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Abstract. Residential land (RL), as a typical kind of urban functional zone, plays an important
role in urban planning and land census. Recent years have witnessed frequent changes in RL via
the process of urbanization. The extraction of RL from high spatial resolution optical images can
reflect the status quo of land use/land cover to a certain extent, which is of great significance to
land census and urban planning. We adopt a scene classification strategy to extract RL and
mainly focus on the extraction of four common types of RL in China: old-style village, low-
density high-rise, medium-density low-rise, and low-density low-rise. We design a multifeature
hierarchical (MFH) algorithm for RL extraction. First, RL is extracted based on the gray level
concurrence matrix and a fuzzy classification algorithm. Then an improved bag-of-visual-words
algorithm is introduced to further realize the extraction of RL. The effectiveness of our proposed
method is analyzed with a sample dataset and large images. We also analyze the separability
among different kinds of RL. We compare the experimental results with those of three other
algorithms, and the results demonstrate that the MFH algorithm performs better in terms of the
accuracy and efficiency of the RL extraction. The results can provide services for land surveying
and urban planning, and the technological processes and experimental design in the algorithm
can provide a reference for the research in related fields. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13
.026515]
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1 Introduction

With the rapid development of urbanization, the effective use and management of urban land
have attracted extensive attention. The places where people partake in different socioeconomic
activities are divided into different functional zones.1 Residential land (RL), as a typical func-
tional zone, is the most extensive land use type in cities, and it can reflect the situation of land use
to a certain extent. Moreover, it is one of the most transformed land use/land cover (LULC) types
in the process of urbanization in China. Timely information about the quantity and spatial
distribution of this type of land is important for urban planning and investigations.

Currently, the methods employed for image information extraction mainly use remote sens-
ing technologies. The rapid development of remote sensing technology enables people to quickly
obtain a large amount of ground information through satellites and spacecrafts. High spatial
resolution optical images (HSROIs) can represent the surface of the Earth in detail and are widely
used in urban LULC extraction, which provides data resources for the extraction of RL. The
application of HSROIs provides favorable conditions for the updating and application of GIS
data and is of great significance for map updating, image matching, and target detection.2,3

However, previous studies pay more attention to the information extraction of diverse land-cover
objects (e.g., building,4–8 road,9–13 vegetation,14–17 and cultivated land18–21), and fewer studies
focus on the extraction of functional zones. Functional zones are spatially aggregated by differ-
ent land-cover objects, and their categories are semantically abstracted from land use functions,22
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e.g., commercial zones, industrial zones, residential districts, shanty towns, campuses, and
parks.23

Functional zone studies are usually implemented by scene-based classification with very high
resolution satellite images, where functional zones are represented by image scenes.24,25

Recently, numerous efforts have been made to extract proper features from scene images and
build effective classification models. In terms of feature extraction, the visual features, including
spectral, textural, and geometrical features, are usually used to characterize the scene images.26–34

However, only the visual features were used in these studies, and the semantic features that re-
present the special geographic information were ignored. Therefore, these methods are only
effective in classifying simple scenes, rather than heterogeneous scenes with diverse kinds
of objects.35–37 To solve this issue, scale invariant feature transform (SIFT) features were
introduced.38 Unlike some visual features that are variant to affined transformations, SIFT fea-
tures overcome the variability of scale and affinity issues and are widely used in image classi-
fication, scene recognition, and target detection.39–41 In terms of classification methods, they
mainly use techniques for measuring the feature similarity between scene images and labeling
scenes using various classifiers, such as the K-nearest neighbor, maximum likelihood, support
vector machine (SVM), artificial neural network, and random forests.42 However, these classi-
fiers are only capable of dealing with the visual features and are easily affected by feature
changes. Therefore, more effective models, such as the latent Dirichlet allocation43 and bag
of words,44 are gradually being introduced to improve the classification accuracy. Nevertheless,
the previous methods are not capable of tackling the urban RL recognition and classification task
by solely using simple features and classification models, as the residential scenes are often
heterogeneous with complex components and various semantic categories.

In addition, other issues, such as the classification of RL, the universality of the dataset, and
the generalization of the method, also impede RL extraction in Chinese urban areas. There are
great differences in the morphological structures and geographical distributions of different types
of RL, so it is more practically significant for further classification of RL. However, in the study
by Yang and Newsam,45 RL was not subdivided, and Xia et al.46 divided RL into dense resi-
dential and rural residential. These classification systems are too general to distinguish different
types of RL. In other relevant studies,47,48 the housing types in RL are quite different from those
in China. In Chinese towns, residential areas are dominated by high-rise housings, whereas in the
United States, residential areas mainly include single-family housing, multifamily residential,
and mobile homes. These three residential types also appear in the frequently used scene clas-
sification dataset, the UC merced land use dataset, which can be downloaded from the United
States Geological Survey National Map.49 Other commonly used datasets such as the SIRI-
WHU50 and WHU-RS19 datasets51 are selected from Chinese areas, and the RL is taken as
a class in the scene classification without being further subdivided. Moreover, the images of
these datasets and the classification schemes were built according to land use scenes, not func-
tional zones. Therefore, these datasets are not suitable for the extraction of RL in China. In
addition, these studies only involve the classification of scene images in the dataset without
considering the applicability of large-scale remote sensing images.

In summary, this study aims to address its four key issues: the classification scheme, dataset,
features and models, and applicability of large area images. This study built a classification
scheme in line with the current status of LULC in China and subdivided RL into four types
[old-style village (OSV), low-density high-rise (LDHR), medium-density low-rise (MDLR), and
low-density low-rise (LDLR)] according to the characteristics of Chinese residential buildings,
such as the morphological structure, distribution location, floor height, and floor spacing. In our
study, the HSROIs provided by Google Earth were used to collect the samples and build the
dataset. Though the Google Earth images have been preprocessed using RGB renderings from
the original optical aerial images, there is no significant difference between the Google Earth
images and the real optical aerial images, even in the pixel-level LULC mapping.52 Thus Google
Earth images can also be used as aerial images for scene classification. Many datasets, such as
the AID,45 SIRI-WHU50, WHU-RS19,51 and RSSCN753 datasets, are collected from Google
Earth images. For the features and models, we proposed a multifeature hierarchical (MFH)
method to extract RL, and the validity of our algorithm was verified by large area images.
At present, many works on information extraction adopt the idea of deep learning, but it requires
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a large number of samples. Since our algorithm does not require a large number of samples to
achieve the extraction of RL, the deep learning method is not considered here.

The main contributions of our work are listed below:

• In this study, we subdivided RL and constructed a reasonable category system and sample
dataset that is in line with China’s geographical conditions.

• We designed the MFH algorithm for the RL extraction and further analyzed the separability
of single-class RL. In our work, the traditional fuzzy classification and bag-of-visual-words
(BOVW) model were improved to realize the rapid and automatic extraction of RL.

• The MFH algorithm was applied to the extraction of RL in large-scale images, which pro-
vided strategies and approaches for the realization of automatic and fast national LULC
investigations, and further provided reference basis for urban planning.

The remainder of this paper is organized as follows: In Sec. 2, the details of our proposed
methods are described. Section 3 demonstrates the effectiveness of the proposed model using a
sample dataset and large images. The discussion and conclusion are given in Secs. 4 and 5,
respectively.

2 Methodology

In our study, a classification scheme was first built, and the samples of each class were collected
through Google Earth. Our classification scheme was built according to the study areas, Beijing
and Tianjin, where Google Earth provides high precision images, and the LULC types are
diverse, as well as a certain number of scattered residential areas. The experimental data col-
lected from the images of such a research area are more typical and representative, which can
better reflect the characteristics of the ground objects in northern China. We collected samples
with a size of 300 m × 300 m extracted from 1-m spatial resolution optical images through
Google Earth. Then the MFH algorithm was designed for RL extraction. The algorithm consists
of two steps. First, the gray level concurrence matrix (GLCM) texture features and fuzzy clas-
sification (GLCM-FC) algorithm were used to realize the extraction of RL. Then an improved
BOVW (IBOVW) model was constructed for the classification of the categories that cannot be
distinguished from RL. We also further analyzed the separability of each type of RL based on the
proposed methods. The framework of the MFH algorithm for RL extraction is shown in Fig. 1.

Our algorithm considers the following aspects:

• Multiscale and multifeature. Multitype and multiscale rotation-invariant GLCM texture
global features and SIFT local features were used to characterize the different kinds
of LULCs.

• Integrated. We improved the traditional fuzzy classification and the BOVW model and
combined the advantages of the two algorithms to realize the rapid and automatic extrac-
tion of RL.

• Universality. The proposed algorithms not only apply to the retrieval of RL images in the
sample dataset but also work well in images covering large areas. Moreover, the algorithm
can be used for the extraction of other kinds of categories.

Fig. 1 The framework of the MFH algorithm.
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2.1 Classification Scheme Building and Sample Collection

A classification scheme was built based on current Chinese land use classification54 and the
characteristics of the land-cover objects in the study area. In this classification scheme, 14 cat-
egories commonly seen in urban and rural areas were selected, as listed in Table 1, including
woodland, grassland, cultivated land, water, farming facilities, bare land, transportation, indus-
trial, public management and public service (PMPS), commercial and service district (CSD),
OSV, LDHR, MDLR, and LDLR. This detailed classification strategy can help us to emphasize
RL and the inner feature differences in the LULC types in the image, at the same time, it can help
us to understand which classes are easily confused with RL.

RL is mainly a polygonal ground object with irregular shapes, different sizes, and compli-
cated boundaries. Therefore, it is difficult to define and characterize it on a uniform scale. In our
work, the samples were selected with a size of 300 m × 300 m extracted from a 1-m spatial
resolution optical image through Google Earth based on field survey and expert interpretation.
This scale can better describe RL by investigating a large number of RL images in the research
area. Selected samples were randomly divided into training samples and validation samples.

2.2 GLCM-FC Algorithm

In the GLCM-FC algorithm, we use the idea of underdeveloped village extraction from our
previous work to extract RL.55 This work could be divided into two steps, including the
GLCM texture feature extraction and fuzzy classification. The novelties of the algorithm are
twofold: (1) multitype and multiscale rotation-invariant GLCM texture features were used to
characterize the local spatial arrangements of different kinds of LULC and (2) a fuzzy deduction
process was constructed to fuse the image features with different ranges and properties. Figure 2
illustrates the detailed steps.

2.2.1 GLCM texture feature extraction

The GLCM is a method to describe texture by studying the grayscale spatial correlation of an
image, and it is one of the commonly used texture statistical analysis methods. Its essence is the
frequency of co-occurrence of pixel pairs with fixed relative positions, which is the basis for
analyzing the local pattern structure of an image and its arrangement rules. We assume that

Table 1 Classification scheme.

No. 01 02 03 04 05 06 07

Class Woodland Grassland Cultivated land Water Farming facilities Bare land Transportation

No. 08 09 10 11 12 13 14

Class Industrial PMPS CSD OSV LDHR MDLR LDLR

Fig. 2 Framework of the GLCM-FC algorithm.
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fðx; yÞ is a digital image, with a size ofM × N and gray level ofNg. Then the GLCM satisfying a
certain spatial relationship is shown in

EQ-TARGET;temp:intralink-;e001;116;711pði; jÞ ¼ #½ðx1; y1Þ; ðx2; y2Þ ∈ M · Njfðx1; y1Þ ¼ i; fðx2; y2Þ ¼ j�: (1)

where # denotes the number of elements in the set, p is a matrix with a size of Ng × Ng, ðx1; y1Þ,
and ðx2; y2Þ are two pixels in the image with gray tones i and j, respectively. If the distance
between ðx1; y1Þ and ðx2; y2Þ is d, and the angle between them and the horizontal axis of the
coordinates is θ; then, the GLCM pði; j; d; θÞ of various spacings and angles can be obtained.

In our approach, feature extraction was conducted based on the GLCM textures and training
samples. Before texture extraction, the input image needed to be preprocessed, including gray-
scale image extraction and grayscale quantification. The grayscale image was obtained by a band
calculation. By comparing with other methods (including weighting, maximum, mean value, and
band selection), we finally chose to extract the green channel of the image to turn the RGB image
into a grayscale one. To realize the grayscale quantification, the gray value range of the grayscale
image was linearly compressed into 64 levels. Haralick et al.56 adopted statistical methods to
extract 14 second-order statistics from the GLCM as texture feature measures. In our method,
four commonly used textures were selected, including contrast (CON), entropy (ENT), homo-
geneity, (HOM), and angular second moment (ASM). Each texture was made rotation-invariant
by averaging over its four directions (0 deg/45 deg/90 deg/135 deg). The multiscale texture
features were obtained using step sizes of 1/2/3; thus a total of 12 texture features were obtained.
Four commonly used texture features57 are shown in Table 2. The factors in texture feature
extraction are listed in Table 3. Each texture feature was represented by texture feature abbre-
viations and the step size, e.g., ASM3 means angular second moment with a step size of three.
The ability of each texture to discriminate RL from other classes was visually interpreted by
plotting the values of training samples in a box plot, as shown in Fig. 3. The rotation-invariant
textures with good discriminative performance were selected as input features.

Table 2 Four commonly used texture features.

Texture Equation Characteristic

CON (C1) C1 ¼ PL−1
i¼0

PL−1
j¼0 ði − jÞ2pði ; j ; d; θÞ CON indicates the difference in the grayscale in the

image neighborhood, reflecting the local change in
image sharpness and the degree of texture value.
The larger the local variation of the image, the higher
the value is

ENT (C2) C2 ¼ PL−1
i¼0

PL−1
j¼0 pði ; j ; d; θÞ lgpði ; j ; d; θÞ ENT represents the degree of nonuniformity or

complexity of texture in the image

HOM (C3) C3 ¼ PL−1
i¼0

PL−1
j¼0

pði ;j ;d;θÞ
1þði−jÞ2 HOM is a measure of image texture similarity. The

higher the value is, the less change in the local area
and the smaller the gray level difference

ASM (C4) C4 ¼ PL−1
i¼0

PL−1
j¼0 ½pði ; j ;d; θÞ�2 ASM reflects the uniformity of grayscale distribution

and the texture thickness of the image. The more
similar the pixel values in the region are, the higher
the HOM, and the larger the ASM value

Table 3 Factors in texture feature extraction.

Texture Step size Window size Direction

CON

1/2/3 300 m × 300 m The average of four directions (0/45/90/135 deg)
ENT

HOM

ASM
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Figure 3 indicates that RL (classes 11/12/13/14) is easily confused with classes 5/7/8/9/10 by
comparing 12 texture features. Among the four texture measures, ENT, ASM, and HOM have
better discriminative performances. The best features that can discriminate RL and other classes
are ENT with steps 2/3, namely, ENT2, ENT3, respectively, which can distinguish RL from
classes 1/2/3/4/6.

2.2.2 Fuzzy classification

Fuzzy classification is a powerful and flexible soft classifier. It contains the membership degree
of multidimensional types, which describes the assignment degree of the object under consid-
eration to n different categories. The specific equation is described as follows:

Fig. 3 Comparison chart of the GLCM texture features: (a1) CON1, (a2) CON2, (a3) CON3,
(b1) HOM1, (b2) HOM2, (b3) HOM3, (c1) ASM1, (c2) ASM2, (c3) ASM3, (d1) ENT1, (d2)
ENT2, and (d3) ENT3. In the above chart, the ends of the box plot are set at 1.5* interquartile
range (IQR) above the third quartile (Q3) and 1.5*IQR below the first quartile (Q1). Values above
the range and below the range are treated as abnormal and are indicated by purple and red,
respectively.
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EQ-TARGET;temp:intralink-;e002;116;735fclass;obj ¼ ½uclass1ðobjÞ; uclass2ðobjÞ; : : : ; uclassnðobjÞ�: (2)

Typical fuzzy classification includes three main steps: fuzzification, fuzzy deduction, and
defuzzification.58 In this algorithm, fuzzification was realized based on the histogram distribu-
tion of selected features in the training samples. In the fuzzification process, only training sam-
ples belonging to RL were used. For each feature, the algorithm retrieved its training samples in
each class, then the histogram of the samples was calculated and normalized to (0, 1). Finally, the
convolution of the normalized histogram with a predefined one-dimensional kernel leads to the
membership function of the feature for each class. Each class was assigned several membership
functions, which worked like lookup tables for fuzzy deduction. In the fuzzy deduction process,
for each input object, the algorithm calculated its fuzzy membership in each class. This was
achieved by calculating the maximum membership of all selected features in each class. The
membership of each feature in each class could be easily extracted from the lookup table.
Finally, defuzzification was achieved by comparing the memberships of all classes for each input
object. The input object was assigned to the class with the maximummembership. If the obtained
membership is equal to the maximum or very low, the class of the input object remains unde-
termined. It should be noted that the limitation of the training samples confined the representa-
tional ability of the lookup tables and the convolution in the fuzzification process is to generalize
the ability of lookup tables and plays an important role in our approach.

2.3 IBOVW Algorithm

This model includes four steps: SIFT feature descriptor creation, vocabulary generation, visual
word histogram construction, and classifier selection. In this algorithm, we proposed a dictionary
generation method and adopted an improved minimum distance (MD) classifier instead of the
traditional SVM. The framework of our proposed method is shown in Fig. 4.

2.3.1 SIFT feature descriptor

We choose the Lowe’s SIFT feature descriptor to achieve interest point detection and descrip-
tion. An image analysis using SIFT features typically has two steps: a detection step is first
needed to identify the interest points in the image, and then the descriptors are extracted from
each image patch centered at the detected locations. The SIFT detection step is achieved by
searching for local extreme points in the difference in the Gaussian images in scale space.
Then the position and scale of the salient points in the image are determined. Finally, the
SIFT local descriptor is obtained by extracting the normalized region gradient histograms at
the locations of the found salient points. The feature descriptor consists of the histograms of
gradient directions computed over 4 × 4 spatial grids. The interest point orientation estimate
is used to align the gradient directions to make the descriptor rotation invariant. The gradient
directions are quantified into eight bins, and the final feature can be represented by a vector of
128 (4 × 4 × 8) dimensions.

In our algorithm, SIFT feature extraction was implemented using Lowe’s demo code for
detecting and matching SIFT features. The generated feature file includes the position, scale,
direction, and 128-dimensional feature vector information of each feature point. The length
of the SIFT feature vector was normalized to further remove the influence of illumination
variation.

Fig. 4 Framework of the IBOVW.
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2.3.2 Vocabulary generation

The vocabulary in traditional BOVW (TBOVW) model is created by applying k-means cluster-
ing to the SIFT descriptors of all categories. However, the number of interest points extracted in
each category is different, and samples of some categories have fewer interest points (e.g., water
and grassland). The TBOVW would cause the feature suppression of these categories, and the
generated vocabulary could not express well, which would inevitably affect the retrieval
performance.

We proposed a method to generate the vocabulary. In our method, k-means clustering was
first conducted on the SIFT features of the training sample of each class to generate the vocabu-
lary of each category, and then the vocabulary of each class was combined to form the overall
vocabulary. In this way, each category generates its own vocabulary, which avoids feature sup-
pression and loss. The overall vocabulary is a collection of visual words from all categories that
can comprehensively express various characteristics. The flowchart of the vocabulary generation
of our proposed method is given in Fig. 5.

2.3.3 Visual word histogram construction

The visual word histogram was achieved through three steps in our method. First, we calculated
the Euclidean distance between each interest point of each sample and each word in the vocabu-
lary. The point was then assigned to the closest visual word. Finally, we counted the frequencies
of each word in the image and used the visual word frequency histogram as the feature vector of
the image. The final representation of an image was the frequency count or histogram of the
labeled SIFT features as shown in

Fig. 5 Flowchart of the generation of the vocabulary.
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EQ-TARGET;temp:intralink-;e003;116;735image ¼ ðv1; v2; : : : ; vnÞ; (3)

where vi is the number of times a visual word appears in the image and n is the size of the
vocabulary. Each image was represented by a multidimensional feature vector. To account for
the difference in the number of interest points between the images, the feature histogram vector
should be normalized to have unit L1 norm.

2.3.4 Classifier

Appropriate classifiers were selected to classify the feature histogram constructed using the train-
ing samples and test samples. Here we choose the MD classifier instead of the traditional SVM
classifier for RL extraction.

The MD method is realized by distance similarity retrieval. In this paper, the histogram dis-
tance measures were used to compare the SIFT histogram features, and the phase anisotropy of
histogram was measured by Euclidean distance. Since the variances in the different categories
are different, it is not possible to divide the attribution of pixels by simply using the distance from
the pixel to the center of the category. We improved the Euclidean distance to increase the clas-
sification accuracy as shown in

EQ-TARGET;temp:intralink-;e004;116;521d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi1 − xi2Þ2∕σ212
s

; (4)

where xi1 is the first-dimensional coordinate of the first point, xi2 represents the first-dimensional
coordinate of the second point, and σ12 is the standard deviation of the two points. In the MD
classification method, the MD between each test sample and each category was first calculated.
This was realized by calculating the minimum Euclidean distance of the feature histogram
between each test sample and all training samples of each category. In our paper, there are
a total of 14 categories; thus 14 MD values were obtained between each test sample and all
classes. Then the category of each test sample was determined, which was obtained by calcu-
lating the minimum value of these 14 distance values.

3 Experiments and Analysis

In this section, we introduce the experimental data, design the experiment setup, and analyze the
experimental results. The sample dataset and large area images are used to verify the effective-
ness of the MFH algorithm in our experiments. In the first experiment, we analyzed the extrac-
tion results of RL for the GLCM-FC algorithm using a sample dataset, in which the effectiveness
of convolution processing in fuzzy classification was also analyzed, and we also further verified
the algorithm in three large area images. In the second experiment, the IBOVW algorithm was
applied to the undifferentiated categories, and three other comparison experiments were used to
prove the availability of the MFH algorithm using the sample dataset and three images. Finally,
we further analyzed the separability of single-class RL.

3.1 Experimental Data

The experimental data include a sample dataset and three large area images of the Tianjin area.
The dataset contains 10 samples from each of the 14 LULC classes, and half of them are training
samples. Five samples of each class are displayed in Fig. 6. The other three large area images
(Fig. 7) are selected to test and verify the applicability of our algorithm, including two Google
Earth images with a size of 1800 m × 900 m [image TA (upper right) and image TB (lower
right)] and an aerial RGB image with a size of 3000 m × 3000 m [image TC (left)], which was
resampled from the 0.3-m resolution aerial RGB image. The selection of images from different
sources also further verifies the adaptability of our proposed algorithm to different data sources.
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3.2 Experimental Setup

Two groups of experiments were designed to show the effectiveness of the MFH algorithm, and
the sample dataset and large area images were used for experimental verification. Since our
purpose is to extract RL, categories other than RL are taken as a signal category, nonresidential
land (non-RL), and the extraction results of any class of object within non-RL are not further
studied in our experiments. In the accuracy assessment, we only analyzed the extraction accuracy
of RL. We chose commonly used accuracy assessment metrics59–61 in information retrieval,
including precision (P), recall (R), and F-measure (i.e., the F-score. F1-measure are commonly
used), and the overall accuracy (OA) of RL extraction was also added to our experiments as a
reference index.

In the first experiment, the optimum texture features were chosen for the extraction of RL, in
which the sample dataset and images were used in the GLCM-FC algorithm. In this method, only
the training samples of RL were trained with fuzzification. The bin size in the histogram cal-
culation was set to 32, and the convolution kernel for the look-up tables generalization was set to
(0.05, 0.1, 0.2, 0.3, 1, 0.3, 0.2, 0.1, 0.05).

In the second experiment, the categories that were not distinguished from RL in the GLCM-
FC algorithm were further classified by means of the IBOVW. In this experiment, five visual
words were generated in each category, with a total of 70 words in the vocabulary, and this
method was iterated 10 times to obtain the overall vocabulary. Three other RL extraction meth-
ods, i.e., the GLCMþ fuzzy,55 TBOVW, and IBOVW, were designed to compare with the MFH
algorithm. In the comparison experiments, the sample dataset and three large area images were

Fig. 6 Five samples of each class in dataset: (a) woodland, (b) grassland, (c) cultivated land,
(d) water, (e) farming facilities, (f) bare land, (g) transportation, (h) industrial, (i) PMPS,
(j) CSD, (k) OSV, (l) LDHR, (m) MDLR, and (n) LDLR.
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used to extract RL, and the samples in all categories participated in training and classification in
the TBOVWand IBOVWexperiments. In the first two experiments, four types of RL were ana-
lyzed as a whole, and the separability of the four types of RL and the distinction between non-RL
and RL were carried out in the final separability experiment.

3.3 Results and Analysis

3.3.1 First experiment

Training samples of RL were used and the best texture features, ENT 2 and ENT 3, were selected
as input features. Then a fuzzy classification process was constructed to fuse the best sample
image features. The experiment results in the GLCM-FC algorithm are shown in Table 4 and
Table 5.

From Table 4, we can see that almost all samples of RL are correctly extracted (see bold
values), and no samples of classes 1/2/3/4/6 are divided into RL. The wrongly classified cat-
egories mainly come from classes 5/7/8/9/10, which is consistent with the interpretation results
of the box-plot using the training samples. Table 5 shows the results obtained without using
kernel convolution in the building of the lookup tables in the fuzzification process. Although
classes 1/2/3/4/5/6 can be distinguished from RL, many samples of RL have not been extracted;

Table 4 Experimental result of the GLCM-FC algorithm under the condition of convolution in
sample dataset.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14
P

Sample number 10 10 10 10 10 10 10 10 10 10 10 10 10 10 140

Unclassified 10 10 10 10 4 10 4 3 1 0 1 0 0 0 63

Classified to RL 0 0 0 0 6 0 6 7 9 10 9 10 10 10 77

Fig. 7 Images of Tianjin area. The upper right image (image TA) and the lower right image (image
TB) are taken from Google Earth with a size of 1800 m × 900 m. The left image (image TC) is an
aerial RGB image with a size of 3000 m × 3000 m.
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we can see the results from the bold values in Table 5. The accuracy assessment and analysis of
RL extraction are given in Table 6, which was obtained from the above two tables.

In the convolution experiment, a total of 77 samples were classified as RL, among which, 38
samples of non-RL were incorrectly classified into RL. The precision of RL extraction is
50.649%, the recall is 97.500%, and the OA is 72.143%. In the experiment without convolution,
the distinguishable categories, precision, and OA are improved, whereas the recall is 35% lower,
and only 25 samples of RL were correctly extracted. This indicates that some of the test samples
in RL remained unclassified. Because some of the test samples are not in the same bin with the
training samples in the normalized histogram, the value of F1 (the comprehensive evaluation
index of P and R) is higher in the former group experiment, which means that it performs better
in RL extraction. This proves the usefulness of the convolution in the lookup table construction.

Next, we apply this algorithm to the RL extraction in large area images. The extraction results
of three images were obtained under the HOM3 feature, as shown in Fig. 8. The accuracy assess-
ment of the experiments was evaluated by the extraction result images and the corresponding
membership images. Each square in the results represents an image block with a size of 300 m ×
300 m. In the extraction result images, the white and gray squares represent the identified RL, and
the black ones are non-RL. The membership images indicate the probability of each image block
being classified as RL. The brighter the square is, the higher the probability of the image block
being classified into RL, and the darker the square is, the lower the probability is.

The results and accuracy analysis of the three images are shown in Table 7. In image TA, a
total of 14 image blocks are classified into RL, of which only 8 are correctly classified. The
extraction precision of RL is 57.143%, and the recall is 80.000%. The precision of the retrieval
accuracy of RL in image TB is 50.000%, only half of the image blocks classified as RL are
correct, and 87.500% of RL in this image is extracted. Although in image TC, the precision
of RL extraction is 1.667% higher than that of image TB, the OA is 5.444% higher than that
of the first two images, and the recall ratio and F1 are lower than that of the first two images. In
image TC, the industrial zone is confused with RL, and woodland, water, the transportation
district, and PMPS are also wrongly classified. This is caused by different data sources, as image
TC was an aerial RGB image, with more detailed feature information, whereas the training sam-
ples were taken from the satellite images of Google Earth, with smoother texture features.

The results show that this algorithm can distinguish RL from some types of categories, but
the wrongly classified rate is high. In addition, the algorithm is affected by the number of cat-
egories in the training stage. We chose two metrics (F1 and OA) to show the relationship
between the extraction accuracy of RL and the number of categories involved in the training
stage (Fig. 9). With the increase in categories added in training, the extraction accuracy of
RL shows a declining trend as a whole, especially for the OA, which decreases faster.
Moreover, the applicability of the algorithm to different data sources still needs to be improved.

Table 6 Accuracy assessment and analysis of RL extraction in sample dataset based on the
GLCM-FC algorithm.

Experiment P (%) R (%) F1 (%) OA (%) Distinguishable categories

GLCM-FC (with convolution) 50.649 97.500 66.666 72.143 1/2/3/4/6

GLCM-FC (without convolution) 65.789 62.500 64.102 80.000 1/2/3/4/5/6

Table 5 Experimental result of the GLCM-FC algorithm under the condition of no convolution in
sample dataset.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14
P

Sample number 10 10 10 10 10 10 10 10 10 10 10 10 10 10 140

Unclassified 10 10 10 10 10 10 7 8 5 7 5 3 4 3 102

Classified to RL 0 0 0 0 0 0 3 2 5 3 5 7 6 7 38
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However, our method is very flexible, in which only samples of the target objects (in our algo-
rithm, only training samples of RL) were trained, avoiding the interference of other categories.

3.3.2 Second experiment

Although some classes can be distinguished from RL in the GLCM-FC algorithm, it is difficult
to achieve an effective extraction of RL in complex urban scenes by solely using texture features.
The indistinguishable categories (classes 5/7/8/9/10) and RL (11/12/13/14) are then classified by
means of IBOVW, and the classification results and accuracy assessment of RL extraction based
on MFH extraction are displayed in Table 8.

Table 7 Accuracy assessment and analysis of RL extraction in large area images based on the
GLCM-FC algorithm.

Image Image block RL Non-RL
P

P (%) R (%) F1 (%) OA (%)

TA Number of each class 10 8 18 57.143 80.000 66.667 55.556

Number of classified into RL 8 6 14

TB Number of each class 8 10 18 50.000 87.500 63.636 55.556

Number of classified into RL 7 7 14

TC Number of each class 41 59 100 51.667 75.610 61.386 61.000

Number of classified into RL 31 29 60

Fig. 8 RL extraction results for three images of the Tianjin area for the GLCM-FC algorithm:
(a1) Image TA, (a2) extraction result in image TA, (a3) membership of extraction result in image
TA, (b1) image TB, (b2) extraction result in image TB, (b3) membership of extraction result in
image TB, (c1) image TC, (c2) extraction result in image TC, and (c3) membership of extraction
result in image TC.
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According to the classification results, we can obtain the extraction accuracy of RL. A total of
44 samples are classified as RL, in which there are 34 residential areas, 10 nonresidential areas,
and the wrongly classified samples come from classes 5/8/9/10. The precision, recall, and
F-score of RL extraction are 77.273%, 85.000%, and 80.953%, respectively. In this algorithm,
the overall extraction accuracy of RL extraction is 82.222%.

The MFH algorithm is a fusion algorithm that is realized by combining on two methods. We
further analyzed the RL extraction results using these two methods and the TBOVW algorithm.
The detailed comparison analysis of four experiments is shown in Table 9. Compared with the
experiments of GLCM-FC (Table 10), IBOVW (Table 11), and TBOVW (Table 12), the MFH
algorithm reduced the false detection rate, and the extraction precision of RL was raised by

Table 8 Classification results and accuracy assessment in the MFH algorithm.

Confusion matrix

Prediction class

P
5 7 8 9 10 RL

True class 5 6 0 0 1 0 3 10

7 0 9 0 0 1 0 10

8 0 1 7 1 0 1 10

9 1 0 1 6 1 1 10

10 0 0 0 0 5 5 10

RL 0 1 1 3 1 34 40

P
7 11 9 11 8 44 90

Accuracy assessment
of RL extraction

P∶34∕44 ¼ 77.273% R∶34∕40 ¼ 85.000%
F1∶2P � R∕ðP þ RÞ ¼ 80.953% OA∶ð34þ 40Þ∕90 ¼ 82.222%

Table 9 Comparative experiments of RL extraction in the sample dataset.

Experiment P (%) R (%) F1 (%) OA (%) Misclassification number Time (s)

GLCM-FC 50.649 97.500 66.666 72.143 38 9.549

IBOVW 52.174 60.000 55.814 72.857 22 366.727

TBOVW 41.558 80.000 54.700 62.143 45 705.475

MFH 77.273 85.000 80.953 82.222 10 252.608

Fig. 9 Relationship between the extraction accuracy of RL and the number of categories involved
in the training stage. The red line indicates the OA, and the blue line indicates the F -score.
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26.624%, 25.099%, and 35.715%, respectively. Ten nonresidential samples (see the bold values
in Table 9) were misclassified as RL. The F1 and OA of RL extraction in the MFH algorithm are
higher than those in the comparative experiments, the extraction results are shown in bold values
in Table 9. Compared with the experimental results of IBOVW and TBOVW, the recall ratio of
RL in the MFH algorithm is higher, and due to the reduced number of classes involved in the
classification, the MFH algorithm saved time and increased the efficiency.

Table 10 Classification results of the GLCM-FC algorithm.

Confusion matrix

Prediction class

P
1 2 3 4 5 6 7 8 9 10 RL

True class 1 10 0 0 0 0 0 0 0 0 0 0 10

2 0 10 0 0 0 0 0 0 0 0 0 10

3 0 0 10 0 0 0 0 0 0 0 0 10

4 0 0 0 10 0 0 0 0 0 0 0 10

5 0 0 0 0 5 0 0 0 0 0 5 10

6 0 0 0 0 0 10 0 0 0 0 0 10

7 0 0 0 0 0 0 3 0 0 0 7 10

8 0 0 0 0 0 0 0 2 0 0 8 10

9 0 0 0 0 0 0 0 0 2 0 8 10

10 0 0 0 0 0 0 0 0 0 0 10 10

RL 0 0 0 0 1 0 0 0 0 0 39 40

P
10 10 10 10 6 10 3 2 2 0 77 140

Table 11 Classification results of the IBOVW algorithm.

Confusion matrix

Prediction class

P
1 2 3 4 5 6 7 8 9 10 RL

True class 1 7 2 0 0 0 0 0 0 0 0 1 10

2 2 5 0 0 1 0 0 0 0 0 2 10

3 0 0 5 0 2 0 1 0 0 1 1 10

4 2 0 0 5 0 0 0 2 0 0 1 10

5 0 0 0 0 5 0 0 0 0 1 4 10

6 0 0 0 0 0 8 0 0 0 0 2 10

7 0 0 1 0 0 0 5 1 0 1 2 10

8 0 0 0 0 1 0 0 5 1 2 1 10

9 0 0 2 0 0 0 0 0 3 1 4 10

10 0 0 0 0 0 0 0 0 1 5 4 10

RL 1 0 1 1 1 1 2 5 1 3 24 40

P
12 7 9 6 10 9 8 13 6 14 46 140

Fu and Liang: Residential land extraction from high spatial resolution optical images. . .

Journal of Applied Remote Sensing 026515-15 Apr–Jun 2019 • Vol. 13(2)



We use the above algorithms to extract RL in three images of the Tianjin area. The specific
comparison analysis is displayed in Tables 13–15. In images TA and TB, the MFH algorithm has
the best comprehensive performance, in which the recall, F1-score, and the overall extraction
accuracy of RL are all better than those of the other three algorithms. In image TA, 80% of the
residential areas is extracted, the precision is 88.889%, the F1 is 84.211%, and the OA is
83.337%, as shown in bold values in Table 13. In image TB, all residential areas are retrieved,
the precision is 72.727%, the comprehensive evaluation index F1 reaches 84.210%, and the
overall extraction accuracy is 83.333% (see bold values in Table 14). The extraction accuracy
of the MFH algorithm in image TC is not as high as that of the first two images. The recall of RL
extraction is only 58.537%, and the precision is only 61.538%. F1 and OA are lower by
∼24.211% and 15.335%, respectively. Although different data sources lead to a lower extraction
accuracy, the overall experimental results indicate that the MFH algorithm improved the extrac-
tion accuracy of RL, reduced the misclassification rate, and effectively realized the extraction
of RL.

The separability within the four types of RL is listed in Fig. 10. The values on the diagonal
line of the confusion matrix represent the accuracy of each class. We mapped the value of clas-
sification to the color band to visualize the results. The green cells have a higher accuracy,
whereas the yellow ones have lower values. The red cells indicate that the probability of being
classified into this class is zero, that is, they can be distinguished. In the GLCM-FC algorithm
(a), there is a case of misclassification among four types of RL, and the classification accuracy is

Table 12 Classification results of the TBOVW algorithm.

Confusion matrix

Prediction class

P
1 2 3 4 5 6 7 8 9 10 RL

True class 1 0 0 1 0 1 0 0 0 1 0 7 10

2 1 2 1 2 0 0 1 0 0 0 3 10

3 1 0 0 0 3 1 2 0 2 1 0 10

4 1 3 0 1 0 1 0 1 0 0 3 10

5 0 2 0 0 0 2 0 0 0 0 6 10

6 0 1 0 0 2 0 1 1 0 1 4 10

7 0 0 0 0 1 0 0 1 2 2 4 10

8 0 0 0 0 0 1 1 0 1 1 6 10

9 0 0 0 0 0 0 1 2 0 1 6 10

10 0 0 0 0 0 1 1 1 1 0 6 10

RL 1 0 0 0 0 1 0 3 0 3 32 40

P
4 8 2 3 7 7 7 9 7 9 77 140

Table 13 Comparison analysis of three proposed algorithms in image TA.

Image Algorithm P (%) R (%) F1 (%) OA (%)

TA GLCM-FC 57.143 80.000 66.667 55.556

IBOVW 100.000 30.000 46.154 61.111

TBOVW 50.000 20.000 28.571 44.444

MFH 88.889 80.000 84.211 83.337
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not ideal, which indicates that relying only the texture features cannot realize the distinction
among RL types. Although there is no confusion within the four types of RL in the
IBOVW (b) and TBOVW (c) experiments, more samples of non-RL are wrongly divided into
RL. Compared with the other algorithms, the MFH algorithm has a higher classification accu-
racy, as class 11 and class 14 are both 90.000%, and classes 12/13 and non-RL are 80.000%. In
the MFH algorithm, four types of RL can be distinguished from each other, and the number of
misclassified samples is reduced, which provides some reference for the investigation and analy-
sis of different types of RL.

4 Discussion

The experimental results indicate that the MFH algorithm shows a better performance in RL
extraction in the sample dataset and large area images, and the classification of different types
of RL. The main challenge of the algorithms is the distinction between RL and easily mixed
categories, including farming facilities, industrial, PMPSs, and CSDs. There are many reasons
for the confusion in these categories. First, the complexity of the ground objects in urban func-
tional zones and the similar morphological structures are the main reasons. Additionally, the

Table 14 Comparison analysis of three proposed algorithms in image TB.

Image Algorithm P (%) R (%) F1 (%) OA (%)

TB GLCM-FC 50.000 87.500 63.636 55.556

IBOVW 100.000 12.500 22.222 61.111

TBOVW 100.000 12.500 22.222 61.111

MFH 72.727 100.00 84.210 83.333

Table 15 Comparison analysis of three proposed algorithms in image TC.

Image Algorithm P (%) R (%) F1 (%) OA (%)

TC GLCM-FC 51.667 75.610 61.386 61.000

IBOVW 78.571 53.658 63.768 75.000

TBOVW 48.837 51.220 50.000 58.000

MFH 61.538 58.537 60.000 68.000

Fig. 10 The classification results of each type of RL: (a) the classification results of GLCM-FC,
(b) the classification results of IBOVW, (c) the classification results of TBOVW, and (d) the clas-
sification results of MFH.
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geographical proximity of these functional zones also makes it difficult to extract RL. The image
scale of 300 m × 300 m cannot achieve a good description for all categories, in which most of
the image blocks are mixed ground objects, and the boundary areas connecting different types of
LULC are also one of main reasons for misclassification. The algorithm can achieve better
extraction results for the sample dataset and large area images from Google Earth while the
extraction accuracy in aerial images is lower, which is related to the representativeness of the
training samples, complex ground objects, image scales, and different data sources. The different
experimental results in the two data sources indicate that the applicability of this algorithm needs
to be improved to achieve good generalization.

The next step is to realize the distinction between the confused categories and RL. In addi-
tion, the classification accuracy of different types of RL also needs to be improved. Multiple
features extracted from multisource data should be considered to achieve the differentiation
among the four types of RL and non-RL, such as the elevation information provided by
LiDAR data, geographic information provided by the Google street view map, and so on.
As we want to achieve the extraction of LULC in large range areas, the algorithm still needs
to be enhanced in the universality of images covering large areas. Meanwhile, the applicability of
the algorithm to different data sources remains to be studied. Furthermore, the algorithm needs to
be studied in terms of the selection and limitations of the parameters. The algorithm retrieves
image blocks with a size of 300 m × 300 m in a 1-m resolution image; that is, only the spatial
resolution and image block size parameters are constrained. The factors that affect the informa-
tion extraction are extremely complicated, and different parameters will result in different extrac-
tion accuracies. Different solar elevation angles and atmospheric conditions will also affect the
feature extraction of the image. In the next step, the algorithm will consider distinguishing differ-
ent features at different scales and restricting more parameters to achieve fast and efficient auto-
matic retrieval of RL. Our algorithm will be applied to a large area of Google Earth imagery to
achieve information extraction of target objects quickly and automatically, providing reference
information for land use and urban planning.

5 Conclusion

In this study, we proposed an MFH algorithm for RL extraction. The GLCM texture features and
fuzzy classification strategy were first designed to extract RL. The results indicated that this
method can differentiate classes 1/2/3/4/6 from RL. As this approach is very flexible, in which
each class can be well extracted by only using feature characterization, features with more scales
and texture measures can be included to improve the results in the future. Furthermore, only
samples of the target classes were trained in this algorithm, avoiding the interference of other
categories. Both the sample dataset and large area images were used to verify the algorithm. The
algorithm has a higher recall rate, whereas the precision is not ideal, and the misclassification is
serious. Therefore, an improved BOVW model based on SIFT features was further proposed to
classify the undifferentiated categories. In this algorithm, we boosted the traditional BOVW
model by proposing a method to generate the vocabulary. The extraction accuracy of RL was
improved, and the rate of misclassification was significantly deduced. The MFH algorithm was
used to further analyze the internal separability of the four types of RL. The results show that the
four types of RL can be distinguished from each other, and the number of samples wrongly
divided into RL is reduced, which is helpful for a dynamic investigation and the analyses of
different types of RL.
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