks M
′
c.

Proof (of Lemma 3). Observe that M̃c is an optimal solution to (LP3) with Mc replacing M and
Ẽc replacing Ẽ. Hence for any (s, t) ∈ Mc, we have γs + γt = wtMc(s, t) = 0 by complementary
slackness. Consider any edge (a, b) in Gc.

Suppose a ∈ U ∩ CA. Then γa = 0 (see the proof of Claim 3). For any (a, b) ∈ Ec, we have
γa + γb ≥ wtMc(a, b) ≥ 0. So γb ≥ 0. If γb = 0 then wtMc(a, b) = 0. This means (z, b)0 ∈ M ′

c for
some neighbor z that b prefers to a. Else γb > 0 and so (z, b)i ∈M ′

c for some edge (z, b) incident to
b. We have 2i = γb > 0, thus i > 0. Recall that b prefers any positive color edge to a color 0 edge.
Thus b is matched along an edge (z, b)i that it prefers to (a, b)0, hence (a, b)0 does not block M ′

c.
Suppose a ∈ K∩CA. We will show no edge (a, b)ℓ inGc blocksM

′
c where ℓ ∈ {0,±1, . . . ,±(k−1)}

for stable b and ℓ = 0 for unstable b. Since a is a stable vertex, we know that a is matched in Mc

(by Claim 3). Let γa = −2i. So (a,w)i ∈Mc for some neighbor w of a. Let γb = 2j. We know that
γa+ γb = −2i+2j ≥ wtM (a, b). Since wtM (a, b) ≥ −2, it follows that j ≥ i− 1. Let us consider the
following three cases.

1. j = i− 1: This means that γa+ γb = −2i+2(i− 1) = −2 ≥ wtMc(a, b). So wtMc(a, b) = −2, i.e.,
both a and b prefer their partners in Mc to each other. Thus b is matched in Mc to a neighbor z
that it prefers to a. So the edge (z, b)i−1 ∈ M ′

c, where b prefers (z, b)i−1 to (a, b)i−1. Moreover,
a prefers w to b. Hence the edge (a,w)i ∈ M ′

c, where a prefers (a,w)i to (a, b)i. Thus neither
(a, b)i−1 nor (a, b)i blocks M

′
c.

Furthermore, a prefers any lower color edge to any higher color edge—so a prefers (a,w)i to
(a, b)ℓ for all ℓ > i. Similarly, b prefers any higher color edge to any lower color edge—so b
prefers (z, b)i−1 to (a, b)ℓ for all ℓ < i− 1. Hence no edge (a, b)ℓ in Gc blocks M

′
c.

2. j = i: This means that γa + γb = −2i + 2i = 0 ≥ wtMc(a, b). So wtMc(a, b) ≤ 0. Thus either
(a, b)i ∈ M ′

c or one of a, b prefers the edge along which it is matched in Mc to (a, b)i. So the
edge (a, b)i does not block M

′
c in either case.

Suppose b is a stable vertex (recall that a is a stable vertex). Then (a,w) and (z, b) are in Mc,
where w = b and z = a if (a, b) ∈ Mc. Thus (a,w)i and (z, b)i are in M ′

c. Since a prefers any
lower color edge to any higher color edge, a prefers (a,w)i to (a, b)ℓ for all ℓ > i. Similarly, b
prefers (z, b)i to (a, b)ℓ for all ℓ < i. Hence no edge (a, b)ℓ in G

′
c blocks M

′
c.

If b is unstable then i = 0 and (a, b)0 is the only edge in G′
c between a and b. Moreover, since

wtMc(a, b) ≤ 0, the vertex a prefers its partner w to b, hence a prefers the edge (a,w)0 to (a, b)0.
Thus (a, b)0 does not block M ′

c.

3. j ≥ i + 1: If b is an unstable vertex then (a,w)i ∈ M ′
c where i ≤ −1 (since j = 0). Since a

prefers lower color edges to higher color edges, a prefers (a,w)i to (a, b)0.
Suppose b is a stable vertex. Because a is a stable vertex, we have (a,w) and (z, b) in Mc; so
(a,w)i and (z, b)j are in M ′

c. Since a prefers lower color edges to higher color edges, a prefers
(a,w)i to (a, b)ℓ for ℓ ≥ i + 1. Similarly, b prefers (z, b)j to (a, b)ℓ for ℓ ≤ j − 1. Thus no edge
(a, b)ℓ where ℓ ∈ {0,±1, . . . ,±(k − 1)} blocks M ′

c.

Thus we have shown that M ′
c is a stable matching in G′

c. ⊓⊔
7 Recall that i ∈ {0,±1, . . . ,±(k − 1)} if both a and b are stable vertices, else i = 0.
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We now prove the converse of Lemma 3, i.e., we show the colorless matching Mc obtained from
the stable matching M ′

c in G
′
c is a valid matching in Gc. This involves defining a witness γ⃗ for Mc.

We will use the color of the edge along which a vertex is matched in M ′
c to define its γ-value. The

non-trivial step is to show that to show every (a, b) ∈ Ec is covered, i.e., γa + γb ≥ wtMc(a, b).

Lemma 4. If M ′
c is a stable matching in G′

c then Mc (i.e., the colorless M ′
c) is a valid matching

in Gc with a witness γ⃗ such that γv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C.

Proof. Let S be any stable matching in G and let Sc = S ∩ (C × C). It is easy to check that
S′
c = {(a, b)0 : (a, b) ∈ Sc} is a stable matching in G′

c. The set of vertices left unmatched in S′
c is

{u : u ∈ U ∩ C}. All stable matchings in G′
c match the same subset of vertices—this fact is well-

known for simple graphs [18] and it holds for multigraphs as well (recall that G′
c is a multigraph).

For the sake of completeness, we include a proof of this fact for multigraphs as Proposition 3 in the
appendix.

Since M ′
c is a stable matching in G′

c, it matches all vertices of G′
c except the vertices u where

u ∈ U ∩ C. In order to prove that Mc is a valid matching in Gc, we define γ⃗ as follows:

– for every vertex u ∈ U ∩ C: let γu = 0;

– for every edge (s, t)i ∈M ′
c where s ∈ Ac and t ∈ Bc: let γs = −2i and γt = 2i.

Since i ∈ {0,±1, . . . ,±(k − 1)}, it follows that γv ∈ {0,±2, . . . ,±(2k − 2)} for all v ∈ C. For
any vertex u ∈ U ∩ C (each such vertex is unmatched in Mc), we have γu = 0 = wtMc(u, u). We
also have

∑
v∈C γv =

∑
(s,t)∈Mc

(γs + γt) = 0.

Thus we are left to show the constraints γa + γb ≥ wtMc(a, b) for all (a, b) ∈ Ec. Then it will
follow that properties 1-3 in the definition of witness hold and thus Mc is a valid matching in Gc

with γ⃗ as a witness. Suppose γa = −2i and γb = 2j. We need to show that −2i+ 2j ≥ wtMc(a, b).
Consider the following four cases:

1. j ≥ i+ 1: So γa + γb ≥ −2i+ 2(i+ 1) = 2 ≥ wtMc(a, b) since wtMc(e) ∈ {0,±2} for any e ∈ Ec.

2. j = i: Since the edge (a, b)i does not block M ′
c, either (a, b)i ∈ M ′

c or one of a, b is matched
along an edge that it prefers to (a, b)i. Recall that the preference order of any vertex along
color i edges is exactly as per its preference order of the corresponding neighbors in G. Thus
either (a, b) ∈ Mc or one of a, b is matched in Mc to a neighbor preferred to the other. So
wtMc(a, b) ≤ 0. Hence γa + γb = −2i+ 2i = 0 ≥ wtMc(a, b).

3. j = i−1: If a is an unstable vertex then (a, b)0 blocks M ′
c since (z, b)−1 ∈M ′

c for some neighbor
z (recall that b prefers any color 0 edge to a color −1 edge). This contradicts the stability of
M ′

c, thus a is a stable vertex; so (a,w)i ∈ M ′
c for some neighbor w. Also, (z, b)i−1 ∈ M ′

c for
some neighbor z that b prefers to a. Otherwise the edge (a, b)i−1 would block M ′

c as a prefers
any color i− 1 edge to any color i edge.

Furthermore, b prefers (a, b)i to (z, b)i−1 since b prefers any color i edge to any color (i−1) edge.
Since (a, b)i does not block M

′
c, it has to be the case that a prefers w to b. Thus both a and b

prefer their respective partners inMc to each other, so wtMc(a, b) = −2 = −2i+2(i−1) = γa+γb.

4. j ≤ i − 2: As argued in the above case, a has to be a stable vertex. Either b is unmatched (so
b is unstable) or (z, b)j ∈M ′

c. In the former case, the edge (a, b)0 blocks M ′
c since a is matched

along a color i ≥ 2 edge. In the latter case, the edge (a, b)i−1 blocks M ′
c. So in either case, M ′

c

has a blocking edge—a contradiction to its stability in G′
c. Thus we cannot have j ≤ i− 2. ⊓⊔
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Lemma 3 and Lemma 4 imply Theorem 5. We will now prove Theorem 6. This will again be
proved in two parts: Lemma 5 and Lemma 6.

Lemma 5. IfMc is a valid matching in Gc with a witness γ⃗ such that γv ∈ {±1,±3, . . . , ±(2k−1)}
for all v ∈ C then M ′′

c is a stable matching in G′′
c .

Before we prove the above lemma, we will prove the following claim.

Claim 4 All vertices in C are matched in Mc.

Proof. As shown in the proof of Claim 3,Mc is a supporting matching in Gc. ThusMc has to match
all stable vertices in Gc (by Theorem 2). For any unstable vertex u in C, the self-loop (u, u) ∈ S̃c,
where S is any stable matching in G and Sc = S ∩ (C × C). Hence the constraint γu ≥ wtMc(u, u)
is tight (by complementary slackness). Because wtMc(u, u) ∈ {0,−1} and γu is odd, it has to be
the case that γu = wtMc(u, u) = −1, i.e., u is matched in Mc. ⊓⊔

The proof of Lemma 5 is similar to the proof of Lemma 3. In fact, this proof is simpler since
there are no vertices left unmatched in Mc (by Claim 4).

Proof (of Lemma 5). We need to show that M ′′
c is stable in the colorful graph G′′

c . Hence for
any edge (a, b) in Gc and any color ℓ such that (a, b)ℓ is present in G′

c,
8 we need to show that

(a, b)ℓ does not block M ′′
c . Since M̃c is an optimal solution to (LP3), for any (s, t) ∈ Mc, we have

γs + γt = wtMc(s, t) = 0 (by complementary slackness).

Let us now show that no edge (a, b)ℓ in Gc blocks M
′′
c . Let γa = −(2i− 1). So (a,w)i ∈M ′′

c for
some neighbor w of a. Let γb = 2j− 1. We know that γa+ γb = −2i+1+2j− 1 ≥ wtM (a, b) ≥ −2.
Thus it follows that j ≥ i− 1. Let us consider the following three cases.

1. j = i−1: This means that γa+γb = −2i+1+2(i−1)−1 = −2 ≥ wtMc(a, b). So wtMc(a, b) = −2,
i.e., both a and b prefer their partners in Mc to each other. Thus b has to be matched in Mc to
a neighbor z that it prefers to a. So the edge (z, b)i−1 ∈M ′′

c , where b prefers (z, b)i−1 to (a, b)i−1

in G′′
c . Moreover, a prefers w to b. So the edge (a,w)i ∈ M ′′

c , where a prefers (a,w)i to (a, b)i.
Hence neither (a, b)i−1 nor (a, b)i blocks M

′′
c .

Furthermore, a prefers any lower color edge to any higher color edge—so a prefers (a,w)i to
(a, b)ℓ for all ℓ > i. Similarly, b prefers any higher color edge to any lower color edge—so b
prefers (z, b)i−1 to (a, b)ℓ for all ℓ < i− 1. Hence no edge (a, b)ℓ in Gc blocks M

′′
c .

2. j = i: This means that γa + γb = −2i + 1 + 2i − 1 = 0 ≥ wtMc(a, b). So wtMc(a, b) ≤ 0. Thus
(i) (a, b)i ∈M ′′

c or (ii) a prefers w to b where (a,w)i ∈M ′′
c or (iii) b prefers z to a where (z, b)i

in M ′′
c . So the edge (a, b)i does not block M

′′
c in any case.

Since a prefers any lower color edge to any higher color edge, a prefers (a,w)i to (a, b)ℓ for all
ℓ > i. Similarly, b prefers (z, b)i to (a, b)ℓ for all ℓ < i. Hence no edge (a, b)ℓ in G

′′
c blocks M ′′

c .

3. j ≥ i+ 1: Suppose (a,w) and (z, b) are in Mc. So (a,w)i and (z, b)j are in M ′′
c . Since a prefers

lower color edges to higher color edges, a prefers (a,w)i to (a, b)ℓ for ℓ ≥ i + 1. Similarly, b
prefers (z, b)j to (a, b)ℓ for ℓ ≤ j − 1. Thus no edge (a, b)ℓ blocks M

′′
c .

Thus we have shown that M ′′
c is a stable matching in G′′

c . ⊓⊔
8 Recall that ℓ ∈ {0,±1, . . . ,±(k − 1), k} if both a and b are stable vertices, else ℓ ∈ {0, 1}.
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Lemma 6. If M ′′
c is a stable matching in G′′

c then Mc is a valid matching in Gc with a witness γ⃗
such that γv ∈ {±1,±3, . . . , ±(2k − 1)} for all v ∈ C.

Before we prove the above lemma, we will prove the following claim.

Claim 5 Any stable matching in G′′
c matches all vertices in C.

Proof. Consider the subgraph G0
c of G′′

c with vertex set C = Ac ∪ Bc and edge set E0
c which is

E′′
c restricted to color 0 and color 1 edges. So every adjacent pair of vertices in G0

c is connected
by two parallel edges: one colored 0 and the other colored 1. As was the case in G′′

c , every vertex
in Ac prefers any color 0 edge to any color 1 edge while any vertex in Bc prefers any color 1 edge
to color 0 edge. Among color i edges incident to any vertex v (where i ∈ {0, 1}), it is v’s original
preference order.

It follows from [24] that any stable matching in G0
c projects to a max-size popular matching

in Gc, i.e., ignoring edge colors in any stable matching in G0
c yields a max-size popular matching

(let Pc be such a matching) in Gc. Any vertex left unmatched in Pc has to be isolated in Gc (see
Claim 6 in the appendix). Recall that C is a connected component of Gp and |C| ≥ 2. Hence every
vertex in C has at least one edge incident to it in Gp, and thus in Gc. Thus no vertex in C is left
unmatched in the matching Pc.

Hence the original stable matching S0
c (whose colorless version is Pc) matches all vertices in G0

c .
We claim that any stable matching S0

c in G0
c is also a stable matching in G′′

c . All color 0 and color 1
edges of G′′

c are in G0
c and each of the edges in G′′

c \G0
c has either a color higher than 1 or a color

lower than 0 and is between an adjacent pair in G0
c .

Recall that any vertex in Ac prefers being matched along a color 0 or color 1 edge to being
matched along a higher color edge while any vertex in Bc prefers being matched along a color 0 or
color 1 edge to being matched along a lower color edge. Since all vertices in C are matched in S0

c ,
none of the new edges in G′′

c \G0
c blocks S0

c . Thus the perfect matching S0
c is stable in G′′

c . Because
all stable matchings in G′′

c match the same subset of vertices (see Proposition 3 in the appendix),
any stable matching in G′′

c matches all vertices in C. ⊓⊔

Proof (of Lemma 6). M ′′
c is a stable matching in G′′

c . By Claim 5, M ′′
c matches all vertices in C. In

order to prove that Mc is a valid matching in Gc, we will define γ⃗ as follows:

– for every edge (s, t)i ∈M ′′
c , let γs = −(2i− 1) and γt = 2i− 1.

Since i ∈ {0,±1, . . . ,±(k − 1), k}, we have γv ∈ {±1,±3, . . . ,±(2k − 1)} for all v ∈ C. We
also have

∑
v∈C γv =

∑
(s,t)∈Mc

(γs + γt) = 0. Furthermore, for any unstable vertex u, we have

(u, v)i ∈ M ′′
c where v is a neighbor of u and i ∈ {0, 1}. Thus |γu| = |2i − 1| where i ∈ {0, 1}. So

γu ∈ {±1}, in other words, γu ≥ −1 = wtMc(u, u).
Thus we are left to show the constraints γa + γb ≥ wtMc(a, b) for all (a, b) ∈ Ec. Then it will

follow that properties 1-3 in the definition of witness hold and thus Mc is valid in Gc with γ⃗ as a
witness. Suppose γa = −(2i− 1) and γb = 2j − 1. Let us consider the following four cases:

1. j ≥ i+ 1: So γa + γb = −2i+ 1+ 2j − 1 = 2(j − i) ≥ 2. Since wtMc(e) ∈ {±2, 0} for any e ∈ E,
we have wtMc(a, b) ≤ 2 ≤ γa + γb.

2. j = i: Since the edge (a, b)i does not blockM
′′
c , either (a, b)i ∈M ′′

c or one of a, b is matched along
an edge preferred to (a, b)i. Thus either (a, b) ∈Mc or one of a, b is matched inMc to a neighbor
preferred to the other. So wtMc(a, b) ≤ 0. Hence γa + γb = −(2i− 1) + 2i− 1 = 0 ≥ wtMc(a, b).
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3. j = i − 1: So (a,w)i and (z, b)i−1 are in M ′′
c . Recall that b prefers any higher color edge to

any lower color edge, thus b prefers (a, b)i to (z, b)i−1. Since the edge (a, b)i does not block M
′′
c

(because M ′′
c is a stable matching in G′′

c ), it has to be the case that a prefers (a,w)i to (a, b)i,
in other words, a prefers w to b.

Similarly, a prefers any lower color edge to any higher color edge, thus a prefers (a, b)i−1 to
(a,w)i. Since the edge (a, b)i−1 does not block M ′′

c , it has to be the case that b prefers (z, b)i−1

to (a, b)i−1, in other words, b prefers z to a. Thus both a and b prefer their respective partners
in Mc to each other, so wtMc(a, b) = −2 = −(2i− 1) + 2(i− 1)− 1 = γa + γb.

4. j ≤ i− 2: We have (a,w)i and (z, b)j in M ′′
c where j ≤ i− 2. So the edge (a, b)i−1 blocks M ′′

c .
This contradicts the stability of M ′′

c in G′′
c . Thus this case does not occur. ⊓⊔

This finishes the proof of Theorem 6.

4 A Hardness Result

We prove Proposition 1 and Theorem 3 in this section. Let G̃ = (A∪B, Ẽ) where Ẽ = E ∪{(u, u) :
u ∈ A ∪ B}. Thus we can regard any fractional matching x⃗ in G as a perfect fractional matching
in G̃ by setting x(u,u) = 1−

∑
e∈δ(u) xe for all vertices u.

Let MG be the matching polytope of the bipartite graph G = (A∪B,E). Any popular matching
M satisfies ∆(x⃗,M) ≤ 0 for all x⃗ ∈ MG where ∆(x⃗,M) = wtM (x⃗) =

∑
e∈Ẽ wtM (e) · xe. Note that

the constraint ∆(x⃗,M) ≤ 0 involves m+n variables xe for e ∈ Ẽ, where |A∪B| = n and |E| = m.
By substituting x(u,u) = 1 −

∑
e∈δ(u) xe for every vertex u, this constraint involves only the m

variables xe for e ∈ E.

Observation 1 Let X ⊆ Rm be the convex hull of the edge incidence vectors of matchings that are
not defeated by any popular matching. The polytope X is a face of MG.

Proof. Every x⃗ ∈ MG satisfies ∆(x⃗,M) ≤ 0 for all popular matchings M . So the intersection
of MG with the constraints ∆(x⃗,M) = 0 for all popular matchings M is a face Q of MG. The
polytope Q is integral and every integral point in Q is the edge incidence vector of a matching not
defeated by any popular matching. Moreover, the edge incidence vector of every matching that is
not defeated by any popular matching is in Q. Hence Q = X . ⊓⊔

The following constraints in the variables xe for e ∈ E describe the polytope X :

∆(x⃗,M) = 0 ∀popular matchings M,
∑

e∈δ(u)

xe ≤ 1 ∀u ∈ A ∪B, and xe ≥ 0 ∀ e ∈ E.

There are exponentially many constraints here. However, X is a polytope in Rm and so at most
m of the tight constraints ∆(x⃗,M) = 0 are necessary and the rest are redundant. Thus there exist
at most t ≤ m popular matchings M1, . . . ,Mt such that if a matching N satisfies ∆(N,Mi) = 0 for
1 ≤ i ≤ t then the edge incidence vector of N belongs to X , i.e., such a matching N is not defeated
by any popular matching. Hence Proposition 1 follows.
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The NP-hardness proof. We now prove Theorem 3 which states that in spite of the compactness
result given by Proposition 1, it is NP-complete to decide if there exists a popular matching that
defeats a given matching N . The reduction is from 1-in-3 SAT. This is the set of 3CNF formulas
where each clause has 3 literals, none negated, such that there is a satisfying assignment that makes
exactly one literal true in each clause.

Given such a formula ψ, to decide if ψ is 1-in-3 satisfiable is NP-complete [34]. Given ψ, as done
in [13], we will construct an instance G described below. The graph G has many gadgets. There is
one gadget corresponding to each variable and several gadgets corresponding to each clause in G.

– The gadget for variable Xi is on 4 vertices xi, yi, x
′
i, y

′
i and is illustrated on the right in Fig. 3.

– Other than the clause and variable gadgets, there is one special gadget on four vertices a0, b0, z
′, z.

The gadget formed by these four vertices is illustrated on the left in Fig. 3.

1

1

2

22

1
21

∗

1 b0 x′i y′i

yixizz′

a0
2 2

∗ 1

Fig. 3. The numbers on edges denote preferences: 1 is top choice, 2 is second choice, and ∗ denotes a number ≫ 1.
Vertices a0, b0, z

′, z form a single gadget on the left and the gadget corresponding to variable Xi is on the right.

There are several inter-gadget edges, i.e., edges with endpoints in different gadgets. However all
inter-gadget edges are unpopular [13, Theorem 3.2]. Equivalently, the endpoints of every popular
edge in G are within the same gadget. So any popular matching P in G contains either the pair
(a0, z), (z

′, b0) or the single edge (a0, b0).
Furthermore, there are two alternatives for the popular matching P from each variable gadget.

Let n be the number of variables in ψ. For i ∈ {1, . . . , n}:

– The popular matching P contains either the pair (xi, yi), (x
′
i, y

′
i) or the pair (xi, y

′
i), (x

′
i, yi).

• If {(xi, yi), (x′i, y′i)} ⊆ P then the gadget corresponding to Xi is in zero state in P .
• If {(xi, y′i), (x′i, yi)} ⊆ P then the gadget corresponding to Xi is in unit state in P .

The following theorem is Theorem 3.4 combined with Theorem 3.5 from [13].

Theorem 8 ([13]). G has a popular matching P that matches all vertices except z and z′ if and
only if for each clause C in ψ, there is exactly one variable in C whose gadget is in unit state in P .

The gadget for Xi being in unit state is interpreted as the variable Xi being set to true and this
gadget being in zero state is interpreted as the variable Xi being set to false. Thus by Theorem 8,
G has a popular matching that matches all vertices except z and z′ if and only if ψ is 1-in-3
satisfiable. Hence it is NP-hard to decide if G has a popular matching that matches all vertices
except z and z′.

The augmented instance G. In order to prove another hardness result on popular matchings,
the reduction in [13] augments the above instance G with a gadget on four new vertices x0, y0, x

′
0, y

′
0.

The edges within this new gadget are similar to those within any variable gadget (see the gadget

25



on the right in Fig. 4). Inter-gadget edges are incident to the vertices x′0, y
′
0, however x0, y0 have no

neighbors outside their gadget in the construction in [13]. As before, no inter-gadget edge belongs to
any popular matching (see the proof of [13, Theorem 4.1]). So any popular matching in G contains
either the pair (x0, y0), (x

′
0, y

′
0) or the pair (x0, y

′
0), (x

′
0, y0).
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Fig. 4. The dashed edges do not belong to the instance used in [13] but these edges will be useful to us here.

It was shown in [13] that any popular matching in G that contains both (a0, b0) and (x0, y
′
0)

has to match all vertices in G except z and z′. Thus by Theorem 8, it is NP-hard to decide if there
exists a popular matching in G that contains both (a0, b0) and (x0, y

′
0). The following result is [13,

Theorem 4.1(ii)].

Theorem 9 ([13]). The instance G admits a popular matching that contains the two edges (a0, b0)
and (x0, y

′
0) if and only if ψ is 1-in-3 satisfiable.

We will use a slightly modified version of the above instance G to show the NP-hardness of
deciding if there exists a popular matching that defeats a given matching N . We will add the
dashed edges (x0, z) and (z′, y0) to G (see Fig. 4). The top choices of z and z′ are x0 and y0,
respectively. The vertices x0 and y0 regard z and z′ as their worst neighbors, respectively.

Observation 2 Neither (x0, z) nor (z′, y0) is a popular edge in G.

Proof. Any popular matching in G that contains either (x0, z) or (z′, y0) has to contain all the
three edges (x0, z), (z

′, y0), (x
′
0, y

′
0). Thus what we need to check is the following: there is no popular

matching in G that contains the three edges (x0, z), (z
′, y0), (x

′
0, y

′
0).

A matching N that contains these three edges is not popular since the matching M obtained
from N by replacing these three edges with the two edges (x0, y

′
0) and (x′0, y0) is more popular.

Observe that∆(M,N) = 4−2 = 2 since x0, y0, x
′
0, y

′
0 preferM toN while z, z′ (these are unmatched

in M) prefer N to M and all other vertices are indifferent between M and N . ⊓⊔

We will now check that Theorem 9 continues to hold in this instance G augmented with the
edges (x0, z) and (z′, y0). Any popular matching M that contains (a0, b0) and (x0, y

′
0) has to leave

z and z′ unmatched. This is because (a0, z), (z
′, b0) are the only popular edges incident to z, z′ and

since (a0, b0) ∈M , neither of these edges belongs to M .
A dual witness α⃗ (see Theorem 4) of such a popular matchingM has to satisfy (i) αx0 = αy0 = 1

since αx0 + αy0 ≥ wtM (x0, y0) = 2 because (x0, y0) is a blocking edge to M and (ii) αz = αz′ = 0
since αz = wtM (z, z) = 0 and αz′ = wtM (z′, z′) = 0 because z and z′ are unmatched in M . As
shown in [13], such a dual certificate α⃗ will lead to a 1-in-3 satisfying assignment for ψ. The proof
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of [13, Theorem 4.1] uses α⃗ to show that M has to match all vertices in G other than z and z′ and
the proof of [13, Theorem 3.4] uses M to define a truth assignment to the variables in ψ so that ψ
is 1-in-3 satisfiable.

Conversely, if ψ is 1-in-3 satisfiable then as done in the proof of [13, Theorem 3.5], this satisfying
assignment can be used to construct a popular matching M in the old instance G, i.e., without the
edges (x0, z), (z

′, y0), such that {(a0, b0), (x0, y′0)} ⊆ M . The dual certificate α⃗ constructed in this
proof satisfies αx0 = αy0 = 1 and αz = αz′ = 0. Thus we have αx0 + αz = 1 > 0 = wtM (x0, z) and
αz′ + αy0 = 1 > 0 = wtM (z′, y0). So these two edges are also covered by α⃗. Hence M is popular in
our new instance G (by Theorem 4).

Let S = {a0, b0, z′, z, x0, y0, x′0, y′0}. Define N as follows:

N = N0 ∪N1 where N1 = {(a0, b0), (x0, z), (z′, y0), (x′0, y′0)} and N0 is any stable matching

in the subgraph of G induced on(A ∪B) \ S.

We know from Observation 2 that N is not popular. The non-trivial question is whether there
is a popular matching more popular than N .

Lemma 7. There exists a popular matching in G that defeats N if and only if ψ is 1-in-3 satisfiable.

Proof. Let G1 be the subgraph of G induced on S = {a0, b0, z, z′, x0, y0, x′0, y′0} and let G0 be the
subgraph induced on (A ∪B) \ S.

(The ⇒ direction.) Suppose there is a popular matching M that is more popular than N . As
mentioned earlier, no edge between G0 and G1 belongs to any popular matching. Hence M =
M0 ∪M1 where Mi is within Gi, for i = 0, 1. Since M is popular in G, the matchings M0 and
M1 have to be popular in G0 and G1, respectively. We have ∆(M,N) = ∆(M0, N0) +∆(M1, N1).
Moreover, ∆(M0, N0) = 0 because M0 and N0 are popular matchings in G0. Since ∆(M,N) > 0,
it must be the case that ∆(M1, N1) > 0.

The graph G1 has three popular matchings. These are P1 = {(a0, b0), (x0, y′0), (x′0, y0)}, P2 =
{(a0, b0), (x0, y0), (x′0, y′0)}, and P3 = {(a0, z), (z′, b0), (x0, y′0), (x′0, y0)}.9 As shown in Observation 2,
the matching P1 = {(a0, b0), (x0, y′0), (x′0, y0)} is more popular than N1.

The matchings P2 and P3 are marked in red and blue respectively in Fig. 4. It is easy to check
that neither P2 nor P3 is more popular than N1. SoM1 = P1. SinceM1 ⊆M , it follows thatM is a
popular matching in G that contains (a0, b0) and (x0, y

′
0). Since Theorem 9 holds in our instance G,

it follows that ψ is 1-in-3 satisfiable.

(The ⇐ direction.) Suppose ψ is 1-in-3 satisfiable. Since Theorem 9 holds in our instance G, we
know there is a popular matching P in G that contains the edges (a0, b0) and (x0, y

′
0). So P has to

also contain the edge (x′0, y0). We claim that ∆(P,N) > 0.
Let us partition P into P0∪P1 where P1 = {(a0, b0), (x0, y′0), (x′0, y0)} and P0 = P \P1. We have

∆(P,N) = ∆(P0, N0)+∆(P1, N1). We have already checked that ∆(P1, N1) = 4−2 = 2. Moreover,
∆(P0, N0) = 0 by the popularity of P0 and N0 in G0. So ∆(P,N) = 2, i.e., the popular matching
P defeats N . ⊓⊔

Lemma 7 shows that it is NP-hard to decide if there exists a popular matching that defeats a
given matching N . This problem is NP-complete since a ‘yes’-instance N has a popular matching
(which is easy to verify [4,21]) that defeats it. Thus Theorem 3 stated in Section 1 follows.

9 The matching {(a0, z), (z
′, b0), (x0, y0), (x

′
0, y

′
0)} is not popular in G1 since N1 is more popular.
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5 Conclusions

We introduced a relaxation of popular matchings called fairly popular matchings in a marriage
instance G = (A ∪ B,E). Unlike popular matchings, fairly popular matchings may lose to other
matchings; however any matching N that defeats a fairly popular matching M does not belong
to the support of any popular mixed matching, thus N can be considered to be very unpopular.
So there is no ‘viable alternative’ that defeats a fairly popular matching. Hence fairly popular
matchings are a meaningful generalization of popular matchings. We showed that a matching M
belongs to the support of a popular mixed matching if and only if M is undefeated by popular
mixed matchings.

We also gave a combinatorial characterization of matchings that belong to the support of popular
mixed matchings. This allowed us to characterize fairly popular matchings in terms of witnesses
and to use the stable matching machinery to formulate a compact extension of the fairly popular
matching polytope. Thus the min-cost fairly popular matching problem can be solved in polynomial
time. We also showed that it is NP-complete to decide if there exists a popular matching that is
more popular than a given matching.
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Appendix: Some Missing Details from Section 3.4

Stable matchings in multigraphs. Let G = (A ∪ B,E) be a multigraph where every vertex
u ∈ A ∪ B has a strict preference order on its incident edges. It is well-known that all stable
matchings in a simple graph match the same subset of vertices [18]. This property holds for stable
matchings in multigraphs as well and it can be shown by LP duality (complementary slackness).

Proposition 3. Every stable matching in the multigraph G matches the same subset of vertices.

Proof. Let M be a stable matching in G. As done in Section 2.2, we will augment the edge set E
with self-loops; so Ẽ = E ∪ {(u, u) : u ∈ A ∪ B}. Recall the function wtM defined in Section 2.2:
we have wtM (u, u) ∈ {0,−1} for all u ∈ A ∪ B and wtM (e) ∈ {0,±2} for all e ∈ E. Furthermore,
wtM (e) ≤ 0 for all e ∈ E since M is stable (so it has no blocking edge). Consider (LP5).

maximize
∑
e∈Ẽ

wtM (e) · xe (LP5)

subject to
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∑
e∈δ(v)∪{(v,v)}

xe = 1 ∀ v ∈ A ∪B and xe ≥ 0 ∀ e ∈ Ẽ.

Recall that the optimal value of (LP5) is maxN ∆(N,M) where the maximum is over all match-
ings N in G. Since M is stable, ∆(N,M) ≤ 0 for all N . The incidence vector of any stable
matching S augmented with self-loops at unmatched vertices is an optimal solution to (LP5) since
∆(S,M) = 0.

The linear program (LP6) is the dual LP. Since wtM (e) ≤ 0 for all e ∈ Ẽ, yv = 0 for all v ∈ A∪B
is a feasible solution to (LP6). In fact, y⃗ = 0⃗ is an optimal solution to (LP6) since the optimal value
of (LP6) is 0 (by LP duality).

minimize
∑

v∈A∪B
yv (LP6)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E and yv ≥ wtM (v, v) ∀ v ∈ A ∪B.

For every vertex v matched in M , the constraint yv ≥ wtM (v, v) is slack since yv = 0 and
wtM (v, v) = −1. It follows from complementary slackness that no optimal solution to (LP5) can
contain the self-loop (v, v) where v is a vertex matched inM . In other words, for any stable matching
S in G, {vertices matched in M} ⊆ {vertices matched in S}. By swapping the roles of M and S in
the above argument, we have {vertices matched in S} ⊆ {vertices matched in M}. Hence the set
of vertices matched in any two stable matchings in G is the same. ⊓⊔

Max-size popular matchings in Gc. We will show the following claim.

Claim 6 Any vertex left unmatched in the max-size popular matching Pc in Gc = (Ac ∪Bc, Ec) is
an isolated vertex in Gc.

Proof. Recall the graph H∗ from Section 2.2. Analogous to how H∗ was defined with respect to H,
consider the graph G∗

c with respect to Gc. The graph G0
c is a more compact version of G∗

c : the
difference between the graphs G0

c and G∗
c is that G∗

c contains dummy vertices, but G0
c has no

dummy vertices. Recall that G0
c is a multigraph while G∗

c is a simple graph.
There is a natural bijection f between the set of stable matchings in G∗

c and the set of stable
matchings in G0

c . For any stable matching S in G∗
c = (A∗

c ∪B∗
c , E

∗
c ):

let f(S) =
⋃

u∈A∗
c

({(u, v)0 : (u, v) ∈ S} ∪ {(u, v)1 : (u′, v) ∈ S}).

It is straightforward to check that S is a stable matching in G∗
c if and only if f(S) is a stable

matching in G0
c . A max-size popular matching in Gc can be computed by the 2-level Gale-Shapley

algorithm from [24]. It is known that running the 2-level Gale-Shapley algorithm in Gc is the same
as running the Gale-Shapley algorithm in G∗

c [10]. By the equivalence between stable matchings in
G∗

c and in G0
c , running the Gale-Shapley algorithm in G∗

c is equivalent to running the Gale-Shapley
algorithm in G0

c .
Let S0

c be the stable matching computed by the Gale-Shapley algorithm in G0
c and let Pc be its

colorless version. So Pc is a max-size popular matching in Gc. It is easy to prove the popularity of
Pc via the following dual certificate y⃗. For each edge (a, b) ∈ Pc:
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– if (a, b)0 ∈ S0
c : then let ya = 1 and yb = −1.

– if (a, b)1 ∈ S0
c : then let ya = −1 and yb = 1.

Also, yu = 0 for every vertex u unmatched in Pc.

Thus
∑

v∈Ac∪Bc
yv = 0. It is straightforward to check that y⃗ satisfies the constraints of the dual

LP, i.e., (LP2) where wtM is replaced by wtPc (see [6] for a proof of dual feasibility of y⃗). Thus y⃗ is
an optimal solution to the dual LP. Moreover, the constraints corresponding to all edges incident
to unmatched vertices are slack, i.e., for any vertex u unmatched in Pc and any neighbor v of u in
Gc, we have yu = 0, yv = 1, and wtPc(u, v) = 0, i.e., yu + yv = 1 > 0 = wtPc(u, v).

By complementary slackness, any fractional matching q⃗ that uses a slack edge (u, v) cannot
be an optimal solution to the primal LP, i.e., wtPc(q⃗) = ∆(q⃗, Pc) < 0. In other words, Pc is more
popular than q⃗. Thus no popular fractional edge of Gc is incident to any vertex left unmatched
in Pc. Since every edge of Gc is a popular fractional edge in G (and so in Gc), this means any vertex
left unmatched in Pc is an isolated vertex in Gc. ⊓⊔
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