SlideShare a Scribd company logo
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
TensorFlow Tutorial
You have been hired by US navy to create a model, that can detect the difference between a mine and
a rock.
A naval mine is a self-contained
explosive device placed in water
to damage or destroy surface
ships or submarines.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or Mine Prediction
We are going to identify whether the obstacle is a Rock or a Mine on the basis of various parameters
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
TensorFlow Tutorial
You have been hired by US navy to create a model, that can detect the difference between a mine and
a rock.
A naval mine is a self-contained
explosive device placed in water
to damage or destroy surface
ships or submarines.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
In order to train the model, we will use Sonar dataset. The dataset looks like this:
TensorFlow Tutorial
The label associated with each record contains the letter
"R" if the object is a rock and "M" if it is a mine
It contains 208 patterns obtained by bouncing sonar signals off a metal
cylinder and a rock at various angles and under various conditions.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Create This Model?
Let’s see how we will implement this model
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Create This Model?
TensorFlow Tutorial
Start
Read the
Dataset
Define features
and labels
Divide the dataset into two
parts for training and testing
TensorFlow data structure for
holding features, labels etc..
Implement the model
Train the model
Reduce MSE (actual output –
desired output)
End
Repeat the process to
decrease the loss
Pre-processing of dataset
Make prediction on the test
data
TensorFlow Tutorial
Encode The Dependent
variable
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
To Create This Model We Will Use
TensorFlow
Let’s understand TensorFlow first, but before that let’s look at what are tensors?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Are Tensors?
 Tensors are the standard way of representing data in TensorFlow (deep learning).
 Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data
with higher dimension.
Tensor of
dimension[1]
Tensor of
dimensions[2]
Tensor of
dimensions[3]
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensors Rank
TensorFlow Tutorial
Rank Math Entity Python Example
0 Scalar (magnitude
only)
s = 483
1 Vector (magnitude
and direction)
v = [1.1, 2.2, 3.3]
2 Matrix (table of
numbers)
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of
numbers)
t =
[[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18
]]]
n n-Tensor (you get
the idea)
....
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensor Data Types
In addition to dimensionality Tensors have different data types as well, you can assign any one of
these data types to a Tensor
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
Now, is the time explore TensorFlow.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
 TensorFlow is a Python library used to implement deep networks.
 In TensorFlow, computation is approached as a dataflow graph.
3.2 -1.4 5.1 …
-1.0 -2 2.4 …
… … … …
… … … …
Tensor Flow
Matmul
W X
Add
Relu
B
Computational
Graph
Functions
Tensors TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
Let’s understand the fundamentals of TensorFlow
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
TensorFlow core programs consists of two discrete sections:
Building a computational graph Running a computational graph
A computational graph is a series of TensorFlow
operations arranged into a graph of nodes
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Building And Running A Graph
Building a computational graph Running a computational graph
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
sess = tf.Session()
print(sess.run([node1, node2]))
To actually evaluate the nodes, we must run
the computational graph within a session.
As the session encapsulates the control and
state of the TensorFlow runtime.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
5.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b
5.0
6.0
Const
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
30.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Running The Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
 For visualizing TensorFlow graphs, we use TensorBoard.
 The first argument when creating the FileWriter is an output directory name, which will be created
if it doesn't exist.
File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph)
TensorBoard runs as a local web app, on port 6006. (this
is default port, “6006” is “ ” upside-down.)oo
TensorFlow Tutorial
tensorboard --logdir = “path_to_the_graph”
Execute this command in the cmd
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constants, Placeholders and Variables
Let’s understand what are constants, placeholders and variables
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
What if I want the
graph to accept
external inputs?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
How to modify the
graph, if I want new
output for the same
input ?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Variable
Constant
Placeholder
Variable
To make the model trainable, we need to be able to modify the graph to get
new outputs with the same input. Variables allow us to add trainable
parameters to a graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Let Us Now Create A Model
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Simple Linear Model
import tensorflow as tf
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W * x + b
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print(sess.run(linear_model, {x:[1,2,3,4]}))
We've created a model, but we
don't know how good it is yet
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Increase The Efficiency Of The Model?
Calculate the loss
Model
Update the Variables
Repeat the process until the loss becomes very small
A loss function measures how
far apart the current model is
from the provided data.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Calculating The Loss
In order to understand how good the Model is, we should know the loss/error.
To evaluate the model on training data, we need a y i.e. a
placeholder to provide the desired values, and we need to
write a loss function.
We'll use a standard loss model for linear regression.
(linear_model – y ) creates a vector where each element is
the corresponding example's error delta.
tf.square is used to square that error.
tf.reduce_sum is used to sum all the squared error.
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Optimizer modifies each variable according to the magnitude of the derivative of loss with
respect to that variable. Here we will use Gradient Descent Optimizer
How Gradient Descent Actually
Works?
Let’s understand this
with an analogy
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest
point of the mountain (a.k.a valley).
• A twist is that you are blindfolded and you have zero visibility to see where you are headed. So,
what approach will you take to reach the lake?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• The best way is to check the ground near you and observe where the land tends to descend.
• This will give an idea in what direction you should take your first step. If you follow the
descending path, it is very likely you would reach the lake.
Consider the length of the step as learning rate
Consider the position of the hiker as weight
Consider the process of climbing down
the mountain as cost function/loss
function
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Global Cost/Loss
Minimum
Jmin(w)
J(w)
Let us
understand the
math behind
Gradient
Descent
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
Here, Δw is a vector that
contains the weight
updates of each weight
coefficient w, which are
computed as follows:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the
same analogy and find the best possible values for that parameter. Consider the example below:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init)
for i in range(1000):
sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]})
print(sess.run([W, b]))
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Start
Read the
Dataset
Define features
and labels
Encode The Dependent
variable
Divide the dataset into two
parts for training and testing
Pre-processing of dataset
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Start
Read the
Dataset
Define features
and labels
Divide the dataset into two
parts for training and testing
TensorFlow data structure for
holding features, labels etc..
Implement the model
Train the model
Reduce MSE (actual output –
desired output)
End
Repeat the process to
decrease the loss
Pre-processing of dataset
Make prediction on the test
data
TensorFlow Tutorial
Encode The Dependent
variable
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Session In A Minute
Use-Case What Are Tensors? What Is TensorFlow?
TensorFlow Code-Basics TensorFlow Datastructures Implementation Of The Use-Case
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka

More Related Content

What's hot (20)

PDF
Deep learning with Keras
QuantUniversity
 
PPTX
Tensorflow
marwa Ayad Mohamed
 
PDF
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
PPTX
transferlearning.pptx
Amit Kumar
 
PDF
Tensorflow presentation
Ahmed rebai
 
PPTX
Pytorch
ehsan tr
 
PPTX
Python pandas Library
Md. Sohag Miah
 
PDF
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
PPTX
Database connectivity in python
baabtra.com - No. 1 supplier of quality freshers
 
PDF
Java String
Java2Blog
 
PPT
Java 8 Streams
Manvendra Singh
 
PPTX
Advance OOP concepts in Python
Sujith Kumar
 
PPTX
Java 8 streams
Manav Prasad
 
PDF
Generative Adversarial Networks
Mark Chang
 
PDF
Introduction to data flow management using apache nifi
Anshuman Ghosh
 
PPTX
Class, object and inheritance in python
Santosh Verma
 
PDF
Introduction to TensorFlow
Matthias Feys
 
PDF
Java 8 Stream API. A different way to process collections.
David Gómez García
 
PDF
07 java collection
Abhishek Khune
 
Deep learning with Keras
QuantUniversity
 
Tensorflow
marwa Ayad Mohamed
 
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
transferlearning.pptx
Amit Kumar
 
Tensorflow presentation
Ahmed rebai
 
Pytorch
ehsan tr
 
Python pandas Library
Md. Sohag Miah
 
Pyspark Tutorial | Introduction to Apache Spark with Python | PySpark Trainin...
Edureka!
 
Database connectivity in python
baabtra.com - No. 1 supplier of quality freshers
 
Java String
Java2Blog
 
Java 8 Streams
Manvendra Singh
 
Advance OOP concepts in Python
Sujith Kumar
 
Java 8 streams
Manav Prasad
 
Generative Adversarial Networks
Mark Chang
 
Introduction to data flow management using apache nifi
Anshuman Ghosh
 
Class, object and inheritance in python
Santosh Verma
 
Introduction to TensorFlow
Matthias Feys
 
Java 8 Stream API. A different way to process collections.
David Gómez García
 
07 java collection
Abhishek Khune
 

Similar to TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka (20)

PDF
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Edureka!
 
PDF
TensorFlow example for AI Ukraine2016
Andrii Babii
 
PDF
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
PDF
A Tour of Tensorflow's APIs
Dean Wyatte
 
PPTX
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
PDF
How to use tensorflow
hyunyoung Lee
 
PDF
Theano vs TensorFlow | Edureka
Edureka!
 
PDF
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Edureka!
 
PDF
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Big Data Spain
 
PDF
Overview of TensorFlow For Natural Language Processing
ananth
 
PDF
Micro-Benchmarking Considered Harmful
Thomas Wuerthinger
 
PDF
Parquet Vectorization in Hive
Sahil Takiar
 
PPTX
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Mesosphere Inc.
 
PPTX
TensorFlow.pptx
Kavikiran3
 
PDF
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
PDF
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Raffi Khatchadourian
 
PDF
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
PDF
Moving Your Machine Learning Models to Production with TensorFlow Extended
Jonathan Mugan
 
PPTX
200612_BioPackathon_ss
Satoshi Kume
 
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Edureka!
 
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
A Tour of Tensorflow's APIs
Dean Wyatte
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
How to use tensorflow
hyunyoung Lee
 
Theano vs TensorFlow | Edureka
Edureka!
 
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Edureka!
 
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Big Data Spain
 
Overview of TensorFlow For Natural Language Processing
ananth
 
Micro-Benchmarking Considered Harmful
Thomas Wuerthinger
 
Parquet Vectorization in Hive
Sahil Takiar
 
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Mesosphere Inc.
 
TensorFlow.pptx
Kavikiran3
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Raffi Khatchadourian
 
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
Moving Your Machine Learning Models to Production with TensorFlow Extended
Jonathan Mugan
 
200612_BioPackathon_ss
Satoshi Kume
 
Ad

More from Edureka! (20)

PDF
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
PDF
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
PDF
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
PDF
Tableau Tutorial for Data Science | Edureka
Edureka!
 
PDF
Top 5 PMP Certifications | Edureka
Edureka!
 
PDF
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
PDF
Linux Mint Tutorial | Edureka
Edureka!
 
PDF
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
PDF
Importance of Digital Marketing | Edureka
Edureka!
 
PDF
RPA in 2020 | Edureka
Edureka!
 
PDF
Email Notifications in Jenkins | Edureka
Edureka!
 
PDF
EA Algorithm in Machine Learning | Edureka
Edureka!
 
PDF
Cognitive AI Tutorial | Edureka
Edureka!
 
PDF
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
PDF
Blue Prism Top Interview Questions | Edureka
Edureka!
 
PDF
Big Data on AWS Tutorial | Edureka
Edureka!
 
PDF
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
PDF
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
PDF
Introduction to DevOps | Edureka
Edureka!
 
PDF
ITIL® Tutorial for Beginners | ITIL® Foundation Training | Edureka
Edureka!
 
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Edureka!
 
ITIL® Tutorial for Beginners | ITIL® Foundation Training | Edureka
Edureka!
 
Ad

Recently uploaded (20)

PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PPTX
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
PDF
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
PDF
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PDF
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PPTX
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
PDF
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
PDF
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
From Sci-Fi to Reality: Exploring AI Evolution
Svetlana Meissner
 
Achieving Consistent and Reliable AI Code Generation - Medusa AI
medusaaico
 
The Rise of AI and IoT in Mobile App Tech.pdf
IMG Global Infotech
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Empower Inclusion Through Accessible Java Applications
Ana-Maria Mihalceanu
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
How Startups Are Growing Faster with App Developers in Australia.pdf
India App Developer
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Presentation - Vibe Coding The Future of Tech
yanuarsinggih1
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Webinar: Introduction to LF Energy EVerest
DanBrown980551
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
NewMind AI - Journal 100 Insights After The 100th Issue
NewMind AI
 
LLMs.txt: Easily Control How AI Crawls Your Site
Keploy
 
CIFDAQ Market Insights for July 7th 2025
CIFDAQ
 

TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka

  • 1. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction TensorFlow Tutorial You have been hired by US navy to create a model, that can detect the difference between a mine and a rock. A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines.
  • 2. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or Mine Prediction We are going to identify whether the obstacle is a Rock or a Mine on the basis of various parameters
  • 3. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction TensorFlow Tutorial You have been hired by US navy to create a model, that can detect the difference between a mine and a rock. A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines.
  • 4. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction In order to train the model, we will use Sonar dataset. The dataset looks like this: TensorFlow Tutorial The label associated with each record contains the letter "R" if the object is a rock and "M" if it is a mine It contains 208 patterns obtained by bouncing sonar signals off a metal cylinder and a rock at various angles and under various conditions.
  • 5. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Create This Model? Let’s see how we will implement this model
  • 6. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Create This Model? TensorFlow Tutorial Start Read the Dataset Define features and labels Divide the dataset into two parts for training and testing TensorFlow data structure for holding features, labels etc.. Implement the model Train the model Reduce MSE (actual output – desired output) End Repeat the process to decrease the loss Pre-processing of dataset Make prediction on the test data TensorFlow Tutorial Encode The Dependent variable
  • 7. Copyright © 2017, edureka and/or its affiliates. All rights reserved. To Create This Model We Will Use TensorFlow Let’s understand TensorFlow first, but before that let’s look at what are tensors?
  • 8. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Are Tensors?  Tensors are the standard way of representing data in TensorFlow (deep learning).  Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data with higher dimension. Tensor of dimension[1] Tensor of dimensions[2] Tensor of dimensions[3] TensorFlow Tutorial
  • 9. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensors Rank TensorFlow Tutorial Rank Math Entity Python Example 0 Scalar (magnitude only) s = 483 1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3] 2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18 ]]] n n-Tensor (you get the idea) ....
  • 10. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensor Data Types In addition to dimensionality Tensors have different data types as well, you can assign any one of these data types to a Tensor TensorFlow Tutorial
  • 11. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow? Now, is the time explore TensorFlow.
  • 12. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow?  TensorFlow is a Python library used to implement deep networks.  In TensorFlow, computation is approached as a dataflow graph. 3.2 -1.4 5.1 … -1.0 -2 2.4 … … … … … … … … … Tensor Flow Matmul W X Add Relu B Computational Graph Functions Tensors TensorFlow Tutorial
  • 13. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics Let’s understand the fundamentals of TensorFlow
  • 14. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics TensorFlow core programs consists of two discrete sections: Building a computational graph Running a computational graph A computational graph is a series of TensorFlow operations arranged into a graph of nodes TensorFlow Tutorial
  • 15. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Building And Running A Graph Building a computational graph Running a computational graph import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes sess = tf.Session() print(sess.run([node1, node2])) To actually evaluate the nodes, we must run the computational graph within a session. As the session encapsulates the control and state of the TensorFlow runtime. TensorFlow Tutorial
  • 16. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a 5.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 17. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b 5.0 6.0 Const Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 18. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 19. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul 30.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Running The Computational Graph TensorFlow Tutorial
  • 20. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization
  • 21. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization  For visualizing TensorFlow graphs, we use TensorBoard.  The first argument when creating the FileWriter is an output directory name, which will be created if it doesn't exist. File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph) TensorBoard runs as a local web app, on port 6006. (this is default port, “6006” is “ ” upside-down.)oo TensorFlow Tutorial tensorboard --logdir = “path_to_the_graph” Execute this command in the cmd
  • 22. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constants, Placeholders and Variables Let’s understand what are constants, placeholders and variables
  • 23. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable TensorFlow Tutorial
  • 24. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable What if I want the graph to accept external inputs? TensorFlow Tutorial
  • 25. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later. TensorFlow Tutorial
  • 26. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later. How to modify the graph, if I want new output for the same input ? TensorFlow Tutorial
  • 27. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Variable Constant Placeholder Variable To make the model trainable, we need to be able to modify the graph to get new outputs with the same input. Variables allow us to add trainable parameters to a graph TensorFlow Tutorial
  • 28. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Let Us Now Create A Model
  • 29. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Simple Linear Model import tensorflow as tf W = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) x = tf.placeholder(tf.float32) linear_model = W * x + b init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) print(sess.run(linear_model, {x:[1,2,3,4]})) We've created a model, but we don't know how good it is yet TensorFlow Tutorial
  • 30. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Increase The Efficiency Of The Model? Calculate the loss Model Update the Variables Repeat the process until the loss becomes very small A loss function measures how far apart the current model is from the provided data. TensorFlow Tutorial
  • 31. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Calculating The Loss In order to understand how good the Model is, we should know the loss/error. To evaluate the model on training data, we need a y i.e. a placeholder to provide the desired values, and we need to write a loss function. We'll use a standard loss model for linear regression. (linear_model – y ) creates a vector where each element is the corresponding example's error delta. tf.square is used to square that error. tf.reduce_sum is used to sum all the squared error. y = tf.placeholder(tf.float32) squared_deltas = tf.square(linear_model - y) loss = tf.reduce_sum(squared_deltas) print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]})) TensorFlow Tutorial
  • 32. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Optimizer modifies each variable according to the magnitude of the derivative of loss with respect to that variable. Here we will use Gradient Descent Optimizer How Gradient Descent Actually Works? Let’s understand this with an analogy TensorFlow Tutorial
  • 33. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest point of the mountain (a.k.a valley). • A twist is that you are blindfolded and you have zero visibility to see where you are headed. So, what approach will you take to reach the lake? TensorFlow Tutorial
  • 34. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • The best way is to check the ground near you and observe where the land tends to descend. • This will give an idea in what direction you should take your first step. If you follow the descending path, it is very likely you would reach the lake. Consider the length of the step as learning rate Consider the position of the hiker as weight Consider the process of climbing down the mountain as cost function/loss function TensorFlow Tutorial
  • 35. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Global Cost/Loss Minimum Jmin(w) J(w) Let us understand the math behind Gradient Descent TensorFlow Tutorial
  • 36. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: TensorFlow Tutorial
  • 37. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient TensorFlow Tutorial
  • 38. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule: TensorFlow Tutorial
  • 39. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule: Here, Δw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows: TensorFlow Tutorial
  • 40. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the same analogy and find the best possible values for that parameter. Consider the example below: optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) sess.run(init) for i in range(1000): sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]}) print(sess.run([W, b])) TensorFlow Tutorial
  • 41. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case
  • 42. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case Start Read the Dataset Define features and labels Encode The Dependent variable Divide the dataset into two parts for training and testing Pre-processing of dataset TensorFlow Tutorial
  • 43. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case Start Read the Dataset Define features and labels Divide the dataset into two parts for training and testing TensorFlow data structure for holding features, labels etc.. Implement the model Train the model Reduce MSE (actual output – desired output) End Repeat the process to decrease the loss Pre-processing of dataset Make prediction on the test data TensorFlow Tutorial Encode The Dependent variable
  • 44. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Session In A Minute Use-Case What Are Tensors? What Is TensorFlow? TensorFlow Code-Basics TensorFlow Datastructures Implementation Of The Use-Case