The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
- The document discusses random number generation and probability distributions. It presents methods for generating random numbers from Bernoulli, binomial, beta, and multinomial distributions using random bits generated from linear congruential generators.
- Graphical examples are shown comparing histograms of generated random samples to theoretical probability density functions. Code examples in R demonstrate how to simulate random number generation from various discrete distributions.
- The goal is to introduce different methods for random number generation from basic discrete distributions that are important for modeling random phenomena and Monte Carlo simulations.
Advanced Data Visualization in R- Somes Examples.Dr. Volkan OBAN
This document provides examples of using the geomorph package in R for advanced data visualization. It includes code snippets showing how to visualize geometric morphometric data using functions like plotspec() and plotRefToTarget(). It also includes an example of creating a customized violin plot function for comparing multiple groups and generating simulated data to plot.
The document contains C code for implementing various computer graphics algorithms including line drawing algorithms like Bresenham's line drawing algorithm, DDA line drawing algorithm, and symmetrical DDA line drawing algorithm. It also contains circle drawing algorithms using trigonometric, polynomial, Bresenham's and mid-point circle algorithms. Further, it includes ellipse drawing algorithms using trigonometric and polynomial methods. Finally, it shows an implementation of the Liang-Barsky line clipping algorithm.
This program writes a C code to shear a cuboid. It includes graphics header files and uses the Bresenham's line algorithm to draw lines. The program defines a function called 'bress' to draw lines using the Bresenham algorithm. It takes coordinates of two points as input and uses conditions on the slope to determine the increment, endpoint and direction of line drawing. This function is used to draw the individual lines of the cuboid before and after shearing.
The document discusses Bayesian networks and how they can be used to concisely represent probability distributions over many variables by specifying conditional independence relationships between variables. It provides examples of how to construct Bayesian networks from probability distributions, how to perform inference by eliminating variables, and concepts like d-separation that characterize conditional independence in Bayesian networks.
Advanced Data Visualization Examples with R-Part IIDr. Volkan OBAN
This document provides several examples of advanced data visualization techniques using R. It includes examples of 3D surface plots, contour plots, scatter plots and network graphs using various R packages like plot3D, scatterplot3D, ggplot2, qgraph and ggtree. Functions used include surf3D, contour3D, arrows3D, persp3D, image3D, scatter3D, qgraph, geom_point, geom_violin and ggtree. The examples demonstrate different visualization approaches for multivariate, spatial and network data.
1. The document discusses A/B testing approaches for game design, noting key areas that can be tested like onboarding experiences, monetization strategies, and retention mechanics.
2. It introduces Bayesian approaches to A/B testing, noting that observing results allows updating beliefs about hypotheses rather than relying on passing a threshold for significance.
3. Key challenges with frequentist approaches are discussed like multiple comparisons inflating false positive rates, and "peeking" at intermediate results invalidating conclusions. Bayesian methods account for uncertainty and can incorporate prior information and new evidence iteratively.
This document provides examples of various plotting functions in R including plot(), boxplot(), hist(), pairs(), barplot(), densityplot(), dotplot(), histogram(), xyplot(), cloud(), and biplot/triplot. Functions are demonstrated using built-in datasets like iris and by plotting variables against each other to create scatter plots, histograms, and other visualizations.
This document demonstrates how to create genomic graphics and plots using the ggbio and GenomicFeatures R packages. It shows examples of:
1) Creating tracks plots to visualize genomic data over time using qplot and tracks functions.
2) Plotting genomic ranges data from a GRanges object using autoplot with options to facet by strands or calculate coverage.
3) Creating bar plots of coverage data from a GRanges object grouped by chromosome and strand.
4) Drawing circular genome plots from GRanges data using layout_circle with options to add multiple track types like rectangles, bars, points and links between ranges.
The Ring programming language version 1.10 book - Part 81 of 212Mahmoud Samir Fayed
This document describes a cards game application developed using RingQt. The application deals 5 cards to each of two players. Players take turns clicking cards to reveal them. If a card matches another visible card or is a "5", the player earns points and may eat additional matching cards. The game ends when all cards are revealed, and the player with the most points wins. The application displays the cards, scores, and gameplay logic through a graphical user interface built with RingQt widgets.
The document provides source code for generating and manipulating computer graphics using various algorithms. It includes algorithms for drawing lines, circles and curves, as well as algorithms for translating, rotating, and scaling two-dimensional and three-dimensional objects. The source code is written in C/C++ and uses graphics libraries to output the results. Various input parameters are taken from the user and output is displayed to demonstrate the algorithms.
The document describes a Haskell program that translates characters in one string to characters in another string. It defines a translate function that maps characters from the first string (set1) to the corresponding characters in the second string (set2). A translateString function applies the translate function to a given string, and the main function gets the set1 and set2 strings from arguments, reads stdin, applies translateString, and writes the result to stdout, catching any errors.
This document discusses JavaScript MV* frameworks. It covers common features of these frameworks including the client-server model, event handling, view templates, and URL routing. It also provides examples of models, collections, implementing client-server sync, views and events, view templates, and UI element binding.
Plot3D Package and Example in R.-Data visualizat,onDr. Volkan OBAN
reference:http://www.sthda.com/english/wiki/impressive-package-for-3d-and-4d-graph-r-software-and-data-visualization
prepared by Volkan OBAN
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Dr. Volkan OBAN
This document provides examples of using the Plot3D package in R to create 3D plots and visualizations. It includes examples of plotting 3D text labels, histograms, arrows, scatter plots and adding regression planes to visualize relationships between variables in 3D space. Functions demonstrated include text3D(), hist3D(), arrows3D(), and scatter3D(). Real data sets like iris and mtcars are used for illustrative examples.
1. Scrollytelling uses D3.js to create interactive narratives that unfold as the user scrolls.
2. D3 allows loading data from different file types like CSV, JSON, and XML and binding it to DOM elements.
3. Transitions can be used to smoothly animate changes to the attributes of elements over a specified duration and delay for visualizing data.
R is an open source statistical computing platform that is rapidly growing in popularity within academia. It allows for statistical analysis and data visualization. The document provides an introduction to basic R functions and syntax for assigning values, working with data frames, filtering data, plotting, and connecting to databases. More advanced techniques demonstrated include decision trees, random forests, and other data mining algorithms.
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Matrunich Consulting
Слайды выступления Александра Матрунича на конференции "Открытые ГИС" 17 ноября 2012 г. в Москве.
Грамматика графики - подход к визуализации статистических данных, позволяющий перейти к содержательной части графика и не отвлекаться второстепенные детали, которые создаются автоматически. Ggplot2 - расширение Хэдли Викхэма для среды статистической обработки данных R, реализующее концепцию грамматики графики. Для создания графика в ggplot2 пользователь указывает исходный массив данных, сопоствляет переменным из массива подходящие средства графического представления (такими могут быть положение по вертикали и горизонтали, размер, цвет заливки, цвет обводки, форма и др.), выбирает тип геометрического объекта (например, точка, прямоугольник, линия, изолиния, ящик с усами и пр.), и при необходимости устанавливает способ статистического преобразования данных, тип координатной системы.
Ggmap - расширение Дэвида Кахли для R, "заточенное" под создание картограмм и основанное на ggplot2. В качестве положения по вертикали и горизонтали в ggmap зафиксированы широта и долгота, в качестве проекции - Меркатор. Ggmap упрощает процесс визуализации пространственных данных, минимизируя усилия пользователя под установке географической подложки для своего графика. В качестве подложки могут быть выбраны слои из сервиса Google Maps, OpenStreetMap, CloudMade.
MH prediction modeling and validation in r (2) classification 190709Min-hyung Kim
This document presents code for modeling mortality risk from patient data. It:
1) Loads and preprocesses a training dataset, including imputing missing values;
2) Fits two logistic regression models to predict mortality from age and BMI: a simple model with linear terms and a more complex model with quadratic terms;
3) Visualizes the models by plotting predictions against the data and applying classification thresholds;
4) Calculates the area under the receiver operating characteristic curve (AUROC) on the training data to evaluate model performance.
The AUROC is 0.778 for the simple model and 0.779 for the complex model, indicating modest predictive ability.
The document presents information about submodular functions including:
1) It defines a submodular function v as a set function whose domain is the power set of a ground set N, and discusses properties of submodular functions.
2) It provides an example of a submodular function v with ground set N={1,2,3} and defines the polyhedron and base polyhedron associated with v.
3) It introduces the concept of a greedy algorithm for maximizing a submodular set function and outlines the steps of the greedy algorithm.
The document provides an introduction and background about the speaker, Kenichi Matsui. It discusses his career experience working for several large companies in software development, communications, and consulting. It then covers some of his current responsibilities related to data analysis and machine learning as a data scientist and group manager. Specific topics covered include an overview of data science skills and roles, machine learning techniques like classification and regression, and data analysis competitions.
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKen'ichi Matsui
The document discusses different approaches that were tried for improving the performance of a model for a question answering competition, including pre-training on additional data, modifying the model architecture by changing layers or heads, and using different loss functions or features. Various models were experimented with, such as BERT, RoBERTa, ALBERT, and XLNet. However, concatenating the question and answer encodings did not work as expected.
Two sentences are tokenized and encoded by a BERT model. The first sentence describes two kids playing with a green crocodile float in a swimming pool. The second sentence describes two kids pushing an inflatable crocodile around in a pool. The tokenized sentences are passed through the BERT model, which outputs the encoded representations of the token sequences.
1) The document discusses univariate distribution relationships and provides code examples to generate and plot Bernoulli, binomial, and normal distributions from random variable samples.
2) The code generates random variable samples from Bernoulli, binomial, and normal distributions with varying parameter values and plots the empirical distributions alongside the theoretical distributions.
3) Confidence intervals for the normal distribution are also calculated and printed based on the sample size, probability, and theoretical normal distribution parameters.
This document contains a summary of 3 papers on deep residual networks and squeeze-and-excitation networks:
1. Kaiming He et al. "Deep Residual Learning for Image Recognition" which introduced residual networks for image recognition.
2. Andreas Veit et al. "Residual Networks Behave Like Ensembles of Relatively Shallow Networks" which analyzed how residual networks behave like ensembles.
3. Jie Hu et al. "Squeeze-and-Excitation Networks" which introduced squeeze-and-excitation blocks to help convolutional networks learn channel dependencies.
The document also references the PyTorch ResNet implementation and provides URLs to the first and third papers. It contains non-English
The document discusses generative models and their ability to generate realistic images, audio, and text which can be used to augment datasets. It outlines how generative models work by learning the underlying patterns and structures from large amounts of data to generate new examples that resemble the training data. The document also cautions that generative models are still narrow and more work needs to be done to build models that capture the full complexity and diversity of the real world.
This document discusses precision and recall, which are metrics used to evaluate the performance of classification models. Precision measures the proportion of predicted positive instances that are actually positive, while recall measures the proportion of actual positive instances that are correctly predicted to be positive. The document also presents formulas for calculating precision, recall, and the harmonic mean of precision and recall.
The document appears to discuss Bayesian statistical modeling and inference. It includes definitions of terms like the correlation coefficient (ρ), bivariate normal distributions, and binomial distributions. It shows the setup of a Bayesian hierarchical model with multivariate normal outcomes and estimates of the model parameters, including the correlations (ρA and ρB) between two groups of bivariate data.
Cost sheet. with basics and formats of sheetsupreetk82004
Cost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheet
官方办理文凭加拿大文凭购买,加拿大文凭定制,加拿大卡尔加里大学文凭补办【q薇1954292140】专业在线定制加拿大大学文凭可查文凭定购,定做加拿大本科文凭,【q薇1954292140】复制加拿大The University of Calgary completion letter。在线快速补办加拿大本科毕业证、硕士文凭证书,购买加拿大学位证、卡尔加里大学Offer,加拿大大学文凭在线购买。高仿真还原加拿大文凭证书和外壳,定制加拿大卡尔加里大学成绩单和信封。学历认证购买UC毕业证【q薇1954292140】办理加拿大卡尔加里大学毕业证(UC毕业证书)【q薇1954292140】毕业证书电子版卡尔加里大学offer/学位证毕业证样本、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决卡尔加里大学学历学位认证难题。
特殊原因导致无法毕业,也可以联系我们帮您办理相关材料:
1:在卡尔加里大学挂科了,不想读了,成绩不理想怎么办???
2:打算回国了,找工作的时候,需要提供认证《UC成绩单购买办理卡尔加里大学毕业证书范本》【Q/WeChat:1954292140】Buy The University of Calgary Diploma《正式成绩单论文没过》有文凭却得不到认证。又该怎么办???加拿大毕业证购买,加拿大文凭购买,
3:回国了找工作没有卡尔加里大学文凭怎么办?有本科却要求硕士又怎么办?
帮您解决在加拿大卡尔加里大学未毕业难题(The University of Calgary)文凭购买、毕业证购买、大学文凭购买、大学毕业证购买、买文凭、日韩文凭、英国大学文凭、美国大学文凭、澳洲大学文凭、加拿大大学文凭(q薇1954292140)新加坡大学文凭、新西兰大学文凭、爱尔兰文凭、西班牙文凭、德国文凭、教育部认证,买毕业证,毕业证购买,买大学文凭,购买日韩毕业证、英国大学毕业证、美国大学毕业证、澳洲大学毕业证、加拿大大学毕业证(q薇1954292140)新加坡大学毕业证、新西兰大学毕业证、爱尔兰毕业证、西班牙毕业证、德国毕业证,回国证明,留信网认证,留信认证办理,学历认证。从而完成就业。
如果您在英、加、美、澳、欧洲等留学过程中或回国后:
1、在校期间因各种原因未能顺利毕业《UC成绩单工艺详解》【Q/WeChat:1954292140】《Buy The University of Calgary Transcript快速办理卡尔加里大学教育部学历认证书毕业文凭证书》,拿不到官方毕业证;
2、面对父母的压力,希望尽快拿到;
3、不清楚认证流程以及材料该如何准备;
4、回国时间很长,忘记办理;
5、回国马上就要找工作《正式成绩单卡尔加里大学成绩单COPY》【q薇1954292140】《毕业证如何办理UC毕业证如何办理》办给用人单位看;
6、企事业单位必须要求办理的;
7、需要报考公务员、购买免税车、落转户口、申请留学生创业基金。
加拿大文凭卡尔加里大学成绩单,UC毕业证【q薇1954292140】办理加拿大卡尔加里大学毕业证(UC毕业证书)【q薇1954292140】国外本科offer在线制作卡尔加里大学offer/学位证学历认证证书电子版、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作。帮你解决卡尔加里大学学历学位认证难题。
【q薇1954292140】办理卡尔加里大学毕业证(UC毕业证书)学位证书成绩单代办服务【q薇1954292140】卡尔加里大学offer/学位证、留信官方学历认证(永久存档真实可查)采用学校原版纸张、特殊工艺完全按照原版一比一制作加拿大卡尔加里大学毕业证(UC毕业证书)学位证书成绩单代办服务
主营项目:
1、真实教育部国外学历学位认证《加拿大毕业文凭证书快速办理卡尔加里大学文凭样本》【q薇1954292140】《论文没过卡尔加里大学正式成绩单》,教育部存档,教育部留服网站100%可查.
2、办理UC毕业证,改成绩单《UC毕业证明办理卡尔加里大学留学生学历学位认证书》【Q/WeChat:1954292140】Buy The University of Calgary Certificates《正式成绩单论文没过》,卡尔加里大学Offer、在读证明、学生卡、信封、证明信等全套材料,从防伪到印刷,从水印到钢印烫金,高精仿度跟学校原版100%相同.
3、真实使馆认证(即留学人员回国证明),使馆存档可通过大使馆查询确认.
4、留信网认证,国家专业人才认证中心颁发入库证书,留信网存档可查.
《卡尔加里大学揭秘加拿大毕业证书办理UC成绩单温感光标》【q薇1954292140】学位证1:1完美还原海外各大学毕业材料上的工艺:水印,阴影底纹,钢印LOGO烫金烫银,LOGO烫金烫银复合重叠。文字图案浮雕、激光镭射、紫外荧光、温感、复印防伪等防伪工艺。
毕业证办理的详细过程加拿大文凭卡尔加里大学成绩单【q薇1954292140】复刻成绩单加拿大卡尔加里大学毕业证(UC毕业证书)毕业证详解细节 卡尔加里大学毕业证办理,极速办加拿大卡尔加里大学文凭办理,加拿大卡尔加里大学成绩单办理和真实留信认证、留服认证、卡尔加里大学学历认证。学院文凭定制,卡尔加里大学原版文凭补办,扫描件文凭定做,100%文凭复刻。【q薇1954292140】Buy The University of Calgary Diploma购买美国毕业证,购买英国毕业证,购买澳洲毕业证,购买加拿大毕业证,以及德国毕业证,购买法国毕业证(q薇1954292140)购买荷兰毕业证、购买瑞士毕业证、购买日本毕业证、购买韩国毕业证、购买新西兰毕业证、购买新加坡毕业证、购买西班牙毕业证、购买马来西亚毕业证等。包括了本科毕业证,硕士毕业证。
留信认证的作用:
1. 身份认证:留信认证可以证明你的留学经历是真实的,且你获得的学历或学位是正规且经过认证的。这对于一些用人单位来说,尤其是对留学经历有高度要求的公司(如跨国公司或国内高端企业),这是非常重要的一个凭证。
专业评定:留信认证不仅认证你的学位证书,还会对你的所学专业进行评定。这有助于展示你的学术背景,特别是对于国内企业而言,能够清楚了解你所学专业的水平和价值。
国家人才库入库:认证后,你的信息将被纳入国家人才库,并且可以在国家人才网等平台上展示,供包括500强企业等大型公司挑选和聘用人才。这对于回国找工作特别是进入大公司,具有非常积极的作用。
2. 留信认证对就业的好处
提高竞争力:通过留信认证,尤其是对你所学专业的认证,可以大大提高你在国内求职时的竞争力。许多企业对留学生背景和所学专业有很高的要求,认证后的信息能够帮助企业快速识别符合条件的候选人。
增强信任度:企业往往会对没有认证的学历背景产生疑虑,而留信认证为你的学历背景提供了第三方权威机构的背书,增强了雇主的信任。
对接高端岗位:通过认证后,留学生的个人信息被纳入国家人才库,这也意味着你可以被更多的高端岗位、国有大企业和跨国公司注意到,特别是那些招聘具有国际化背景的人才的公司。
A Relative Information Gain-based Query Performance Prediction Framework with...suchanadatta3
To improve the QPP estimate for neural models, we propose to use additional information from a set of queries that express a similar information need to the current one (these queries are called variants). The key idea of our proposed method, named Weighted Relative Information Gain (WRIG), is to estimate the performance of these variants, and then to improve the QPP estimate of the original query based on the relative differences with the variants. The hypothesis is that if a query’s estimate is significantly higher than the average QPP score of its variants, then the original query itself is assumed (with a higher confidence) to be one for which a retrieval model works well.
157. xi µ
p
n
xi µ
p
n
Mxi µ
p
n
(t) = E[e
xi µ
p
n
t
]
= 1 + 2 t2
2!n
+ µ3
t3
3!n3/2
+ · · · + µk
tk
k!nk/2
+ · · ·
= 1 +
2
t2
2n
+
n
2n
=
1
2n
n n ! 0 n ! 0
= 1 +
2
t2
+ n
2n
158. T0
=
x1 µ
p
n
+
x2 nµ
p
n
+ · · · +
xn µ
p
n
=
nX
i=1
xi µ
p
n
MT 0 (t) = MPn
i=1
⇣
xi µ
p
n
⌘(t) = E[e
Pn
i=1
⇣
xi µ
p
n
⌘
t
]
=
nY
i=0
E[e
⇣
xi µ
p
n
⌘
t
] =
✓
1 +
1
n
2
t2
+ n
2
◆n
er
⌘ lim
n!1
⇣
1 +
r
n
⌘n
r
r
= lim
n!1
⇣
1 +
r
n
⌘n
159. n ! 1
lim
n!1
MT 0 = lim
n!1
✓
1 +
1
n
2
t2
+ n
2
◆n
= e
2t2
2
lim
n!1
n = 0
N(0, 2
)
T0
=
T nµ
p
n
2
185. u ⇠ N(0, 1)
t =
u
p
v/m
v ⇠ 2
(m)
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
186. u ⇠ N(0, 1) v ⇠ 2
(m) v > 01 < u < +1
f(u, v) =
1
p
2⇡
exp
✓
u2
2
◆
(1/2)n/2
(n/2)
vn/2 1
e v/2
t =
u
p
v/m
x = v
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
(z) =
Z 1
0
tz 1
e t
dt
187. µ
D = (x1, · · · , xn) xi ⇠ N(µ, 2
)
¯x ⇠ N(µ, 2
/n)¯x
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
188. u =
¯x µ
/
p
n
⇠ N(0, 1) v =
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
t =
u
p
v/(n 1)
=
¯x µ
/
p
n
·
"
1
2
1
(n 1)
nX
i=1
(xi ¯x)2
# 1/2
=
¯x µ
1/
p
n
·
1
p
s2
=
¯x µ
s/
p
n
⇠ tn 1
s2
=
1
n 1
nX
i=1
(xi ¯x)2
s2
189. P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
190. P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵