SlideShare a Scribd company logo
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
Twitter
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
D = {x1, x2, · · · , xn}
¯x =
1
n
nX
i=1
xi
2
=
1
n
nX
i=1
(xi ¯x)2
=
v
u
u
t 1
n
nX
i=1
(xi ¯x)2
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
=
1
n
nX
i=1
|xi ¯x|
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
=
1
n
nX
i=1
(xi ¯x)2
p
=
v
u
u
t 1
N
NX
i=1
(xi ¯x)2
p
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
probability
! 2 ⌦ = {!1, !2, · · · , !m}
⌦ = { , }
! 2 { , }
!(1)
= !(2)
=
!(n)
=
⌦ = {1, 2, 3, 4, 5, 6}
!(1)
= !(2)
=
!(n)
=
⌦ = {!1, !2, · · · , !49870000}
!(1)
= !43890298 = 171cm
!(2)
= !29184638 = 168cm
!(n)
= !51398579 = 174cm
!(1)
= !(2)
=
!(n)
=!(3)
=
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
= {!1, !2, !3, · · · , !10}
! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
⌦ !
!
X = X(!)
⌦ !
!
X(!1) = 0
X(!2) = 0
X(!3) = 0
X(!4) = 0
X(!5) = 0
X(!6) = 0
X(!7) = 0
X(!8) = 0
X(!9) = 0
X(!10) = 100
!
{! 2 ⌦ : X(!) 2 A}
{X 2 A}
X(!) X
{! 2 ⌦ : X(!) 2 A}
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
A X(!) = 100Ac
X(!) = 0
!5 or !9
PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A})
⌦
!5, !9 !5, !9
PX (A) =
#({! 2 ⌦ : X(!) 2 A})
#( )
=
#(!5, !9)
#( )
=
2
10
= 0.2
PX(⌦) = 1
A1, A2, · · ·
PX ([iAi) =
X
i
PX (Ai)
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
0  PX(A)  1
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
X = X(!)
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
D
X(!) = 0
X(!) = 0
#A = #{! 2 ⌦ : X(!) = 0} = 7
#B = #{! 2 ⌦ : X(!) = 1} = 2
#C = #{! 2 ⌦ : X(!) = 2} = 4
#D = #{! 2 ⌦ : X(!) = 3} = 3
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
DX(!) = 0
P(X = 0) = PX(A) =
#{! 2 ⌦ : X(!) = 0}
#⌦
=
7
16
P(X = 1) = PX (B) =
#{! 2 ⌦ : X(!) = 1}
#⌦
=
2
16
P(X = 2) = PX(C) =
#{! 2 ⌦ : X(!) = 2}
#⌦
=
4
16
P(X = 3) = PX(D) =
#{! 2 ⌦ : X(!) = 3}
#⌦
=
3
16
{x1, x2, · · · , xk}
P(X = xi) = f(xi)
F(x) = P(X  x)
P(x < X  x + x)
x + xx
x x ! 0
f(x) = lim
x!0
P(x < X  x + x)
x
x + xx
f(x)
F(x) = P(X  x) =
Z x
1
f(u)du
f(a < x < b) =
Z b
a
f(x)dx
http://www.math.wm.edu/~leemis/2008amstat.pdf
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
P(X = x) = px
(1 p)1 x
(x = 0, 1)
#
#
p = 0.7
trial_size = 10000
set.seed(71)
#
data <- rbern(trial_size, p)
#
dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1))
#
ggplot() +
layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar",
stat="bin", bandwidth=0.1
) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar",
stat="identity", width=0.05, fill="#777799", alpha=0.7)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
(x = 0, 1, · · · , n)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
#
p = 0.7
trial_size = 10000
sample_size = 30
set.seed(71)
#
gen_binom_var <- function() {
return(sum(rbern(sample_size, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dbinom(seq(sample_size),
sample_size, 0.7))*trial_size
#
ggplot() +
layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=1, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y),
geom="line", stat="identity", position="identity",colour="red"
) + ggtitle("Bernoulli to Binomial.")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
P(X = x) =
e x
x!
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
trial_size = 5000; width <- 1;
#
p = 0.7; n = 10;
np <- p*n
# n!∞ p!0 np=
n = 100000; p <- np/n
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dpois(seq(20), np))*trial_size
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y),
geom="line", stat="identity", position="identity",
colour="red"
) + ggtitle("Bernoulli to Poisson.")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x) =
1
p
2⇡ 2
exp
⇢
1
2
(x µ)2
2
( 1 < x < 1)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
#
n <- 10000; p <- 0.7;
trial_size = 10000
width=10
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p,
sd=sqrt(n*p*(1-p)))*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y),
geom="line", stat="identity", position="identity",
colour="red") + ggtitle("Bernoulli to Normal.")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
( 1 < x < 1)
f(x) =
1
p
2⇡
exp
⇢
1
2
x2
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
#
n <- 10000; p <- 0.7
trial_size = 30000
width=0.18
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
m <- mean(result$V1); sd <- sd(result$V1);
result <- (result - m)/sd
#
dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0,
sd=1)*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y),
geom="line", stat="identity", position=“identity",
colour="red"
) + ggtitle("Bernoulli to Standard Normal.")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, k) =
(1/2)k/2
(k/2)
xk/2 1
e x/2
(0  x)
Xi
Z = X2
1 + · · · + X2
k
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
#
p <- 0.7; n <- 1000;
trial_size <- 100000; width <- 0.3;
df <- 3
# (3 )
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
gen_chisq_var <- function() {
result <- rdply(trial_size, gen_binom_var())
return(((result$V1 - mean(result$V1))/sd(result$V1))**2)
}
# df
result <- rlply(df, gen_chisq_var(),.progress = "text")
res <- data.frame(x=result[[1]] + result[[2]] + result[[3]])
# ( =3)
xx <- seq(0,20,0.1)
dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width)
#
ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=xx, y=y),
geom="line", stat="identity", position="identity",
colour="blue" ) + ggtitle("Bernoulli to Chisquare")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, ) =
⇢
e x
(x 0)
0 (x < 0)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
trial_size = 7000; width <- .01;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n
#
gen_exp_var <- function() {
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){
return(cnt) # 1
}
}
}
data <- data.frame(x=rdply(trial_size, gen_exp_var())/n)
names(data) <- c("n", "x")
#
dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Exponential.")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, ↵, ) =
↵
(↵)
x↵ 1
exp( x)
(0  x < 1)
↵X
i=1
Xi ⇠ (↵, )Xi ⇠ Exp( )
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
trial_size = 7000; width <- .035;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x +
result[[5]]$x)
#
dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Gamma")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, ↵, ) =
↵
(↵)
x (↵+1)
exp
✓
x
◆
(0  x < 1)
Xi ⇠ Exp( ) Z =
↵X
i=1
Xi ⇠ (↵, )
1/Z ⇠ IG(↵, )
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
trial_size = 7000; width <- .;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x +
result[[4]]$x + result[[5]]$x))
#
dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Inversegamma")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x) =
⇢
1 (0  x  1)
0 (otherwise)
Z = x1(1/2)1
+ x2(1/2)2
+ · · · + xq(1/2)q
width <- 0.02
p <- 0.5;
sample_size <- 1000
trial_size <- 100000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Standard Uniform")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, a, b) =
⇢
(b a) 1
(a  x  b)
0 (otherwise)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
a <- 5
b <- 8;
width <- 0.05
p <- 0.5
sample_size <- 1000
trial_size <- 500000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
res$V1 <- res$V1 * (b-a) + a
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x, ↵, ) =
1
B(↵, )
x↵ 1
(1 x) 1
(0 < x < 1)
Xi ⇠ U(0, 1)iid
(i = 1, 2, · · · , ↵ + 1)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
width <- 0.03; p <- 0.5
digits_length <- 30; set_size <- 3
trial_size <- 30000
gen_unif_rand <- function() {
# digits_length 2
#
return (sum(rbern(digits_length, p) *
(rep(1/2, digits_length) **
seq(digits_length))))
}
gen_rand <- function(){
return( rdply(set_size, gen_unif_rand())$V1 )
}
unif_dataset <- rlply(trial_size, gen_rand, .progress='text')
p <- ceiling(set_size * 0.5); q <- set_size - p + 1
get_nth_data <- function(a){ return(a[order(a)][p]) }
disp_data <- data.frame(lapply(unif_dataset, get_nth_data))
names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data))
names(disp_data) <- "V1"
x_range <- seq(0, 1, 0.001)
dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width)
ggplot() +
layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=x_range, y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Beta")
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
E[X] = X( )P( ) + X( )P( )
= 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2
= 200, 000
E[X] =
X
x
xp(x)
µ
✓
n
x
◆
=
n!
(n x)!x!
E[X] =
nX
x=0
xP(x) =
nX
x=0
x
✓
n
x
◆
px
(1 p)n x
=
nX
x=0
x
n!
(n x)!x!
px
(1 p)n x
=
nX
x=0
n
(n 1)!
(n x)!(x 1)!
px
(1 p)n x
= np
nX
x=0
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
= np
nX
x=1
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
Var[X] = E[(X E[X])2
]
=
X
x
(x E[x])2
P(x)
= 2
µ
Var[x] = E[(X E[X])2
]
=
Z 1
1
(x E[x])2
f(x)dx
= 2
E[X] =
Z 1
1
xf(x)dx
= µ
E[g(X)] =
Z 1
1
g(x)f(x)dx
g(X) = (X E[X])2
E[ · ] =
Z 1
1
· f(x)dx
g(x) = xk
E[g(X)] = E[Xk
] =
Z 1
1
xk
f(x)dx
µ0
k
g(x) = (x E[x])k
E[g(X)] = E[(X E[X]])k
] =
Z 1
1
(x E[x])k
f(x)dx
µk
E[cX] = cE[X]
* E[cX] =
Z 1
1
cxf(x)dx = c
Z 1
1
xf(x)dx
= cE[X]
Var[cX] = c2
Var[X]
* Var[cX] =
Z 1
1
(cx E[cx])2
f(x)dx
=
Z 1
1
(cx cµ)2
f(x)dx
=
Z 1
1
c2
(x µ)2
f(x)dx
= c2
Z 1
1
(x µ)2
f(x)dx
= c2
Var[X]
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
P(x < X 5 x + x, y < Y 5 y + y)
x, y ! 0
f(x, y) = lim
x, y!0
P(x < X 5 x + x, y < Y 5 y + y)
f(x, y)
g(x) =
Z 1
1
f(x, y)dy
h(y) =
Z 1
1
f(x, y)dx
g(x)
h(y)
EX,Y [ g(X, Y )] =
Z 1
1
Z 1
1
g(x, y)f(x, y)dxdy
g(x, y) = x0.8
y0.8 (x, y) ⇠ N((4, 4), S) S =

1 0.5
0.4 1
EX,Y [ g(X, Y )] = 8.02
g(X, Y ) = (X µX)(Y µY )
Cov[X, Y ] = E[(X µX)(Y µY )]
g(X, Y ) = (X µX)(Y µY )
µX µX
µX µX
µY
µY
µY
µY
S1 = S2 =
S3 = S4 =

1 0.8
0.8 1

1 0.8
0.8 1

1 0
0 1

1 0.999
0.999 1
Cov[X, Y ] = E[(X µX)(Y µY )]
(x, y) ⇠ N((4, 4), S)
f(x, y)
f(x, y) = g(x)h(y)
f(x, y) = g(x)h(y)
= 0
(x1, x2, · · · , xn)
x1
f(x1) =
Z
· · ·
Z
f(x1, · · · , xn)dx2 · · · dxn
x1
f(x1, · · · , xn) = f(x1) · · · f(xn)
x1 · · · xn
x1 · · · xn
g1(x1), · · · , gn(xn) x1 · · · xn
E[
nY
i=1
gi(xi)] =
nY
i=1
E[gi(xi)]
E[g1(x1)] E[gn(xn)]
E[
nY
i=1
gi(xi)] =
Z 1
1
· · ·
Z 1
1
g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn
=
Z 1
1
g1(x1)f(x1)dx1 · · ·
Z 1
1
gn(xn)f(xn)dxn
=
nY
i=1
E[gi(xi)]
f(x1) · · · f(xn)
x1 · · · xn
xi µi 2
i i = 1, 2, · · · , n
c = (c1, · · · , cn) c1x1 + · · · + cnxn
c1µ1 + · · · + cnµn
c2
1
2
1 + · · · + c2
n
2
n
E[c1x1 + · · · + cnxn]
=
Z 1
1
· · ·
Z 1
1
(c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn
= c1
Z 1
1
· · ·
Z 1
1
x1f(x1 · · · , xn)dx1 · · · dxn · · ·
cn
Z 1
1
· · ·
Z 1
1
xnf(x1 · · · , xn)dx1 · · · dxn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
f(x1) · · · f(xn)
f(x1) · · · f(xn)
µ1 µn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
Var[c1x1 + · · · + cnxn]
= E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2
]
= E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2
]
= E[
nX
i=1
c2
i (xi µi)2
+
X
i6=j
cicj(xi µj)(xi µj)]
=
nX
i=1
c2
i E[(xi µi)2
] +
X
i6=j
cicjE[(xi µj)(xi µj)]
= c2
1
2
1 + · · · + c2
n
2
n
c1µ1 + · · · + cnµn
= E[xi µi]E[xj µj] = 0= 2
i
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
x1 · · · xn
x1 · · · xn
xi
µ 2
(µ, 2
)
x1 · · · xn
T = x1 + · · · + xn
E[T] = E[x1 + · · · + xn]
= E[x1] + · · · + E[xn]
= nµ
Var[T] = Var[x1 + · · · + xn]
= Var[x1] + · · · + Var[xn]
= n 2
2
1 = · · · = 2
n
c1 = · · · = cn = 1
Var[c1x1 + · · · + cnxn]
= c2
1
2
1 + · · · + c2
n
2
n
¯x =
1
n
nX
i=1
xi =
1
n
T
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
Var[¯x] = Var[
1
n
T] =
1
n2
Var[T] =
2
n
µ
2
Var[¯x] =
2
n
=
0.0833
500
= 0.000166
E[¯x] = 0.5
Var[¯x]
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
µ 2
P(|x µ| > ) 5
1
2
µ 2
1/ 2
= 1 ) P(|x µ| > ) 5 1
= 2 ) P(|x µ| > ) 5 1/4
= 3 ) P(|x µ| > ) 5 1/9
2
=
Z 1
1
(x µ)2
f(x)dx
=
Z
I1
(x µ)2
f(x)dx +
Z
I2
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
2
=
Z
I1
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
=
Z
I1
2 2
f(x)dx +
Z
I3
2 2
f(x)dx
= 2 2
[P(x 2 I1) + P(x 2 I3)]
I1 = ( 1, µ ),
I2 = [µ , µ + ],
I3 = (µ + , 1)
= P(|x µ| > )
P(|x µ| > ) 5
1
2
)
x1 · · · xn µ
2
" > 0
lim
n!1
P{|¯xn µ| = "} = 0
¯xn =
1
n
nX
i=1
xi
¯xn µ
¯xn ! µ in P
" > 0
P(|¯xn µ| > ")
= P(|¯xn µ| > "
p
n
p
n
)
5
2
"2n
= 2
¯x=
=
1
2
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
f(x) =
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
f(x) =
1
p
2⇡
exp
✓
x2
2
◆
1 < x < 1
1 < x < 1
f(y) = y2
f(x) = x2
f(y) = y2
f(y) = exp( y2
)
z =
p
2y
f(z) = exp
✓
1
2
z2
◆
Z 1
1
e y2
dy =
p
⇡
Z 1
1
exp
✓
z2
2
◆
dz =
p
2⇡
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz = 1
dz =
p
2dy
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz
z =
x µ dz
dx
=
1
f(x) =
Z 1
1
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
dx
1/
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1 N(0, 1)
= 0.1, µ =
1
= 10, 2
=
1
2
= 100 ¯x = p
n
=
r
1
2n
=
r
1
0.01 ⇥ 10000
=
r
1
100
=
1
10
g(x) = ext
E[ext
] =
Z 1
1
ext
f(x)dx
Mx(t) = E[ext
]
Mx(t)
My(t)
x
t = 0
y
g(x) = ext
ext
= 1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · ·
Mx(t) = E[ext
]
= E[1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · · ]
= 1 + tE[x] +
t2
2!
E[x2
] + · · · +
tk
k!
E[xk
] + · · ·
= 1 + xµ0
1 +
t2
2!
µ0
2 + · · · +
tk
k!
µ0
k + · · ·
Mx(t)
d
dtk
Mx(t) = E[xk
ext
]
t = 0
d
dtk
Mx(0) = E[xk
] = µ0
k
x ⇠ N(µ, )
Mx(t) = E[ext
] =
Z 1
1
ext 1
p
2⇡ 2
exp
✓
1
2
(x µ)2
2
◆
dx
z =
x µ
x = µ + z dx = dz
Mx(t) =
Z 1
1
e(µ+ z)t 1
p
2⇡ 2
exp
✓
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
tz
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
1
2
[z2
2 tz 2
t2
+ 2
t2
]
◆
dz
= eµt
Z 1
1
1
p
2⇡
e
2t2
2 exp
✓
1
2
(z t)2
◆
dz
= eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
1
2
(z t)2
◆
dz
z t = w dz = dw
Mx(t) = eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
w2
2
◆
dw = eµt+
2t2
2
(f · g)0
= f0
· g + f · g0
(f g)0
(x) = f0
(g(x))g0
(x)
M0
x(t) = (µ + 2
t)eµt+
2t2
2
M00
x (t) = (µ + 2
t)2
⇣
eµt+
2t2
2
⌘
+ 2
⇣
eµt+
2t2
2
⌘
=
⇣
eµt+
2t2
2
⌘
{(µ + 2
t)2
+ 2
}
Var[x] = E[x2
] (E[x])2
= (µ2
+ 2
) (µ)2
= 2
Var[x] = E[(x E[x])2
]
= E[x2
2E[x]x + E[x]2
)
= E[x2
] 2E[x]2
+ E[x]2
= E[x2
] E[x]2
t = 0
E[x] = M0
x(0) = (µ + 2
· 0)eµ·0+
2·02
2 = µ
E[x2
] = M00
x (0) =
⇣
eµ·0+
2·02
2
⌘
{(µ + 2
· 0)2
+ 2
} = µ2
+ 2
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1
N(0, 1)
T = x1 + · · · + xn
T nµ
p
n
2T0
=
T nµ
p
n
=
¯x µ
1/
p
n
Mx(t)
My(t)
x
t = 0
y
T T0
=
T nµ
p
n
N(0, 2
)
Mxi
(t) = 1 + µ0
1t + µ0
2
t2
2!
+ µ0
3
t3
3!
+ · · ·
Mxi µ(t) = 1 + µ1t + µ2
t2
2!
+ µ3
t3
3!
+ · · ·
= 1 + 0 + 2 t2
2!
+ µ3
t3
3!
+ · · ·
xi µ
p
n
xi µ
p
n
Mxi µ
p
n
(t) = E[e
xi µ
p
n
t
]
= 1 + 2 t2
2!n
+ µ3
t3
3!n3/2
+ · · · + µk
tk
k!nk/2
+ · · ·
= 1 +
2
t2
2n
+
n
2n
=
1
2n
n n ! 0 n ! 0
= 1 +
2
t2
+ n
2n
T0
=
x1 µ
p
n
+
x2 nµ
p
n
+ · · · +
xn µ
p
n
=
nX
i=1
xi µ
p
n
MT 0 (t) = MPn
i=1
⇣
xi µ
p
n
⌘(t) = E[e
Pn
i=1
⇣
xi µ
p
n
⌘
t
]
=
nY
i=0
E[e
⇣
xi µ
p
n
⌘
t
] =
✓
1 +
1
n
2
t2
+ n
2
◆n
er
⌘ lim
n!1
⇣
1 +
r
n
⌘n
r
r
= lim
n!1
⇣
1 +
r
n
⌘n
n ! 1
lim
n!1
MT 0 = lim
n!1
✓
1 +
1
n
2
t2
+ n
2
◆n
= e
2t2
2
lim
n!1
n = 0
N(0, 2
)
T0
=
T nµ
p
n
2
n = 100000
sample_size = 1000
rvs_list = []
m_list = []
for i in range(n):
unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5
beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β
gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3
chi2_rvs = st.chi2.rvs(df=5, size=sample_size) #
exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
m_list.append(np.mean(rvs))
rvs_list.append(rvs)
#
n = 10000
sample_size = 1000
rvs_list = []
m_list = []
m_unif = st.uniform.rvs(4, 2, size=sample_size)
m_beta_a = st.uniform.rvs(4, 2, size=sample_size)
m_beta_b = st.uniform.rvs(4, 2, size=sample_size)
m_gamma = rd.randint(2,5,size=sample_size)
m_chi2_df = rd.randint(3,6,size=sample_size)
m_exp = st.uniform.rvs(4, 2, size=sample_size)
def gen_random_state():
return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
def create_rvs(n):
#rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
print("[START]")
for _ in range(n):
unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in
m_unif] # 5
beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b
in zip(m_beta_a, m_beta_b)]# 0.5 β
gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in
m_gamma] # 3
chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in
m_chi2_df] #
exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in
m_exp] # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
l_mean.append(np.mean(rvs))
l_rvs.append(rvs)
print("[END]")
n_jobs = 20
n_each = int(n/n_jobs)
jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)]
manager = Manager()
l_rvs = manager.list(range(len(jobs)))
l_mean = manager.list(range(len(jobs)))
start_time = time.time()
for j in jobs:
j.start()
time.sleep(0.2)
for j in jobs:
j.join()
finish_time = time.time()
print(finish_time - start_time)
m_list = l_mean[n_jobs:]
rvs_list = np.array(l_rvs[n_jobs:])
print(rvs_list.shape)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
D = (x1, · · · , xn)
✓0 = ˆ✓(X1, · · · , Xn)
ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
ˆ✓(X)
E[(ˆ✓(X) ✓)2
]
E[(ˆ✓(X) ✓)2
]
= E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2
]
= E[(E[ˆ✓(X)] ✓)2
+ 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2
]
= (E[ˆ✓(X)] ✓)2
+ Var[ˆ✓(X)]
E[ˆ✓(X)] ✓
E[(ˆ✓(X) ✓)2
] = Var[ˆ✓(X)]
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
¯x
s2
=
1
n 1
nX
i=1
(xi ¯x)2
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
lim
n!1
P{|¯xn µ| = "} = 0 ¯xn ! µ in P
ˆ✓n(X) n ! 1
ˆ✓n(X) ! ✓ in P
ˆ✓n(X)
¯xn µ
Var[ˆ✓(X)]
ˆ✓(X)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
D = (x1, · · · , xn) xi
f(xi)
nY
i=1
f(xi)
nY
i=1
f(xi|✓)
xi
`(✓|x1, x2, · · · , xn) =
nY
i=1
f(xi|✓)
x1, x2, · · · , x10
f(x1, x2, · · · , x10|µ, 2
) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
`(µ, 2
|x1, x2, · · · , x10) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
✓⇤
= arg max
✓
`(✓|x1, x2, · · · , xn)
log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn)
`
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
µ, 2
L(µ, 2
|x1, x2, · · · , x10) =
n
2
(2⇡)
n
2
log 2 1
2 2
nX
i=1
(xi µ)2
@L
@µ
=
1
2 2
nX
i=1
(xi µ)2
)
nX
i=1
xi = nµ
) µ⇤
=
1
n
nX
i=1
xi
`(µ, 2
|x1, x2, · · · , xn) =
nY
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
@L
@ 2
=
n
2
1
2
+
1
2( 2)2
nX
i=1
(xi µ)2
= 0
)
1
2( 2)2
nX
i=1
(xi µ)2
=
n
2 2
) 2⇤
=
1
n
nX
i=1
(xi µ)2
2⇤
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
D = (x1, · · · , xn)µ 2
µ
u ⇠ N(0, 1)
t =
u
p
v/m
v ⇠ 2
(m)
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
u ⇠ N(0, 1) v ⇠ 2
(m) v > 01 < u < +1
f(u, v) =
1
p
2⇡
exp
✓
u2
2
◆
(1/2)n/2
(n/2)
vn/2 1
e v/2
t =
u
p
v/m
x = v
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
(z) =
Z 1
0
tz 1
e t
dt
µ
D = (x1, · · · , xn) xi ⇠ N(µ, 2
)
¯x ⇠ N(µ, 2
/n)¯x
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
u =
¯x µ
/
p
n
⇠ N(0, 1) v =
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
t =
u
p
v/(n 1)
=
¯x µ
/
p
n
·
"
1
2
1
(n 1)
nX
i=1
(xi ¯x)2
# 1/2
=
¯x µ
1/
p
n
·
1
p
s2
=
¯x µ
s/
p
n
⇠ tn 1
s2
=
1
n 1
nX
i=1
(xi ¯x)2
s2
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
= 1 µ = 0
H0 : µ0 = 0
H1 : µ 6= µ0
¯x = /
p
n
/
p
10 ; /3.16
↵/2 ↵/2
H0 : µ0 = 0
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
H1 : µ = 1
H1 : µ = 0.5
H1 : µ = 3
µ0H1 : µ = 3
H0 : µ0 = 0
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
e↵ect size : =
µ µ0
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
…
…
…
…
…
…
…
…
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

More Related Content

What's hot (20)

暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -
MITSUNARI Shigeo
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 
目grep入門 +解説
目grep入門 +解説目grep入門 +解説
目grep入門 +解説
murachue
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
joisino
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
Yoichi Ochiai
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量
takaya imai
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
Masashi Komori
 
Visual Studio CodeでRを使う
Visual Studio CodeでRを使うVisual Studio CodeでRを使う
Visual Studio CodeでRを使う
Atsushi Hayakawa
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
Takashi J OZAKI
 
RSA暗号運用でやってはいけない n のこと #ssmjp
RSA暗号運用でやってはいけない n のこと #ssmjpRSA暗号運用でやってはいけない n のこと #ssmjp
RSA暗号運用でやってはいけない n のこと #ssmjp
sonickun
 
何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門
masayoshi takahashi
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)
Kentaro Minami
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
ryosuke-kojima
 
異常検知と変化検知 第4章 近傍法による異常検知
異常検知と変化検知 第4章 近傍法による異常検知異常検知と変化検知 第4章 近傍法による異常検知
異常検知と変化検知 第4章 近傍法による異常検知
Ken'ichi Matsui
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題
joisino
 
暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -暗号文のままで計算しよう - 準同型暗号入門 -
暗号文のままで計算しよう - 準同型暗号入門 -
MITSUNARI Shigeo
 
最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向最適輸送の計算アルゴリズムの研究動向
最適輸送の計算アルゴリズムの研究動向
ohken
 
目grep入門 +解説
目grep入門 +解説目grep入門 +解説
目grep入門 +解説
murachue
 
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
Word Tour: One-dimensional Word Embeddings via the Traveling Salesman Problem...
joisino
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
Yoichi Ochiai
 
研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 
backbone としての timm 入門
backbone としての timm 入門backbone としての timm 入門
backbone としての timm 入門
Takuji Tahara
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量
takaya imai
 
社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森社会心理学者のための時系列分析入門_小森
社会心理学者のための時系列分析入門_小森
Masashi Komori
 
Visual Studio CodeでRを使う
Visual Studio CodeでRを使うVisual Studio CodeでRを使う
Visual Studio CodeでRを使う
Atsushi Hayakawa
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 
Granger因果による 時系列データの因果推定(因果フェス2015)
Granger因果による時系列データの因果推定(因果フェス2015)Granger因果による時系列データの因果推定(因果フェス2015)
Granger因果による 時系列データの因果推定(因果フェス2015)
Takashi J OZAKI
 
RSA暗号運用でやってはいけない n のこと #ssmjp
RSA暗号運用でやってはいけない n のこと #ssmjpRSA暗号運用でやってはいけない n のこと #ssmjp
RSA暗号運用でやってはいけない n のこと #ssmjp
sonickun
 
何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門何となく勉強した気分になれるパーサ入門
何となく勉強した気分になれるパーサ入門
masayoshi takahashi
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)差分プライバシーとは何か? (定義 & 解釈編)
差分プライバシーとは何か? (定義 & 解釈編)
Kentaro Minami
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
ryosuke-kojima
 
異常検知と変化検知 第4章 近傍法による異常検知
異常検知と変化検知 第4章 近傍法による異常検知異常検知と変化検知 第4章 近傍法による異常検知
異常検知と変化検知 第4章 近傍法による異常検知
Ken'ichi Matsui
 
グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題グラフニューラルネットワークとグラフ組合せ問題
グラフニューラルネットワークとグラフ組合せ問題
joisino
 

Viewers also liked (7)

圏とHaskellの型
圏とHaskellの型圏とHaskellの型
圏とHaskellの型
KinebuchiTomo
 
楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながり
MITSUNARI Shigeo
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
Akira Yamaguchi
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
Kenta Oono
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
Ryosuke Okuta
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながり
MITSUNARI Shigeo
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
Akira Yamaguchi
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
Kenta Oono
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 

Similar to 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」 (20)

第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
Ken'ichi Matsui
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programs
Amit Kapoor
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C Programs
Kandarp Tiwari
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
FaizAbaas
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
Joclad 2010 d
Joclad 2010 dJoclad 2010 d
Joclad 2010 d
a1000caroliveira
 
Genomic Graphics
Genomic GraphicsGenomic Graphics
Genomic Graphics
Dr. Volkan OBAN
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212
Mahmoud Samir Fayed
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manual
Uma mohan
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語
ikdysfm
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworks
Kerry Buckley
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,on
Dr. Volkan OBAN
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Dr. Volkan OBAN
 
Scrollytelling
ScrollytellingScrollytelling
Scrollytelling
Baron Watts
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
Sander Kieft
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Matrunich Consulting
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709
Min-hyung Kim
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
ssusere0a682
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
Ken'ichi Matsui
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programs
Amit Kapoor
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C Programs
Kandarp Tiwari
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
FaizAbaas
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212
Mahmoud Samir Fayed
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manual
Uma mohan
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語
ikdysfm
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworks
Kerry Buckley
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,on
Dr. Volkan OBAN
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Dr. Volkan OBAN
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Matrunich Consulting
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709
Min-hyung Kim
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
ssusere0a682
 

More from Ken'ichi Matsui (20)

ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
Ken'ichi Matsui
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる
Ken'ichi Matsui
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテスト
Ken'ichi Matsui
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影
Ken'ichi Matsui
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Ken'ichi Matsui
 
BERT入門
BERT入門BERT入門
BERT入門
Ken'ichi Matsui
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかた
Ken'ichi Matsui
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる
Ken'ichi Matsui
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
Ken'ichi Matsui
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
Ken'ichi Matsui
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
Ken'ichi Matsui
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
Ken'ichi Matsui
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
Ken'ichi Matsui
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
Ken'ichi Matsui
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
Ken'ichi Matsui
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
Ken'ichi Matsui
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 
ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
Ken'ichi Matsui
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる
Ken'ichi Matsui
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテスト
Ken'ichi Matsui
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影
Ken'ichi Matsui
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Ken'ichi Matsui
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかた
Ken'ichi Matsui
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる
Ken'ichi Matsui
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
Ken'ichi Matsui
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
Ken'ichi Matsui
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
Ken'ichi Matsui
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
Ken'ichi Matsui
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
Ken'ichi Matsui
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
Ken'ichi Matsui
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
Ken'ichi Matsui
 
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料 「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
「内積が見えると統計学も見える」第5回 プログラマのための数学勉強会 発表資料
Ken'ichi Matsui
 

Recently uploaded (20)

Lecture-AI and Alogor Parallel Aglorithms.pptx
Lecture-AI and Alogor Parallel Aglorithms.pptxLecture-AI and Alogor Parallel Aglorithms.pptx
Lecture-AI and Alogor Parallel Aglorithms.pptx
humairafatima22
 
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
 
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
taqyed
 
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
 
IFRS Finance Powerpoint ppt Finance D.pptx
IFRS Finance Powerpoint  ppt Finance D.pptxIFRS Finance Powerpoint  ppt Finance D.pptx
IFRS Finance Powerpoint ppt Finance D.pptx
amantiwari2091
 
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptxvnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
deomom129
 
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
 
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Deddy Rahman
 
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
taqyed
 
Cost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheet
supreetk82004
 
Lesson 9- Data Governance and Ethics.pptx
Lesson 9- Data Governance and Ethics.pptxLesson 9- Data Governance and Ethics.pptx
Lesson 9- Data Governance and Ethics.pptx
1045858
 
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
taqyed
 
data mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmglegdata mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmgleg
1052LaxmanrajS
 
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdfstages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
esguerramark1991
 
Introduction to Java Programming for High School by Slidesgo.pptx
Introduction to Java Programming for High School by Slidesgo.pptxIntroduction to Java Programming for High School by Slidesgo.pptx
Introduction to Java Programming for High School by Slidesgo.pptx
mirhuzaifahali
 
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
 
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
 
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
 
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
 
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
 
Lecture-AI and Alogor Parallel Aglorithms.pptx
Lecture-AI and Alogor Parallel Aglorithms.pptxLecture-AI and Alogor Parallel Aglorithms.pptx
Lecture-AI and Alogor Parallel Aglorithms.pptx
humairafatima22
 
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
 
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(Dal毕业证书)戴尔豪斯大学毕业证文凭
taqyed
 
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
 
IFRS Finance Powerpoint ppt Finance D.pptx
IFRS Finance Powerpoint  ppt Finance D.pptxIFRS Finance Powerpoint  ppt Finance D.pptx
IFRS Finance Powerpoint ppt Finance D.pptx
amantiwari2091
 
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptxvnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
vnptloveeeeeeeeeeeeeeeeeeeeeeeeeeee.pptx
deomom129
 
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
 
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Deddy Rahman
 
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
办理魁北克大学成绩单|购买加拿大UQAM成绩单文凭定制
taqyed
 
Cost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheet
supreetk82004
 
Lesson 9- Data Governance and Ethics.pptx
Lesson 9- Data Governance and Ethics.pptxLesson 9- Data Governance and Ethics.pptx
Lesson 9- Data Governance and Ethics.pptx
1045858
 
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(UC毕业证书)卡尔加里大学毕业证文凭
taqyed
 
data mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmglegdata mining tools.pptxvdvjdggmgmgelmgleg
data mining tools.pptxvdvjdggmgmgelmgleg
1052LaxmanrajS
 
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdfstages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
stages-of-moral-development-lawrence-kohlberg-pdf-free.pdf
esguerramark1991
 
Introduction to Java Programming for High School by Slidesgo.pptx
Introduction to Java Programming for High School by Slidesgo.pptxIntroduction to Java Programming for High School by Slidesgo.pptx
Introduction to Java Programming for High School by Slidesgo.pptx
mirhuzaifahali
 
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
 
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
 
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
 
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
 
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
 

数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

  • 11. D = {x1, x2, · · · , xn} ¯x = 1 n nX i=1 xi 2 = 1 n nX i=1 (xi ¯x)2 = v u u t 1 n nX i=1 (xi ¯x)2
  • 24. p
  • 35. ! 2 ⌦ = {!1, !2, · · · , !m} ⌦ = { , } ! 2 { , } !(1) = !(2) = !(n) =
  • 36. ⌦ = {1, 2, 3, 4, 5, 6} !(1) = !(2) = !(n) = ⌦ = {!1, !2, · · · , !49870000} !(1) = !43890298 = 171cm !(2) = !29184638 = 168cm !(n) = !51398579 = 174cm
  • 37. !(1) = !(2) = !(n) =!(3) = !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 = {!1, !2, !3, · · · , !10} ! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
  • 39. X = X(!) ⌦ ! ! X(!1) = 0 X(!2) = 0 X(!3) = 0 X(!4) = 0 X(!5) = 0 X(!6) = 0 X(!7) = 0 X(!8) = 0 X(!9) = 0 X(!10) = 100
  • 40. ! {! 2 ⌦ : X(!) 2 A} {X 2 A} X(!) X
  • 41. {! 2 ⌦ : X(!) 2 A} !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 A X(!) = 100Ac X(!) = 0 !5 or !9
  • 42. PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A}) ⌦ !5, !9 !5, !9 PX (A) = #({! 2 ⌦ : X(!) 2 A}) #( ) = #(!5, !9) #( ) = 2 10 = 0.2
  • 43. PX(⌦) = 1 A1, A2, · · · PX ([iAi) = X i PX (Ai) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 0  PX(A)  1
  • 45. X = X(!) ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C D X(!) = 0 X(!) = 0 #A = #{! 2 ⌦ : X(!) = 0} = 7 #B = #{! 2 ⌦ : X(!) = 1} = 2 #C = #{! 2 ⌦ : X(!) = 2} = 4 #D = #{! 2 ⌦ : X(!) = 3} = 3
  • 46. ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C DX(!) = 0 P(X = 0) = PX(A) = #{! 2 ⌦ : X(!) = 0} #⌦ = 7 16 P(X = 1) = PX (B) = #{! 2 ⌦ : X(!) = 1} #⌦ = 2 16 P(X = 2) = PX(C) = #{! 2 ⌦ : X(!) = 2} #⌦ = 4 16 P(X = 3) = PX(D) = #{! 2 ⌦ : X(!) = 3} #⌦ = 3 16
  • 47. {x1, x2, · · · , xk} P(X = xi) = f(xi) F(x) = P(X  x)
  • 48. P(x < X  x + x) x + xx x x ! 0 f(x) = lim x!0 P(x < X  x + x) x
  • 49. x + xx f(x) F(x) = P(X  x) = Z x 1 f(u)du f(a < x < b) = Z b a f(x)dx
  • 52. P(X = x) = px (1 p)1 x (x = 0, 1)
  • 53. # # p = 0.7 trial_size = 10000 set.seed(71) # data <- rbern(trial_size, p) # dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1)) # ggplot() + layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar", stat="bin", bandwidth=0.1 ) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar", stat="identity", width=0.05, fill="#777799", alpha=0.7)
  • 55. (x = 0, 1, · · · , n)
  • 57. # p = 0.7 trial_size = 10000 sample_size = 30 set.seed(71) # gen_binom_var <- function() { return(sum(rbern(sample_size, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dbinom(seq(sample_size), sample_size, 0.7))*trial_size # ggplot() + layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=1, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y), geom="line", stat="identity", position="identity",colour="red" ) + ggtitle("Bernoulli to Binomial.")
  • 60. P(X = x) = e x x!
  • 62. trial_size = 5000; width <- 1; # p = 0.7; n = 10; np <- p*n # n!∞ p!0 np= n = 100000; p <- np/n # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dpois(seq(20), np))*trial_size # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Poisson.")
  • 64. f(x) = 1 p 2⇡ 2 exp ⇢ 1 2 (x µ)2 2 ( 1 < x < 1)
  • 67. # n <- 10000; p <- 0.7; trial_size = 10000 width=10 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p, sd=sqrt(n*p*(1-p)))*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y), geom="line", stat="identity", position="identity", colour="red") + ggtitle("Bernoulli to Normal.")
  • 69. ( 1 < x < 1) f(x) = 1 p 2⇡ exp ⇢ 1 2 x2
  • 71. # n <- 10000; p <- 0.7 trial_size = 30000 width=0.18 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) m <- mean(result$V1); sd <- sd(result$V1); result <- (result - m)/sd # dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0, sd=1)*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y), geom="line", stat="identity", position=“identity", colour="red" ) + ggtitle("Bernoulli to Standard Normal.")
  • 73. f(x, k) = (1/2)k/2 (k/2) xk/2 1 e x/2 (0  x) Xi Z = X2 1 + · · · + X2 k
  • 75. # p <- 0.7; n <- 1000; trial_size <- 100000; width <- 0.3; df <- 3 # (3 ) gen_binom_var <- function() { return(sum(rbern(n, p))) } gen_chisq_var <- function() { result <- rdply(trial_size, gen_binom_var()) return(((result$V1 - mean(result$V1))/sd(result$V1))**2) } # df result <- rlply(df, gen_chisq_var(),.progress = "text") res <- data.frame(x=result[[1]] + result[[2]] + result[[3]]) # ( =3) xx <- seq(0,20,0.1) dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width) # ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=xx, y=y), geom="line", stat="identity", position="identity", colour="blue" ) + ggtitle("Bernoulli to Chisquare")
  • 78. f(x, ) = ⇢ e x (x 0) 0 (x < 0)
  • 80. trial_size = 7000; width <- .01; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n # gen_exp_var <- function() { cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) # 1 } } } data <- data.frame(x=rdply(trial_size, gen_exp_var())/n) names(data) <- c("n", "x") # dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Exponential.")
  • 82. f(x, ↵, ) = ↵ (↵) x↵ 1 exp( x) (0  x < 1) ↵X i=1 Xi ⇠ (↵, )Xi ⇠ Exp( )
  • 84. trial_size = 7000; width <- .035; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x) # dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Gamma")
  • 86. f(x, ↵, ) = ↵ (↵) x (↵+1) exp ✓ x ◆ (0  x < 1) Xi ⇠ Exp( ) Z = ↵X i=1 Xi ⇠ (↵, ) 1/Z ⇠ IG(↵, )
  • 88. trial_size = 7000; width <- .; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x)) # dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Inversegamma")
  • 90. f(x) = ⇢ 1 (0  x  1) 0 (otherwise)
  • 91. Z = x1(1/2)1 + x2(1/2)2 + · · · + xq(1/2)q
  • 92. width <- 0.02 p <- 0.5; sample_size <- 1000 trial_size <- 100000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Standard Uniform")
  • 94. f(x, a, b) = ⇢ (b a) 1 (a  x  b) 0 (otherwise)
  • 96. a <- 5 b <- 8; width <- 0.05 p <- 0.5 sample_size <- 1000 trial_size <- 500000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) res$V1 <- res$V1 * (b-a) + a ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
  • 98. f(x, ↵, ) = 1 B(↵, ) x↵ 1 (1 x) 1 (0 < x < 1) Xi ⇠ U(0, 1)iid (i = 1, 2, · · · , ↵ + 1)
  • 100. width <- 0.03; p <- 0.5 digits_length <- 30; set_size <- 3 trial_size <- 30000 gen_unif_rand <- function() { # digits_length 2 # return (sum(rbern(digits_length, p) * (rep(1/2, digits_length) ** seq(digits_length)))) } gen_rand <- function(){ return( rdply(set_size, gen_unif_rand())$V1 ) } unif_dataset <- rlply(trial_size, gen_rand, .progress='text') p <- ceiling(set_size * 0.5); q <- set_size - p + 1 get_nth_data <- function(a){ return(a[order(a)][p]) } disp_data <- data.frame(lapply(unif_dataset, get_nth_data)) names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data)) names(disp_data) <- "V1" x_range <- seq(0, 1, 0.001) dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width) ggplot() + layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=x_range, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Beta")
  • 102. E[X] = X( )P( ) + X( )P( ) = 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2 = 200, 000 E[X] = X x xp(x) µ
  • 103. ✓ n x ◆ = n! (n x)!x! E[X] = nX x=0 xP(x) = nX x=0 x ✓ n x ◆ px (1 p)n x = nX x=0 x n! (n x)!x! px (1 p)n x = nX x=0 n (n 1)! (n x)!(x 1)! px (1 p)n x = np nX x=0 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np = np nX x=1 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np
  • 104. Var[X] = E[(X E[X])2 ] = X x (x E[x])2 P(x) = 2 µ
  • 105. Var[x] = E[(X E[X])2 ] = Z 1 1 (x E[x])2 f(x)dx = 2 E[X] = Z 1 1 xf(x)dx = µ
  • 106. E[g(X)] = Z 1 1 g(x)f(x)dx g(X) = (X E[X])2 E[ · ] = Z 1 1 · f(x)dx
  • 107. g(x) = xk E[g(X)] = E[Xk ] = Z 1 1 xk f(x)dx µ0 k
  • 108. g(x) = (x E[x])k E[g(X)] = E[(X E[X]])k ] = Z 1 1 (x E[x])k f(x)dx µk
  • 109. E[cX] = cE[X] * E[cX] = Z 1 1 cxf(x)dx = c Z 1 1 xf(x)dx = cE[X]
  • 110. Var[cX] = c2 Var[X] * Var[cX] = Z 1 1 (cx E[cx])2 f(x)dx = Z 1 1 (cx cµ)2 f(x)dx = Z 1 1 c2 (x µ)2 f(x)dx = c2 Z 1 1 (x µ)2 f(x)dx = c2 Var[X]
  • 112. P(x < X 5 x + x, y < Y 5 y + y) x, y ! 0 f(x, y) = lim x, y!0 P(x < X 5 x + x, y < Y 5 y + y) f(x, y)
  • 113. g(x) = Z 1 1 f(x, y)dy h(y) = Z 1 1 f(x, y)dx g(x) h(y)
  • 114. EX,Y [ g(X, Y )] = Z 1 1 Z 1 1 g(x, y)f(x, y)dxdy g(x, y) = x0.8 y0.8 (x, y) ⇠ N((4, 4), S) S =  1 0.5 0.4 1 EX,Y [ g(X, Y )] = 8.02
  • 115. g(X, Y ) = (X µX)(Y µY ) Cov[X, Y ] = E[(X µX)(Y µY )]
  • 116. g(X, Y ) = (X µX)(Y µY ) µX µX µX µX µY µY µY µY S1 = S2 = S3 = S4 =  1 0.8 0.8 1  1 0.8 0.8 1  1 0 0 1  1 0.999 0.999 1 Cov[X, Y ] = E[(X µX)(Y µY )] (x, y) ⇠ N((4, 4), S)
  • 117. f(x, y) f(x, y) = g(x)h(y)
  • 118. f(x, y) = g(x)h(y) = 0
  • 119. (x1, x2, · · · , xn) x1 f(x1) = Z · · · Z f(x1, · · · , xn)dx2 · · · dxn x1 f(x1, · · · , xn) = f(x1) · · · f(xn) x1 · · · xn
  • 120. x1 · · · xn g1(x1), · · · , gn(xn) x1 · · · xn E[ nY i=1 gi(xi)] = nY i=1 E[gi(xi)] E[g1(x1)] E[gn(xn)] E[ nY i=1 gi(xi)] = Z 1 1 · · · Z 1 1 g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn = Z 1 1 g1(x1)f(x1)dx1 · · · Z 1 1 gn(xn)f(xn)dxn = nY i=1 E[gi(xi)] f(x1) · · · f(xn)
  • 121. x1 · · · xn xi µi 2 i i = 1, 2, · · · , n c = (c1, · · · , cn) c1x1 + · · · + cnxn c1µ1 + · · · + cnµn c2 1 2 1 + · · · + c2 n 2 n
  • 122. E[c1x1 + · · · + cnxn] = Z 1 1 · · · Z 1 1 (c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn = c1 Z 1 1 · · · Z 1 1 x1f(x1 · · · , xn)dx1 · · · dxn · · · cn Z 1 1 · · · Z 1 1 xnf(x1 · · · , xn)dx1 · · · dxn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn f(x1) · · · f(xn) f(x1) · · · f(xn) µ1 µn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn
  • 123. Var[c1x1 + · · · + cnxn] = E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2 ] = E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2 ] = E[ nX i=1 c2 i (xi µi)2 + X i6=j cicj(xi µj)(xi µj)] = nX i=1 c2 i E[(xi µi)2 ] + X i6=j cicjE[(xi µj)(xi µj)] = c2 1 2 1 + · · · + c2 n 2 n c1µ1 + · · · + cnµn = E[xi µi]E[xj µj] = 0= 2 i
  • 125. x1 · · · xn x1 · · · xn xi µ 2 (µ, 2 )
  • 126. x1 · · · xn T = x1 + · · · + xn E[T] = E[x1 + · · · + xn] = E[x1] + · · · + E[xn] = nµ Var[T] = Var[x1 + · · · + xn] = Var[x1] + · · · + Var[xn] = n 2 2 1 = · · · = 2 n c1 = · · · = cn = 1 Var[c1x1 + · · · + cnxn] = c2 1 2 1 + · · · + c2 n 2 n
  • 127. ¯x = 1 n nX i=1 xi = 1 n T E[¯x] = 1 n E[T] = n · 1 n µ = µ Var[¯x] = Var[ 1 n T] = 1 n2 Var[T] = 2 n µ 2
  • 131. µ 2 P(|x µ| > ) 5 1 2 µ 2 1/ 2 = 1 ) P(|x µ| > ) 5 1 = 2 ) P(|x µ| > ) 5 1/4 = 3 ) P(|x µ| > ) 5 1/9
  • 132. 2 = Z 1 1 (x µ)2 f(x)dx = Z I1 (x µ)2 f(x)dx + Z I2 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx 2 = Z I1 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx = Z I1 2 2 f(x)dx + Z I3 2 2 f(x)dx = 2 2 [P(x 2 I1) + P(x 2 I3)] I1 = ( 1, µ ), I2 = [µ , µ + ], I3 = (µ + , 1) = P(|x µ| > ) P(|x µ| > ) 5 1 2 )
  • 133. x1 · · · xn µ 2 " > 0 lim n!1 P{|¯xn µ| = "} = 0 ¯xn = 1 n nX i=1 xi ¯xn µ ¯xn ! µ in P
  • 134. " > 0 P(|¯xn µ| > ") = P(|¯xn µ| > " p n p n ) 5 2 "2n = 2 ¯x= = 1 2
  • 137. f(x) = 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ f(x) = 1 p 2⇡ exp ✓ x2 2 ◆ 1 < x < 1 1 < x < 1
  • 139. f(x) = x2 f(y) = y2
  • 140. f(y) = exp( y2 )
  • 141. z = p 2y f(z) = exp ✓ 1 2 z2 ◆
  • 142. Z 1 1 e y2 dy = p ⇡ Z 1 1 exp ✓ z2 2 ◆ dz = p 2⇡ Z 1 1 1 p 2⇡ exp ✓ z2 2 ◆ dz = 1 dz = p 2dy
  • 144. z = x µ dz dx = 1 f(x) = Z 1 1 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ dx 1/
  • 146. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) = 0.1, µ = 1 = 10, 2 = 1 2 = 100 ¯x = p n = r 1 2n = r 1 0.01 ⇥ 10000 = r 1 100 = 1 10
  • 147. g(x) = ext E[ext ] = Z 1 1 ext f(x)dx Mx(t) = E[ext ] Mx(t) My(t) x t = 0 y
  • 148. g(x) = ext ext = 1 + xt + t2 2! x2 + · · · + tk k! xk + · · · Mx(t) = E[ext ] = E[1 + xt + t2 2! x2 + · · · + tk k! xk + · · · ] = 1 + tE[x] + t2 2! E[x2 ] + · · · + tk k! E[xk ] + · · · = 1 + xµ0 1 + t2 2! µ0 2 + · · · + tk k! µ0 k + · · ·
  • 149. Mx(t) d dtk Mx(t) = E[xk ext ] t = 0 d dtk Mx(0) = E[xk ] = µ0 k
  • 150. x ⇠ N(µ, ) Mx(t) = E[ext ] = Z 1 1 ext 1 p 2⇡ 2 exp ✓ 1 2 (x µ)2 2 ◆ dx z = x µ x = µ + z dx = dz
  • 151. Mx(t) = Z 1 1 e(µ+ z)t 1 p 2⇡ 2 exp ✓ 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ tz 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ 1 2 [z2 2 tz 2 t2 + 2 t2 ] ◆ dz = eµt Z 1 1 1 p 2⇡ e 2t2 2 exp ✓ 1 2 (z t)2 ◆ dz = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ 1 2 (z t)2 ◆ dz z t = w dz = dw Mx(t) = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ w2 2 ◆ dw = eµt+ 2t2 2
  • 152. (f · g)0 = f0 · g + f · g0 (f g)0 (x) = f0 (g(x))g0 (x) M0 x(t) = (µ + 2 t)eµt+ 2t2 2 M00 x (t) = (µ + 2 t)2 ⇣ eµt+ 2t2 2 ⌘ + 2 ⇣ eµt+ 2t2 2 ⌘ = ⇣ eµt+ 2t2 2 ⌘ {(µ + 2 t)2 + 2 }
  • 153. Var[x] = E[x2 ] (E[x])2 = (µ2 + 2 ) (µ)2 = 2 Var[x] = E[(x E[x])2 ] = E[x2 2E[x]x + E[x]2 ) = E[x2 ] 2E[x]2 + E[x]2 = E[x2 ] E[x]2 t = 0 E[x] = M0 x(0) = (µ + 2 · 0)eµ·0+ 2·02 2 = µ E[x2 ] = M00 x (0) = ⇣ eµ·0+ 2·02 2 ⌘ {(µ + 2 · 0)2 + 2 } = µ2 + 2
  • 154. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) T = x1 + · · · + xn T nµ p n 2T0 = T nµ p n = ¯x µ 1/ p n
  • 155. Mx(t) My(t) x t = 0 y T T0 = T nµ p n N(0, 2 )
  • 156. Mxi (t) = 1 + µ0 1t + µ0 2 t2 2! + µ0 3 t3 3! + · · · Mxi µ(t) = 1 + µ1t + µ2 t2 2! + µ3 t3 3! + · · · = 1 + 0 + 2 t2 2! + µ3 t3 3! + · · ·
  • 157. xi µ p n xi µ p n Mxi µ p n (t) = E[e xi µ p n t ] = 1 + 2 t2 2!n + µ3 t3 3!n3/2 + · · · + µk tk k!nk/2 + · · · = 1 + 2 t2 2n + n 2n = 1 2n n n ! 0 n ! 0 = 1 + 2 t2 + n 2n
  • 158. T0 = x1 µ p n + x2 nµ p n + · · · + xn µ p n = nX i=1 xi µ p n MT 0 (t) = MPn i=1 ⇣ xi µ p n ⌘(t) = E[e Pn i=1 ⇣ xi µ p n ⌘ t ] = nY i=0 E[e ⇣ xi µ p n ⌘ t ] = ✓ 1 + 1 n 2 t2 + n 2 ◆n er ⌘ lim n!1 ⇣ 1 + r n ⌘n r r = lim n!1 ⇣ 1 + r n ⌘n
  • 159. n ! 1 lim n!1 MT 0 = lim n!1 ✓ 1 + 1 n 2 t2 + n 2 ◆n = e 2t2 2 lim n!1 n = 0 N(0, 2 ) T0 = T nµ p n 2
  • 160. n = 100000 sample_size = 1000 rvs_list = [] m_list = [] for i in range(n): unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5 beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3 chi2_rvs = st.chi2.rvs(df=5, size=sample_size) # exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() m_list.append(np.mean(rvs)) rvs_list.append(rvs)
  • 161. # n = 10000 sample_size = 1000 rvs_list = [] m_list = [] m_unif = st.uniform.rvs(4, 2, size=sample_size) m_beta_a = st.uniform.rvs(4, 2, size=sample_size) m_beta_b = st.uniform.rvs(4, 2, size=sample_size) m_gamma = rd.randint(2,5,size=sample_size) m_chi2_df = rd.randint(3,6,size=sample_size) m_exp = st.uniform.rvs(4, 2, size=sample_size) def gen_random_state(): return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) def create_rvs(n): #rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) print("[START]") for _ in range(n): unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in m_unif] # 5 beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b in zip(m_beta_a, m_beta_b)]# 0.5 β gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in m_gamma] # 3 chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in m_chi2_df] # exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in m_exp] # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() l_mean.append(np.mean(rvs)) l_rvs.append(rvs) print("[END]")
  • 162. n_jobs = 20 n_each = int(n/n_jobs) jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)] manager = Manager() l_rvs = manager.list(range(len(jobs))) l_mean = manager.list(range(len(jobs))) start_time = time.time() for j in jobs: j.start() time.sleep(0.2) for j in jobs: j.join() finish_time = time.time() print(finish_time - start_time) m_list = l_mean[n_jobs:] rvs_list = np.array(l_rvs[n_jobs:]) print(rvs_list.shape)
  • 164. D = (x1, · · · , xn)
  • 165. ✓0 = ˆ✓(X1, · · · , Xn) ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
  • 168. E[(ˆ✓(X) ✓)2 ] = E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2 ] = E[(E[ˆ✓(X)] ✓)2 + 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2 ] = (E[ˆ✓(X)] ✓)2 + Var[ˆ✓(X)] E[ˆ✓(X)] ✓ E[(ˆ✓(X) ✓)2 ] = Var[ˆ✓(X)]
  • 169. E[¯x] = 1 n E[T] = n · 1 n µ = µ ¯x s2 = 1 n 1 nX i=1 (xi ¯x)2
  • 171. lim n!1 P{|¯xn µ| = "} = 0 ¯xn ! µ in P ˆ✓n(X) n ! 1 ˆ✓n(X) ! ✓ in P ˆ✓n(X) ¯xn µ
  • 175. D = (x1, · · · , xn) xi f(xi) nY i=1 f(xi) nY i=1 f(xi|✓) xi `(✓|x1, x2, · · · , xn) = nY i=1 f(xi|✓)
  • 176. x1, x2, · · · , x10 f(x1, x2, · · · , x10|µ, 2 ) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 177. `(µ, 2 |x1, x2, · · · , x10) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 179. ✓⇤ = arg max ✓ `(✓|x1, x2, · · · , xn) log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn) `
  • 181. µ, 2 L(µ, 2 |x1, x2, · · · , x10) = n 2 (2⇡) n 2 log 2 1 2 2 nX i=1 (xi µ)2 @L @µ = 1 2 2 nX i=1 (xi µ)2 ) nX i=1 xi = nµ ) µ⇤ = 1 n nX i=1 xi `(µ, 2 |x1, x2, · · · , xn) = nY i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 182. @L @ 2 = n 2 1 2 + 1 2( 2)2 nX i=1 (xi µ)2 = 0 ) 1 2( 2)2 nX i=1 (xi µ)2 = n 2 2 ) 2⇤ = 1 n nX i=1 (xi µ)2 2⇤
  • 184. D = (x1, · · · , xn)µ 2 µ
  • 185. u ⇠ N(0, 1) t = u p v/m v ⇠ 2 (m) f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2
  • 186. u ⇠ N(0, 1) v ⇠ 2 (m) v > 01 < u < +1 f(u, v) = 1 p 2⇡ exp ✓ u2 2 ◆ (1/2)n/2 (n/2) vn/2 1 e v/2 t = u p v/m x = v f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2 (z) = Z 1 0 tz 1 e t dt
  • 187. µ D = (x1, · · · , xn) xi ⇠ N(µ, 2 ) ¯x ⇠ N(µ, 2 /n)¯x 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1
  • 188. u = ¯x µ / p n ⇠ N(0, 1) v = 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1 t = u p v/(n 1) = ¯x µ / p n · " 1 2 1 (n 1) nX i=1 (xi ¯x)2 # 1/2 = ¯x µ 1/ p n · 1 p s2 = ¯x µ s/ p n ⇠ tn 1 s2 = 1 n 1 nX i=1 (xi ¯x)2 s2
  • 189. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 190. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 193. = 1 µ = 0 H0 : µ0 = 0 H1 : µ 6= µ0
  • 194. ¯x = / p n / p 10 ; /3.16
  • 195. ↵/2 ↵/2 H0 : µ0 = 0
  • 202. H1 : µ = 1
  • 203. H1 : µ = 0.5
  • 204. H1 : µ = 3 µ0H1 : µ = 3 H0 : µ0 = 0
  • 206. e↵ect size : = µ µ0
  • 221. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 222. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 223. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 224. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2