SlideShare a Scribd company logo
Slide 1
Objective of the class
• What is numpy?
• numpy performance test
• Introduction to numpy arrays
• Introduction to numpy function
• Dealing with Flat files using numpy
• Mathematical functions
• Statisticals function
• Operations with arrays
Introduction to Numpy
Slide 2
NumPy
NumPy is an extension to the Python programming language, adding support for
large, multi-dimensional arrays and matrices, along with a large library of high-level
mathematical functions to operate on these arrays
To install NumPy run:
python setup.py install
To perform an in-place build that can be run from the source folder run:
python setup.py build_ext --inplace
The NumPy build system uses distutils and numpy.distutils. setuptools is only
used when building via pip or with python setupegg.py.
Slide 3
Official Website: http://www.numpy.org
• NumPy is licensed under the BSD license, enabling reuse with few restrictions.
• NumPy replaces Numeric and Numarray
• Numpy was initially developed by Travis Oliphant
• There are 225+ Contributors to the project (github.com)
• NumPy 1.0 released October, 2006
• Numpy 1.14.0 is the lastest version of numpy
• There are more than 200K downloads/month from PyPI
NumPy
Slide 4
NumPy performance Test
Slide 5
Getting Started with Numpy
>>> # Importing Numpy module
>>> import numpy
>>> import numpy as np
IPython has a ‘pylab’ mode where it imports all of NumPy, Matplotlib,
and SciPy into the namespace for you as a convenience. It also enables
threading for showing plots
Slide 6
Getting Started with Numpy
• Arrays are the central feature of NumPy.
• Arrays in Python are similar to lists in Python, the only difference being the array
elements should be of the same type
import numpy as np
a = np.array([1,2,3], float) # Accept two arguments list and type
print a # Return array([ 1., 2., 3.])
print type(a) # Return <type 'numpy.ndarray'>
print a[2] # 3.0
print a.dtype # Print the element type
print a.itemsize # print bytes per element
print a.shape # print the shape of an array
print a.size # print the size of an array
Slide 7
a.nbytes # return the total bytes used by an array
a.ndim # provide the dimension of an array
a[0] = 10.5 # Modify array first index important decimal will
come if the array is float type else it will be hold only 10
a.fill(20) # Fill all the values by 20
a[1:3] # Slice the array
a[-2:] # Last two elements of an array
Getting Started with Numpy
Slide 8
Airthmatic Operation with numpy
Slide 9
import numpy as np
a = np.array([[1,2,3], [4,5,6]], int) # Accept two arguments list and type
>>> a.shape # Return (2, 3)
>>> a.ndim # return 2
>>> a[0][0] # Return 1
>>> a[0,0] # Return 1
>>> a[1,2] # Return 6
>>> a[1:] # Return array([[4, 5, 6]])
>>> a[1,:] # Return array([4, 5, 6])
>>> a[:2] # Return array([[1, 2, 3],[4, 5, 6]])
>>> a[:,2] # Return array([3, 6])
>>> a[:,1] # Return array([2, 5])
>>> a[:,0] # Return array([1, 4])
Multi-Dimensional Arrays
Slide 10
import numpy as np
a = np.array([[1,2,3], [4,5,6]], int) # Accept two arguments list and type
>>> b = a.reshape(3,2) # Return the new shape of array
>>> b.shape # Return (3,2)
>>> len(a) # Return length of a
>>> 2 in a # Check if 2 is available in a
>>> b.tolist() # Return [[1, 2], [3, 4], [5, 6]]
>>> list(b) # Return [array([1, 2]), array([3, 4]), array([5, 6])]
>>> c = b
>>> b[0][0] = 10
>>> c # Return array([[10, 2], [ 3, 4], [ 5, 6]])
Reshaping array
Slide 11
Slices Are References
>>> a = array((0,1,2,3,4))
# create a slice containing only the
# last element of a
>>> b = a[2:4]
>>> b
array([2, 3])
>>> b[0] = 10
# changing b changed a!
>>> a
array([ 0, 1, 10, 3, 4])
Slide 12
arange function and slicing
>>> a = np.arange(1,80, 2)
array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33,
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
69, 71, 73, 75, 77, 79])
>>> a[[1,5,10]] # Return values at index 1,5 and 10
>>> myIndexes = [4,5,6]
>>> a[myIndexes] # Return values at indexes 4,5,6..
>>> mask = a % 5 == 0 # Return boolean value at those indexes
>>> a[mask]
Out[46]: array([ 5, 15, 25, 35, 45, 55, 65, 75])
Slide 13
Where function
>>> where (a % 5 == 0)
# Returns - (array([ 2, 7, 12, 17, 22, 27, 32, 37], dtype=int64),)
>>> loc = where(a % 5 == 0)
>>> print a[loc]
[ 5 15 25 35 45 55 65 75]
Slide 14
Flatten Arrays
# Create a 2D array
>>> a = array([[0,1],
[2,3]])
# Flatten out elements to 1D
>>> b = a.flatten()
>>> b
array([0,1,2,3])
# Changing b does not change a
>>> b[0] = 10
>>> b
array([10,1,2,3])
>>> a
array([[0, 1],
[2, 3]])
Slide 15
>>> a = array([[0,1,2],
... [3,4,5]])
>>> a.shape
(2,3)
# Transpose swaps the order # of axes. For 2-D this # swaps rows and columns.
>>> a.transpose()
array([[0, 3], [1, 4],[2, 5]])
# The .T attribute is # equivalent to transpose().
>>> a.T
array([[0, 3],
[1, 4],
[2, 5]])
Transpose Arrays
Slide 16
csv = np.loadtxt(r'A:UPDATE PythonModule 11Programsconstituents-
financials.csv', skiprows=1, dtype=str, delimiter=",", usecols = (3,4,5))
Arrays from/to ASCII files
Slide 17
Other format supported by other similar package

More Related Content

PPTX
Pandas
Jyoti shukla
 
PPTX
App development
shubhanshu16
 
PPTX
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
PPTX
Introduction to matplotlib
Piyush rai
 
PDF
List,tuple,dictionary
nitamhaske
 
PPTX
Cultivating the Growth Mindset in the Organisation
Marian Willeke
 
PPT
Minimum spanning tree
Hinal Lunagariya
 
PDF
Introduction to NumPy
Huy Nguyen
 
Pandas
Jyoti shukla
 
App development
shubhanshu16
 
Python - Numpy/Pandas/Matplot Machine Learning Libraries
Andrew Ferlitsch
 
Introduction to matplotlib
Piyush rai
 
List,tuple,dictionary
nitamhaske
 
Cultivating the Growth Mindset in the Organisation
Marian Willeke
 
Minimum spanning tree
Hinal Lunagariya
 
Introduction to NumPy
Huy Nguyen
 

What's hot (20)

PDF
Introduction to NumPy (PyData SV 2013)
PyData
 
PDF
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
PDF
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
KEY
NumPy/SciPy Statistics
Enthought, Inc.
 
PPTX
NumPy
AbhijeetAnand88
 
PPTX
Numpy
Jyoti shukla
 
PPTX
Seaborn.pptx
TheMusicFever
 
PPT
Algorithm analysis
sumitbardhan
 
PDF
Pandas
maikroeder
 
PPT
Python Pandas
Sunil OS
 
PPTX
Python Seaborn Data Visualization
Sourabh Sahu
 
PPTX
Analysis of algorithm
Rajendra Dangwal
 
PPTX
NumPy.pptx
EN1036VivekSingh
 
PDF
Intoduction to numpy
Faraz Ahmed
 
PPTX
Python Functions
Mohammed Sikander
 
PPSX
Data Structure (Queue)
Adam Mukharil Bachtiar
 
PPTX
Data Analysis with Python Pandas
Neeru Mittal
 
PPTX
Introduction to numpy
Gaurav Aggarwal
 
Introduction to NumPy (PyData SV 2013)
PyData
 
Introduction to Pandas and Time Series Analysis [PyCon DE]
Alexander Hendorf
 
Python NumPy Tutorial | NumPy Array | Edureka
Edureka!
 
NumPy/SciPy Statistics
Enthought, Inc.
 
Seaborn.pptx
TheMusicFever
 
Algorithm analysis
sumitbardhan
 
Pandas
maikroeder
 
Python Pandas
Sunil OS
 
Python Seaborn Data Visualization
Sourabh Sahu
 
Analysis of algorithm
Rajendra Dangwal
 
NumPy.pptx
EN1036VivekSingh
 
Intoduction to numpy
Faraz Ahmed
 
Python Functions
Mohammed Sikander
 
Data Structure (Queue)
Adam Mukharil Bachtiar
 
Data Analysis with Python Pandas
Neeru Mittal
 
Introduction to numpy
Gaurav Aggarwal
 
Ad

Similar to Introduction to numpy Session 1 (20)

PPT
Python crash course libraries numpy-1, panda.ppt
janaki raman
 
PPTX
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
PDF
Effective Numerical Computation in NumPy and SciPy
Kimikazu Kato
 
PPT
Introduction to Numpy Foundation Study GuideStudyGuide
elharriettm
 
PPTX
numpydocococ34554367827839271966666.pptx
sankarhariharan2007
 
PDF
Numerical tour in the Python eco-system: Python, NumPy, scikit-learn
Arnaud Joly
 
PPTX
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
PPTX
THE NUMPY LIBRARY of python with slides.pptx
fareedullah211398
 
PDF
Numpy python cheat_sheet
Zahid Hasan
 
PDF
Python_cheatsheet_numpy.pdf
AnonymousUser67
 
PDF
Numpy python cheat_sheet
Nishant Upadhyay
 
PPTX
L 5 Numpy final learning and Coding
Kirti Verma
 
PPTX
NUMPY [Autosaved] .pptx
coolmanbalu123
 
PPT
Python Training v2
ibaydan
 
PDF
CE344L-200365-Lab2.pdf
UmarMustafa13
 
PPT
14078956.ppt
Sivam Chinna
 
PPTX
object oriented programing in python and pip
LakshmiMarineni
 
PDF
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
PPTX
arrays-120712074248-phpapp01
Abdul Samee
 
Python crash course libraries numpy-1, panda.ppt
janaki raman
 
NumPy-python-27-9-24-we.pptxNumPy-python-27-9-24-we.pptx
tahirnaquash2
 
Effective Numerical Computation in NumPy and SciPy
Kimikazu Kato
 
Introduction to Numpy Foundation Study GuideStudyGuide
elharriettm
 
numpydocococ34554367827839271966666.pptx
sankarhariharan2007
 
Numerical tour in the Python eco-system: Python, NumPy, scikit-learn
Arnaud Joly
 
NUMPY LIBRARY study materials PPT 2.pptx
CHETHANKUMAR274045
 
THE NUMPY LIBRARY of python with slides.pptx
fareedullah211398
 
Numpy python cheat_sheet
Zahid Hasan
 
Python_cheatsheet_numpy.pdf
AnonymousUser67
 
Numpy python cheat_sheet
Nishant Upadhyay
 
L 5 Numpy final learning and Coding
Kirti Verma
 
NUMPY [Autosaved] .pptx
coolmanbalu123
 
Python Training v2
ibaydan
 
CE344L-200365-Lab2.pdf
UmarMustafa13
 
14078956.ppt
Sivam Chinna
 
object oriented programing in python and pip
LakshmiMarineni
 
Essential numpy before you start your Machine Learning journey in python.pdf
Smrati Kumar Katiyar
 
arrays-120712074248-phpapp01
Abdul Samee
 
Ad

Recently uploaded (20)

PDF
Company Profile 2023 PT. ZEKON INDONESIA.pdf
hendranofriadi26
 
PDF
Data_Cleaning_Infographic_Series_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
PPTX
Probability systematic sampling methods.pptx
PrakashRajput19
 
PPTX
International-health-agency and it's work.pptx
shreehareeshgs
 
PDF
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
PPTX
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
PDF
Taxes Foundatisdcsdcsdon Certificate.pdf
PratyushPrem2
 
PPTX
Machine Learning Solution for Power Grid Cybersecurity with GraphWavelets
Sione Palu
 
PDF
AI Lect 2 Identifying AI systems, branches of AI, etc.pdf
mswindow00
 
PDF
CH2-MODEL-SETUP-v2017.1-JC-APR27-2017.pdf
jcc00023con
 
PPTX
GR3-PPTFINAL (1).pptx 0.91 MbHIHUHUGG,HJGH
DarylArellaga1
 
PPTX
Extract Transformation Load (3) (1).pptx
revathi148366
 
PPTX
Logistic Regression ml machine learning.pptx
abdullahcocindia
 
PDF
oop_java (1) of ice or cse or eee ic.pdf
sabiquntoufiqlabonno
 
PPTX
Analysis of Employee_Attrition_Presentation.pptx
AdawuRedeemer
 
PPTX
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
PPTX
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
PPTX
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
PPTX
Bharatiya Antariksh Hackathon 2025 Idea Submission PPT.pptx
abhinavmemories2026
 
PDF
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 
Company Profile 2023 PT. ZEKON INDONESIA.pdf
hendranofriadi26
 
Data_Cleaning_Infographic_Series_by_CA_Suvidha_Chaplot.pdf
CA Suvidha Chaplot
 
Probability systematic sampling methods.pptx
PrakashRajput19
 
International-health-agency and it's work.pptx
shreehareeshgs
 
TIC ACTIVIDAD 1geeeeeeeeeeeeeeeeeeeeeeeeeeeeeer3.pdf
Thais Ruiz
 
Introduction-to-Python-Programming-Language (1).pptx
dhyeysapariya
 
Taxes Foundatisdcsdcsdon Certificate.pdf
PratyushPrem2
 
Machine Learning Solution for Power Grid Cybersecurity with GraphWavelets
Sione Palu
 
AI Lect 2 Identifying AI systems, branches of AI, etc.pdf
mswindow00
 
CH2-MODEL-SETUP-v2017.1-JC-APR27-2017.pdf
jcc00023con
 
GR3-PPTFINAL (1).pptx 0.91 MbHIHUHUGG,HJGH
DarylArellaga1
 
Extract Transformation Load (3) (1).pptx
revathi148366
 
Logistic Regression ml machine learning.pptx
abdullahcocindia
 
oop_java (1) of ice or cse or eee ic.pdf
sabiquntoufiqlabonno
 
Analysis of Employee_Attrition_Presentation.pptx
AdawuRedeemer
 
Data Security Breach: Immediate Action Plan
varmabhuvan266
 
Data-Driven Machine Learning for Rail Infrastructure Health Monitoring
Sione Palu
 
Pipeline Automatic Leak Detection for Water Distribution Systems
Sione Palu
 
Bharatiya Antariksh Hackathon 2025 Idea Submission PPT.pptx
abhinavmemories2026
 
Technical Writing Module-I Complete Notes.pdf
VedprakashArya13
 

Introduction to numpy Session 1

  • 1. Slide 1 Objective of the class • What is numpy? • numpy performance test • Introduction to numpy arrays • Introduction to numpy function • Dealing with Flat files using numpy • Mathematical functions • Statisticals function • Operations with arrays Introduction to Numpy
  • 2. Slide 2 NumPy NumPy is an extension to the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays To install NumPy run: python setup.py install To perform an in-place build that can be run from the source folder run: python setup.py build_ext --inplace The NumPy build system uses distutils and numpy.distutils. setuptools is only used when building via pip or with python setupegg.py.
  • 3. Slide 3 Official Website: http://www.numpy.org • NumPy is licensed under the BSD license, enabling reuse with few restrictions. • NumPy replaces Numeric and Numarray • Numpy was initially developed by Travis Oliphant • There are 225+ Contributors to the project (github.com) • NumPy 1.0 released October, 2006 • Numpy 1.14.0 is the lastest version of numpy • There are more than 200K downloads/month from PyPI NumPy
  • 5. Slide 5 Getting Started with Numpy >>> # Importing Numpy module >>> import numpy >>> import numpy as np IPython has a ‘pylab’ mode where it imports all of NumPy, Matplotlib, and SciPy into the namespace for you as a convenience. It also enables threading for showing plots
  • 6. Slide 6 Getting Started with Numpy • Arrays are the central feature of NumPy. • Arrays in Python are similar to lists in Python, the only difference being the array elements should be of the same type import numpy as np a = np.array([1,2,3], float) # Accept two arguments list and type print a # Return array([ 1., 2., 3.]) print type(a) # Return <type 'numpy.ndarray'> print a[2] # 3.0 print a.dtype # Print the element type print a.itemsize # print bytes per element print a.shape # print the shape of an array print a.size # print the size of an array
  • 7. Slide 7 a.nbytes # return the total bytes used by an array a.ndim # provide the dimension of an array a[0] = 10.5 # Modify array first index important decimal will come if the array is float type else it will be hold only 10 a.fill(20) # Fill all the values by 20 a[1:3] # Slice the array a[-2:] # Last two elements of an array Getting Started with Numpy
  • 9. Slide 9 import numpy as np a = np.array([[1,2,3], [4,5,6]], int) # Accept two arguments list and type >>> a.shape # Return (2, 3) >>> a.ndim # return 2 >>> a[0][0] # Return 1 >>> a[0,0] # Return 1 >>> a[1,2] # Return 6 >>> a[1:] # Return array([[4, 5, 6]]) >>> a[1,:] # Return array([4, 5, 6]) >>> a[:2] # Return array([[1, 2, 3],[4, 5, 6]]) >>> a[:,2] # Return array([3, 6]) >>> a[:,1] # Return array([2, 5]) >>> a[:,0] # Return array([1, 4]) Multi-Dimensional Arrays
  • 10. Slide 10 import numpy as np a = np.array([[1,2,3], [4,5,6]], int) # Accept two arguments list and type >>> b = a.reshape(3,2) # Return the new shape of array >>> b.shape # Return (3,2) >>> len(a) # Return length of a >>> 2 in a # Check if 2 is available in a >>> b.tolist() # Return [[1, 2], [3, 4], [5, 6]] >>> list(b) # Return [array([1, 2]), array([3, 4]), array([5, 6])] >>> c = b >>> b[0][0] = 10 >>> c # Return array([[10, 2], [ 3, 4], [ 5, 6]]) Reshaping array
  • 11. Slide 11 Slices Are References >>> a = array((0,1,2,3,4)) # create a slice containing only the # last element of a >>> b = a[2:4] >>> b array([2, 3]) >>> b[0] = 10 # changing b changed a! >>> a array([ 0, 1, 10, 3, 4])
  • 12. Slide 12 arange function and slicing >>> a = np.arange(1,80, 2) array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79]) >>> a[[1,5,10]] # Return values at index 1,5 and 10 >>> myIndexes = [4,5,6] >>> a[myIndexes] # Return values at indexes 4,5,6.. >>> mask = a % 5 == 0 # Return boolean value at those indexes >>> a[mask] Out[46]: array([ 5, 15, 25, 35, 45, 55, 65, 75])
  • 13. Slide 13 Where function >>> where (a % 5 == 0) # Returns - (array([ 2, 7, 12, 17, 22, 27, 32, 37], dtype=int64),) >>> loc = where(a % 5 == 0) >>> print a[loc] [ 5 15 25 35 45 55 65 75]
  • 14. Slide 14 Flatten Arrays # Create a 2D array >>> a = array([[0,1], [2,3]]) # Flatten out elements to 1D >>> b = a.flatten() >>> b array([0,1,2,3]) # Changing b does not change a >>> b[0] = 10 >>> b array([10,1,2,3]) >>> a array([[0, 1], [2, 3]])
  • 15. Slide 15 >>> a = array([[0,1,2], ... [3,4,5]]) >>> a.shape (2,3) # Transpose swaps the order # of axes. For 2-D this # swaps rows and columns. >>> a.transpose() array([[0, 3], [1, 4],[2, 5]]) # The .T attribute is # equivalent to transpose(). >>> a.T array([[0, 3], [1, 4], [2, 5]]) Transpose Arrays
  • 16. Slide 16 csv = np.loadtxt(r'A:UPDATE PythonModule 11Programsconstituents- financials.csv', skiprows=1, dtype=str, delimiter=",", usecols = (3,4,5)) Arrays from/to ASCII files
  • 17. Slide 17 Other format supported by other similar package