SlideShare a Scribd company logo
2
Most read
4
Most read
1 www.quandl.com
NumPy / SciPy / Pandas Cheat Sheet
Select column.
Select row by label.
Return DataFrame index.
Delete given row or column. Pass axis=1 for columns.
Reindex df1 with index of df2.
Reset index, putting old index in column named index.
Change DataFrame index, new indecies set to NaN.
Show first n rows.
Show last n rows.
Sort index.
Sort columns.
Pivot DataFrame, using new conditions.
Transpose DataFrame.
Change lowest level of column labels into innermost row index.
Change innermost row index into lowest level of column labels.
NumPy / SciPy
arr = array([])
arr.shape
convolve(a,b)
arr.reshape()
sum(arr)
mean(arr)
std(arr)
dot(arr1,arr2)
vectorize()
Create a Series.
Create a Dataframe.
Create a Panel.
Pandas
Create Structures
s = Series (data, index)
df = DataFrame (data, index, columns)
p = Panel (data, items, major_axis, minor_axis)
df.stack()
df.unstack()
df.pivot(index,column,values)
df.T
DataFrame commands
df[col]
df.iloc[label]
df.index
df.drop()
df1 = df1.reindex_like(df1,df2)
df.reset_index()
df.reindex()
df.head(n)
df.tail(n)
df.sort()
df.sort(axis=1)
Create numpy array.
Shape of an array.
Linear convolution of two sequences.
Reshape array.
Sum all elements of array.
Compute mean of array.
Compute standard deviation of array.
Compute inner product of two arrays.
Turn a scalar function into one which
accepts & returns vectors.
2 www.quandl.com
Create a time series index.date_range(start, end, freq)
Pandas Time Series
Business Day
Calender day
Weekly
Monthly
Quarterly
Annual
Hourly
B
D
W
M
Q
A
H
Freq has many options including:
Any Structure with a datetime index
Split DataFrame by columns. Creates a GroupBy object (gb).
Apply function (single or list) to a GroupBy object.
Applies function and returns object with same index as one
being grouped.
Filter GroupBy object by a given function.
Return dict whose keys are the unique groups, and values
are axis labels belonging to each group.
Groupby
groupby()
gb.agg()
gb.transform()
gb.filter()
gb.groups
Save to CSV.
Read CSV into DataFrame.
Save to Excel.
Read exel into DataFrame.
I/O
df.to_csv(‘foo.csv’)
read_csv(‘foo.csv’)
to_excel(‘foo.xlsx’, sheet_name)
read_excel(‘foo.xlsx’,’sheet1’, index_col =
None, na_values = [‘NA’])
df.dropna()
df.count()
df.min()
df.max()
df.describe()
concat()
Drops rows where any data is missing.
Returns Series of row counts for every column.
Return minimum of every column.
Return maximum of every column.
Generate various summary statistics for every column.
Merge DataFrame or Series objects.
Apply function to every element in DataFrame.
Apply function along a given axis.
df.applymap()
df.apply()
Resample data with new frequency.ts.resample()
3 www.quandl.com
Select current axis.
Change axis color, none to remove.
Change axis position. Can change coordinate space.
Create legend. Set to ‘best’ for auto placement.
Save plot.
ax=gca()
ax.spines[].set_color()
ax.spines[].set_position()
Label the x-axis.
Label the y-axis.
Title the graph.
Set tick values for x-axis. First array for values, second
for labels.
Set tick values for y-axis. First array for values, second
for labels.
yticks([],[])
Plot data or plot a function against a range.
Create multiple plots; n- number of plots, x - number
horizontally displayed, y- number vertically displayed.
plot()
subplot(n,x,y)
xlabel()
ylabel()
title()	
xticks([],[])
Plotting
Matplotlib is an extremely powerful module.
See www.matplotlib.org for complete documentation.
Quandl is a search engine for numerical data, allowing
easy access to financial, social, and demographic data
from hundreds of sources.
Quandl
The Quandl package enables Quandl API access from
within Python, which makes acquiring and manipulating
numerical data as quick and easy as possible.
In your first Quandl function call you should specifiy your
authtoken (found on Quandl’s website after signing up) to
avoid certain API call limits.
See www.quandl.com/help/packages/python for more.
savefig(‘foo.png’)
legend(loc=’ ‘)
Return data for nearest time interval.
Return data for specific time.
Return data between specific interval.
Convert Pandas DatetimeIndex to datetime.datetime object.
Conver a list of date-like objects (strings, epochs, etc.) to a
DatetimeIndex.
ts.ix[start:end]
ts[]
ts.between_time()
to_pydatetime()
to_datetime()
4 www.quandl.com
Plotting Example
import Quandl as q
import matplotlib.pyplot as plt
rural = q.get(‘WORLDBANK/USA_SP_RUR_TOTL_ZS’)
urban = q.get(‘WORLDBANK/USA_SP_URB_TOTL_IN_ZS’)
plt.subplot(2, 1, 1)				
plt.plot(rural.index,rural)					
	
plt.xticks(rural.index[0::3],[])					
	
plt.title(‘American Population’)					
	
plt.ylabel(‘% Rural’)				
plt.subplot(2, 1, 2)				
plt.plot(urban.index,urban)					
	
plt.xlabel(‘year’)						
plt.ylabel(‘% Urban’)				
plt.show()
Add the following to any function call.
Download Quandl data for a certain Quandl code
as a Dataframe.
Search Quandl. Outputs first 4 results.
Upload a Pandas DataFrame (with a time series index) to
Quandl. Code must be all capital alphanumeric.
authtoken = ‘YOURTOKENHERE’
get(‘QUANDL/CODE’)
search(‘searchterm’)
push(data, code, name)

More Related Content

PPTX
String matching Algorithm by Foysal
Foysal Mahmud
 
PDF
Informed search
Amit Kumar Rathi
 
PPTX
Datastructures in python
hydpy
 
PPT
String searching
thinkphp
 
PPTX
Outlier analysis,Chapter-12, Data Mining: Concepts and Techniques
Ashikur Rahman
 
PPTX
Python programming- Part IV(Functions)
Megha V
 
PDF
K - Nearest neighbor ( KNN )
Mohammad Junaid Khan
 
PDF
Data Structures Chapter-4
priyavanimurugarajan
 
String matching Algorithm by Foysal
Foysal Mahmud
 
Informed search
Amit Kumar Rathi
 
Datastructures in python
hydpy
 
String searching
thinkphp
 
Outlier analysis,Chapter-12, Data Mining: Concepts and Techniques
Ashikur Rahman
 
Python programming- Part IV(Functions)
Megha V
 
K - Nearest neighbor ( KNN )
Mohammad Junaid Khan
 
Data Structures Chapter-4
priyavanimurugarajan
 

What's hot (20)

PDF
Data Visualization in Exploratory Data Analysis
Eva Durall
 
PPT
Dataa miining
SUBBIAH SURESH
 
PPT
Divide and Conquer
Dr Shashikant Athawale
 
PPTX
Language R
Girish Khanzode
 
PPTX
Rabin karp string matching algorithm
Gajanand Sharma
 
PPT
Unit 2 linked list and queues
kalyanineve
 
PPTX
Presentation on the topic selection sort
District Administration
 
PPTX
CMSC 56 | Lecture 15: Closures of Relations
allyn joy calcaben
 
PPTX
Sequential & binary, linear search
montazur420
 
PPTX
Statistics for data science
zekeLabs Technologies
 
PPTX
Data analysis
HarisRiaz25
 
PPTX
Decision tree in artificial intelligence
MdAlAmin187
 
PPT
String matching algorithms
Dr Shashikant Athawale
 
PPTX
Decision trees for machine learning
Amr BARAKAT
 
PPTX
Boyer–Moore string search algorithm
Hamid Shekarforoush
 
PDF
Introduction to data analysis using R
Victoria López
 
PPTX
String Matching Algorithms-The Naive Algorithm
Adeel Rasheed
 
PPS
Single linked list
jasbirsingh chauhan
 
PDF
Strings in Python
nitamhaske
 
Data Visualization in Exploratory Data Analysis
Eva Durall
 
Dataa miining
SUBBIAH SURESH
 
Divide and Conquer
Dr Shashikant Athawale
 
Language R
Girish Khanzode
 
Rabin karp string matching algorithm
Gajanand Sharma
 
Unit 2 linked list and queues
kalyanineve
 
Presentation on the topic selection sort
District Administration
 
CMSC 56 | Lecture 15: Closures of Relations
allyn joy calcaben
 
Sequential & binary, linear search
montazur420
 
Statistics for data science
zekeLabs Technologies
 
Data analysis
HarisRiaz25
 
Decision tree in artificial intelligence
MdAlAmin187
 
String matching algorithms
Dr Shashikant Athawale
 
Decision trees for machine learning
Amr BARAKAT
 
Boyer–Moore string search algorithm
Hamid Shekarforoush
 
Introduction to data analysis using R
Victoria López
 
String Matching Algorithms-The Naive Algorithm
Adeel Rasheed
 
Single linked list
jasbirsingh chauhan
 
Strings in Python
nitamhaske
 
Ad

Viewers also liked (7)

PDF
Data Wrangling with dplyr and tidyr Cheat Sheet
Dr. Volkan OBAN
 
PDF
Ccna cheat sheet
aromal4frnz
 
PDF
Customer journey maps: the Why and the What
Smaply
 
PDF
Thorax and Abdomen CT Cheat Sheet
Chase Allen
 
ODT
Effective 15-minute presentations - Cheat Sheet
Jan Schrage
 
PDF
How to evaluate a customer journey map?
Smaply
 
PDF
Ultimate Accounting "Cheat Sheet"
Joe Jancsics
 
Data Wrangling with dplyr and tidyr Cheat Sheet
Dr. Volkan OBAN
 
Ccna cheat sheet
aromal4frnz
 
Customer journey maps: the Why and the What
Smaply
 
Thorax and Abdomen CT Cheat Sheet
Chase Allen
 
Effective 15-minute presentations - Cheat Sheet
Jan Schrage
 
How to evaluate a customer journey map?
Smaply
 
Ultimate Accounting "Cheat Sheet"
Joe Jancsics
 
Ad

Similar to Pandas,scipy,numpy cheatsheet (20)

PDF
Pandas cheat sheet_data science
Subrata Shaw
 
PDF
Pandas cheat sheet
Lenis Carolina Lopez
 
PDF
Pandas Cheat Sheet
ACASH1011
 
PDF
Data Wrangling with Pandas
Luis Carrasco
 
PDF
Data Analysis with Pandas CheatSheet .pdf
Erwin512140
 
PPTX
Presentation on the basic of numpy and Pandas
ipazhaniraj
 
PPTX
ppanda.pptx
DOLKUMARCHANDRA
 
PPTX
introductiontopandas- for 190615082420.pptx
rahulborate13
 
PDF
pandas dataframe notes.pdf
AjeshSurejan2
 
PPTX
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
 
PDF
pandas - Python Data Analysis
Andrew Henshaw
 
PPTX
Pandas.pptx
Ramakrishna Reddy Bijjam
 
PDF
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
 
PPTX
Introduction to pandas
Piyush rai
 
PPTX
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
PDF
Pandas numpy Related Presentation.pptx.pdf
chaitudec2005
 
PDF
pandas-221217084954-937bb582.pdf
scorsam1
 
PPTX
Pandas.pptx
Govardhan Bhavani
 
Pandas cheat sheet_data science
Subrata Shaw
 
Pandas cheat sheet
Lenis Carolina Lopez
 
Pandas Cheat Sheet
ACASH1011
 
Data Wrangling with Pandas
Luis Carrasco
 
Data Analysis with Pandas CheatSheet .pdf
Erwin512140
 
Presentation on the basic of numpy and Pandas
ipazhaniraj
 
ppanda.pptx
DOLKUMARCHANDRA
 
introductiontopandas- for 190615082420.pptx
rahulborate13
 
pandas dataframe notes.pdf
AjeshSurejan2
 
Pandas Dataframe reading data Kirti final.pptx
Kirti Verma
 
pandas - Python Data Analysis
Andrew Henshaw
 
XII - 2022-23 - IP - RAIPUR (CBSE FINAL EXAM).pdf
KrishnaJyotish1
 
Introduction to pandas
Piyush rai
 
Unit 3_Numpy_Vsp.pptx
prakashvs7
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Ogunsina1
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
smartashammari
 
Pandas numpy Related Presentation.pptx.pdf
chaitudec2005
 
pandas-221217084954-937bb582.pdf
scorsam1
 
Pandas.pptx
Govardhan Bhavani
 

More from Dr. Volkan OBAN (20)

PDF
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
 
PDF
Covid19py Python Package - Example
Dr. Volkan OBAN
 
PDF
Object detection with Python
Dr. Volkan OBAN
 
PDF
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
 
DOCX
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
 
DOCX
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
 
DOCX
k-means Clustering in Python
Dr. Volkan OBAN
 
DOCX
Naive Bayes Example using R
Dr. Volkan OBAN
 
DOCX
R forecasting Example
Dr. Volkan OBAN
 
DOCX
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
PDF
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
DOCX
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
PDF
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
PDF
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
PPTX
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
DOCX
R-ggplot2 package Examples
Dr. Volkan OBAN
 
DOCX
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
DOCX
treemap package in R and examples.
Dr. Volkan OBAN
 
DOCX
Mosaic plot in R.
Dr. Volkan OBAN
 
Conference Paper:IMAGE PROCESSING AND OBJECT DETECTION APPLICATION: INSURANCE...
Dr. Volkan OBAN
 
Covid19py Python Package - Example
Dr. Volkan OBAN
 
Object detection with Python
Dr. Volkan OBAN
 
Python - Rastgele Orman(Random Forest) Parametreleri
Dr. Volkan OBAN
 
Linear Programming wi̇th R - Examples
Dr. Volkan OBAN
 
"optrees" package in R and examples.(optrees:finds optimal trees in weighted ...
Dr. Volkan OBAN
 
k-means Clustering in Python
Dr. Volkan OBAN
 
Naive Bayes Example using R
Dr. Volkan OBAN
 
R forecasting Example
Dr. Volkan OBAN
 
k-means Clustering and Custergram with R
Dr. Volkan OBAN
 
Data Science and its Relationship to Big Data and Data-Driven Decision Making
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
ReporteRs package in R. forming powerpoint documents-an example
Dr. Volkan OBAN
 
R-ggplot2 package Examples
Dr. Volkan OBAN
 
R Machine Learning packages( generally used)
Dr. Volkan OBAN
 
treemap package in R and examples.
Dr. Volkan OBAN
 
Mosaic plot in R.
Dr. Volkan OBAN
 

Recently uploaded (20)

PPTX
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
PDF
Linux OS guide to know, operate. Linux Filesystem, command, users and system
Kiran Maharjan
 
PPTX
Probability systematic sampling methods.pptx
PrakashRajput19
 
PPTX
Analysis of Employee_Attrition_Presentation.pptx
AdawuRedeemer
 
PPTX
Azure Data management Engineer project.pptx
sumitmundhe77
 
PDF
CH1-MODEL-BUILDING-v2017.1-APR27-2017.pdf
jcc00023con
 
PDF
A Systems Thinking Approach to Algorithmic Fairness.pdf
Epistamai
 
PDF
AI Lect 2 Identifying AI systems, branches of AI, etc.pdf
mswindow00
 
PDF
Digital Infrastructure – Powering the Connected Age
Heera Yadav
 
PPTX
batch data Retailer Data management Project.pptx
sumitmundhe77
 
PPTX
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
PPTX
Lecture 1 Intro in Inferential Statistics.pptx
MiraLamuton
 
PPTX
Presentation (1) (1).pptx k8hhfftuiiigff
karthikjagath2005
 
PPTX
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
PDF
Research about a FoodFolio app for personalized dietary tracking and health o...
AustinLiamAndres
 
PPTX
Employee Salary Presentation.l based on data science collection of data
barridevakumari2004
 
PPTX
Economic Sector Performance Recovery.pptx
yulisbaso2020
 
PPTX
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
PDF
1 Simple and Compound Interest_953c061c981ff8640f0b8e733b245589.pdf
JaexczJol060205
 
PPTX
Web dev -ppt that helps us understand web technology
shubhragoyal12
 
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
Linux OS guide to know, operate. Linux Filesystem, command, users and system
Kiran Maharjan
 
Probability systematic sampling methods.pptx
PrakashRajput19
 
Analysis of Employee_Attrition_Presentation.pptx
AdawuRedeemer
 
Azure Data management Engineer project.pptx
sumitmundhe77
 
CH1-MODEL-BUILDING-v2017.1-APR27-2017.pdf
jcc00023con
 
A Systems Thinking Approach to Algorithmic Fairness.pdf
Epistamai
 
AI Lect 2 Identifying AI systems, branches of AI, etc.pdf
mswindow00
 
Digital Infrastructure – Powering the Connected Age
Heera Yadav
 
batch data Retailer Data management Project.pptx
sumitmundhe77
 
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
Lecture 1 Intro in Inferential Statistics.pptx
MiraLamuton
 
Presentation (1) (1).pptx k8hhfftuiiigff
karthikjagath2005
 
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
Research about a FoodFolio app for personalized dietary tracking and health o...
AustinLiamAndres
 
Employee Salary Presentation.l based on data science collection of data
barridevakumari2004
 
Economic Sector Performance Recovery.pptx
yulisbaso2020
 
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
1 Simple and Compound Interest_953c061c981ff8640f0b8e733b245589.pdf
JaexczJol060205
 
Web dev -ppt that helps us understand web technology
shubhragoyal12
 

Pandas,scipy,numpy cheatsheet

  • 1. 1 www.quandl.com NumPy / SciPy / Pandas Cheat Sheet Select column. Select row by label. Return DataFrame index. Delete given row or column. Pass axis=1 for columns. Reindex df1 with index of df2. Reset index, putting old index in column named index. Change DataFrame index, new indecies set to NaN. Show first n rows. Show last n rows. Sort index. Sort columns. Pivot DataFrame, using new conditions. Transpose DataFrame. Change lowest level of column labels into innermost row index. Change innermost row index into lowest level of column labels. NumPy / SciPy arr = array([]) arr.shape convolve(a,b) arr.reshape() sum(arr) mean(arr) std(arr) dot(arr1,arr2) vectorize() Create a Series. Create a Dataframe. Create a Panel. Pandas Create Structures s = Series (data, index) df = DataFrame (data, index, columns) p = Panel (data, items, major_axis, minor_axis) df.stack() df.unstack() df.pivot(index,column,values) df.T DataFrame commands df[col] df.iloc[label] df.index df.drop() df1 = df1.reindex_like(df1,df2) df.reset_index() df.reindex() df.head(n) df.tail(n) df.sort() df.sort(axis=1) Create numpy array. Shape of an array. Linear convolution of two sequences. Reshape array. Sum all elements of array. Compute mean of array. Compute standard deviation of array. Compute inner product of two arrays. Turn a scalar function into one which accepts & returns vectors.
  • 2. 2 www.quandl.com Create a time series index.date_range(start, end, freq) Pandas Time Series Business Day Calender day Weekly Monthly Quarterly Annual Hourly B D W M Q A H Freq has many options including: Any Structure with a datetime index Split DataFrame by columns. Creates a GroupBy object (gb). Apply function (single or list) to a GroupBy object. Applies function and returns object with same index as one being grouped. Filter GroupBy object by a given function. Return dict whose keys are the unique groups, and values are axis labels belonging to each group. Groupby groupby() gb.agg() gb.transform() gb.filter() gb.groups Save to CSV. Read CSV into DataFrame. Save to Excel. Read exel into DataFrame. I/O df.to_csv(‘foo.csv’) read_csv(‘foo.csv’) to_excel(‘foo.xlsx’, sheet_name) read_excel(‘foo.xlsx’,’sheet1’, index_col = None, na_values = [‘NA’]) df.dropna() df.count() df.min() df.max() df.describe() concat() Drops rows where any data is missing. Returns Series of row counts for every column. Return minimum of every column. Return maximum of every column. Generate various summary statistics for every column. Merge DataFrame or Series objects. Apply function to every element in DataFrame. Apply function along a given axis. df.applymap() df.apply() Resample data with new frequency.ts.resample()
  • 3. 3 www.quandl.com Select current axis. Change axis color, none to remove. Change axis position. Can change coordinate space. Create legend. Set to ‘best’ for auto placement. Save plot. ax=gca() ax.spines[].set_color() ax.spines[].set_position() Label the x-axis. Label the y-axis. Title the graph. Set tick values for x-axis. First array for values, second for labels. Set tick values for y-axis. First array for values, second for labels. yticks([],[]) Plot data or plot a function against a range. Create multiple plots; n- number of plots, x - number horizontally displayed, y- number vertically displayed. plot() subplot(n,x,y) xlabel() ylabel() title() xticks([],[]) Plotting Matplotlib is an extremely powerful module. See www.matplotlib.org for complete documentation. Quandl is a search engine for numerical data, allowing easy access to financial, social, and demographic data from hundreds of sources. Quandl The Quandl package enables Quandl API access from within Python, which makes acquiring and manipulating numerical data as quick and easy as possible. In your first Quandl function call you should specifiy your authtoken (found on Quandl’s website after signing up) to avoid certain API call limits. See www.quandl.com/help/packages/python for more. savefig(‘foo.png’) legend(loc=’ ‘) Return data for nearest time interval. Return data for specific time. Return data between specific interval. Convert Pandas DatetimeIndex to datetime.datetime object. Conver a list of date-like objects (strings, epochs, etc.) to a DatetimeIndex. ts.ix[start:end] ts[] ts.between_time() to_pydatetime() to_datetime()
  • 4. 4 www.quandl.com Plotting Example import Quandl as q import matplotlib.pyplot as plt rural = q.get(‘WORLDBANK/USA_SP_RUR_TOTL_ZS’) urban = q.get(‘WORLDBANK/USA_SP_URB_TOTL_IN_ZS’) plt.subplot(2, 1, 1) plt.plot(rural.index,rural) plt.xticks(rural.index[0::3],[]) plt.title(‘American Population’) plt.ylabel(‘% Rural’) plt.subplot(2, 1, 2) plt.plot(urban.index,urban) plt.xlabel(‘year’) plt.ylabel(‘% Urban’) plt.show() Add the following to any function call. Download Quandl data for a certain Quandl code as a Dataframe. Search Quandl. Outputs first 4 results. Upload a Pandas DataFrame (with a time series index) to Quandl. Code must be all capital alphanumeric. authtoken = ‘YOURTOKENHERE’ get(‘QUANDL/CODE’) search(‘searchterm’) push(data, code, name)