SlideShare a Scribd company logo
Classical Encryption Techniques
Block Ciphers and the Data
Encryption Standard
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
 Stream cipher is one that encrypts a digital data stream one bit or
one byte at a time.
 Block cipher is one in which a block of plaintext is treated as a
whole and used to produce a ciphertext block of equal length.
Classical Encryption Techniques
Classical Encryption Techniques
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
 Data Encryption Standard is a symmetric-key algorithm for the
encryption of electronic data.
 Developed in the early 1970s at IBM and based on an earlier
design by Horst Feistel.
 DES was issued in 1977 by the National Bureau of Standards, now
the National Institute of Standards and Technology (NIST), as
Federal Information Processing Standard 46
Classical Encryption Techniques
 DES, data are encrypted in 64-bit blocks using a 56 bits (+8 parity
bits) key.
 The algorithm transforms 64-bit input in a series of steps into a 64-
bit output.
 The same steps, with the same key, are used to reverse the
encryption.
Classical Encryption Techniques
 DES uses "keys" where are also apparently 16 hexadecimal
numbers long, or apparently 64 bits long. However, every 8th key
bit is ignored in the DES algorithm, so that the effective key size is
56 bits.
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
 Let K be the hexadecimal key K = 133457799BBCDFF1
 K (binary) = 00010011 00110100 01010111 01111001
10011011 10111100 11011111 11110001
 K=64bit
 The DES algorithm uses the following steps:
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
1) Step 1: Apply permutation choice -1 (PC-1)
 The 64-bit key is permuted according to the following table, PC-1
Classical Encryption Techniques
 K = 00010011 00110100 01010111 01111001 10011011
10111100 11011111 11110001
 we get the 56-bit permutation
 Kp = 1111000 0110011 0010101 0101111 0101010 1011001
1001111 0001111
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
2) Split Kp key into left and right halves
 Kp = 1111000 0110011 0010101 0101111 0101010 1011001
1001111 0001111
 KL = 1111000 0110011 0010101 0101111
 KR = 0101010 1011001 1001111 0001111
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
2) Apply Shifts (Left) as describe on table
 KL = 1111000 0110011 0010101 0101111
 KR = 0101010 1011001 1001111 0001111
 KL1 =Shift(KL)= 1110000110011001010101011111
 KR1 =Shift(KR)= 1010101011001100111100011110
 KL2 =Shift(KL1)= 1100001100110010101010111111
 KR2 =Shift(KR1)= 0101010110011001111000111101
 KL3 =Shift(KL2)= 0000110011001010101011111111
 KR3 =Shift(KR2)= 0101011001100111100011110101
Classical Encryption Techniques
2) Apply Shifts (Left) as describe on table
 KL4 = 0011001100101010101111111100
 KR4 = 0101100110011110001111010101
 KL5 = 1100110010101010111111110000
 KR5 = 0110011001111000111101010101
 KL6 = 001100101010101111111100001
 KR6 = 1001100111100011110101010101
 KL7 = 1100101010101111111100001100
 KR7 = 0110011110001111010101010110
Classical Encryption Techniques
2) Apply Shifts (Left) as describe on table
 KL8 = 0010101010111111110000110011
 KR8 = 1001111000111101010101011001
 KL9 = 0101010101111111100001100110
 KR9 = 0011110001111010101010110011
 KL10 = 0101010111111110000110011001
 KR10 = 1111000111101010101011001100
 KL11 = 0101011111111000011001100101
 KR11 = 1100011110101010101100110011
Classical Encryption Techniques
2) Apply Shifts (Left) as describe on table
 KL12 = 0101111111100001100110010101
 KR12 = 0001111010101010110011001111
 KL13 = 0111111110000110011001010101
 KR13 = 0111101010101011001100111100
 KL14 = 1111111000011001100101010101
 KR14 = 1110101010101100110011110001
 KL15 = 1111100001100110010101010111
 KR15 = 1010101010110011001111000111
Classical Encryption Techniques
2) Apply Shifts (Left) as describe on table
 KL16 = 1111000011001100101010101111
 KR16 = 0101010101100110011110001111
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
3) Concatenate KL and KR
 K1=1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110
4) Apply PC-2 to all 16 keys
 we get the 48-bit permutation for each key
 K1=000110 110000 001011 101111 111111 000111 000001 110010
Classical Encryption Techniques
Key (56 bits)
Left Right
PC-2
16-Keys (48 bits)
Key (64 bits)
PC-1
Shift (generate 16 keys)
Concatenate
Classical Encryption Techniques
 K1 = 000110 110000 001011 101111 111111 000111 000001 110010
 K2 = 011110 011010 111011 011001 110110 111100 100111 100101
 K3 = 010101 011111 110010 001010 010000 101100 111110 011001
 K4 = 011100 101010 110111 010110 110110 110011 010100 011101
 K5 = 011111 001110 110000 000111 111010 110101 001110 101000
 K6 = 011000 111010 010100 111110 010100 000111 101100 101111
 K7 = 111011 001000 010010 110111 111101 100001 100010 111100
 K8 = 111101 111000 101000 111010 110000 010011 101111 111011
 K9 = 111000 001101 101111 101011 111011 011110 011110 000001
 K10 = 101100 011111 001101 000111 101110 100100 011001 001111
Classical Encryption Techniques
 K11 = 001000 010101 111111 010011 110111 101101 001110 000110
 K12 = 011101 010111 000111 110101 100101 000110 011111 101001
 K13 = 100101 111100 010111 010001 111110 101011 101001 000001
 K14 = 010111 110100 001110 110111 111100 101110 011100 111010
 K15 = 101111 111001 000110 001101 001111 010011 111100 001010
 K16 = 110010 110011 110110 001011 000011 100001 011111 110101
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
 Assume: M = 0123456789ABCDEF
 M=0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
1010 1011 1100 1101 1110 1111
Classical Encryption Techniques
 M=0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
1010 1011 1100 1101 1110 1111
 Applying the initial permutation to the block of text P (64bit).
 IP=100 1100 0000 0000 1100 1100 1111 1111 1111 0000
1010 1010 1111 0000 1010 1010
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
 Divide the permuted block IP into a left half L0 of 32 bits, and a right
half R0 of 32 bits.
 L0 = 1100 1100 0000 0000 1100 1100 1111 1111
 R0 = 1111 0000 1010 1010 1111 0000 1010 1010
 Ln = Rn-1
 Rn = Ln-1 ⊕ f (Rn-1,Kn)
Classical Encryption Techniques
Classical Encryption Techniques
 Example: For n = 1, we have
 L0 = 1100 1100 0000 0000 1100 1100 1111 1111
 R0 = 1111 0000 1010 1010 1111 0000 1010 1010
 K1 = 000110 110000 001011 101111 111111 000111 000001
110010
 L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010
 R1 = L0 ⊕ f (R0,K1) K=48bit but R0=32bit problem
Classical Encryption Techniques
Classical Encryption Techniques
 Calculate f (R0,K1)
Classical Encryption Techniques
 R1 = L0 ⊕ f (R0,K1)
 E(R0)
 R0 = 1111 0000 1010 1010 1111 0000 1010 1010
 E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
Classical Encryption Techniques
 R1 = L0 ⊕ f (R0,K1)
 K1 = 000110 110000 001011 101111 111111 000111 000001
110010
 E(R0) = 011110 100001 010101 010101 011110 100001
010101 010101
 K1 ⊕ E(R0) = 011000 010001 011110 111010 100001 100110
010100 100111
Classical Encryption Techniques
Classical Encryption Techniques
 We have not yet finished calculating the function f
 We now have 48 bits, or eight groups of six bits. We now do
something strange with each group of six bits: we use them as
addresses in tables called "S boxes".
 f(Kn , E(Rn-1)) =B1B2B3B4B5B6B7B8
 where each Bi is a group of six bits. We now calculate
 S1(B1) S2(B2) S3(B3) S4(B4) S5(B5) S6(B6) S7(B7) S8(B8)
Classical Encryption Techniques
 The net result is that the eight groups of 6 bits are transformed into
eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits
total.
Classical Encryption Techniques
 For example, for input block B = 011011 the first bit is "0" and the
last bit "1" giving 01 as the row. This is row 1. The middle four bits
are "1101". This is the binary equivalent of decimal 13, so the
column is column number 13. In row 1, column 13 appears 5. This
determines the output; 5 is binary 0101, so that the output is 0101.
Hence S1(011011) = 0101.
Classical Encryption Techniques
Classical Encryption Techniques
 K1 ⊕ E(R0) = 011000 010001 011110 111010 100001 100110
010100 100111.
 S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000
0010 1011 0101 1001 0111
 The final stage in the calculation of f is to do a permutation P of
the S-box output to obtain the final value of f :
 f = P(S1(B1)S2(B2)...S8(B8))
Classical Encryption Techniques
Classical Encryption Techniques
 S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000
0010 1011 0101 1001 0111
 f = 0010 0011 0100 1010 1010 1001 1011 1011
Classical Encryption Techniques
Classical Encryption Techniques
 R1 = L0 ⊕ f (R0 , K1 ) =
1100 1100 0000 0000 1100 1100 1111 1111
⊕ 0010 0011 0100 1010 1010 1001 1011 1011
= 1110 1111 0100 1010 0110 0101 0100 0100
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
 In the next round, we will have L2 = R1, which is the block we just
calculated, and then we must calculate R2 =L1 ⊕ f( R1, K2), and so
on for 16 rounds.
 At the end of the sixteenth round we have the blocks L16 and R16.
We then reverse the order of the two blocks into the 64-bit block
Classical Encryption Techniques
 If we process all 16 blocks using the method defined previously, we get,
on the 16th round
 L16 = 0100 0011 0100 0010 0011 0010 0011 0100
 R16 = 0000 1010 0100 1100 1101 1001 1001 0101
 We reverse the order of these two blocks and apply the final permutation
to
 R16L16 = 00001010 01001100 11011001 10010101 01000011
01000010 00110010 00110100
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
 Then apply a final permutation IP-1 as defined by the following
table:
Classical Encryption Techniques
 R16L16 = 00001010 01001100 11011001 10010101 01000011
01000010 00110010 00110100
 IP-1 = 10000101 11101000 00010011 01010100 00001111
00001010 10110100 00000101
 which in hexadecimal format is
85E813540F0AB405
Classical Encryption Techniques
Initial permutation
Round 1
Round 2
Round 16
32 bit Swap
Inverse initial permutation
64-bit Plain text
64-bit Cipher text
Permuted choice 1
Left Circular Shift
Left Circular Shift
Left Circular Shift
64-bit Key
Permuted choice 2
Permuted choice 2
Permuted choice 2
56 bit
56 bit
56 bit
56 bit
56 bit
56 bit
48 bit
48 bit
48 bit
K1
K2
K16
64 bit
64 bit
64 bit
64 bit
64 bit
Classical Encryption Techniques
This is the encrypted form of M = 0123456789ABCDEF
with K = 133457799BBCDFF1
C = 85E813540F0AB405
Classical Encryption Techniques
Stream Ciphers and Block Ciphers
Data Encryption Standard
DES Algorithm
DES Key Creation
DES Encryption
The Strength Of DES
Classical Encryption Techniques
 With a key length of 56 bits, there are 256
possible keys
 Brute force search looks hard
 Fast forward to 1998. Under the direction of John Gilmore of the EFF, a
team spent $220,000 and built a machine that can go through the entire
56-bit DES key space in an average of 4.5 days.
 On July 17, 1998, they announced they had cracked a 56-bit key in 56
hours. The computer, called Deep Crack, uses 27 boards each
containing 64 chips, and is capable of testing 90 billion keys a second.
Classical Encryption Techniques
facebook.com/mloey
mohamedloey@gmail.com
twitter.com/mloey
linkedin.com/in/mloey
mloey@fci.bu.edu.eg
mloey.github.io
Classical Encryption Techniques
www.YourCompany.com
© 2020 Companyname PowerPoint Business Theme. All Rights Reserved.
THANKS FOR
YOUR TIME

More Related Content

PPTX
Symmetric encryption
DR RICHMOND ADEBIAYE
 
PDF
Classical Encryption Techniques.pdf
DevangShukla10
 
PPTX
Block cipher modes of operation
harshit chavda
 
PDF
CNIT 141: 6. Hash Functions
Sam Bowne
 
PDF
Computer Security Lecture 5: Simplified Advanced Encryption Standard
Mohamed Loey
 
PPTX
Trible data encryption standard (3DES)
Ahmed Mohamed Mahmoud
 
PPTX
Transposition Cipher
daniyalqureshi712
 
PDF
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
JAINAM KAPADIYA
 
Symmetric encryption
DR RICHMOND ADEBIAYE
 
Classical Encryption Techniques.pdf
DevangShukla10
 
Block cipher modes of operation
harshit chavda
 
CNIT 141: 6. Hash Functions
Sam Bowne
 
Computer Security Lecture 5: Simplified Advanced Encryption Standard
Mohamed Loey
 
Trible data encryption standard (3DES)
Ahmed Mohamed Mahmoud
 
Transposition Cipher
daniyalqureshi712
 
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
JAINAM KAPADIYA
 

What's hot (20)

PPTX
Elliptic Curve Cryptography
JorgeVillamarin5
 
PPTX
Hash Function
Siddharth Srivastava
 
PPT
Lecture 3,4
shah zeb
 
PPT
Regular expression with DFA
Maulik Togadiya
 
PDF
2. Stream Ciphers
Sam Bowne
 
PPTX
Columnar transposition cipher
Waqar Memon
 
PPTX
Modes of Operation
Showkot Usman
 
PPTX
El Gamal Cryptosystem
Adri Jovin
 
PPT
Code Optimization
guest9f8315
 
PPTX
Number theory and cryptography
Yasser Ali
 
PDF
AES Solved Example on Encryption all rounds.pdf
KanchanPatil34
 
PPT
Pattern matching
shravs_188
 
PPTX
Bootstrapping in Compiler
Akhil Kaushik
 
PDF
Natural language processing (nlp)
Kuppusamy P
 
PDF
CNIT 141: 5. Stream Ciphers
Sam Bowne
 
PPT
Kleene's theorem
Mobeen Mustafa
 
PPTX
Mathematical Analysis of Non-Recursive Algorithm.
mohanrathod18
 
PPTX
SHA-256.pptx
JadhavSujeet
 
PDF
Formal Languages and Automata Theory unit 5
Srimatre K
 
PPT
Ll(1) Parser in Compilers
Mahbubur Rahman
 
Elliptic Curve Cryptography
JorgeVillamarin5
 
Hash Function
Siddharth Srivastava
 
Lecture 3,4
shah zeb
 
Regular expression with DFA
Maulik Togadiya
 
2. Stream Ciphers
Sam Bowne
 
Columnar transposition cipher
Waqar Memon
 
Modes of Operation
Showkot Usman
 
El Gamal Cryptosystem
Adri Jovin
 
Code Optimization
guest9f8315
 
Number theory and cryptography
Yasser Ali
 
AES Solved Example on Encryption all rounds.pdf
KanchanPatil34
 
Pattern matching
shravs_188
 
Bootstrapping in Compiler
Akhil Kaushik
 
Natural language processing (nlp)
Kuppusamy P
 
CNIT 141: 5. Stream Ciphers
Sam Bowne
 
Kleene's theorem
Mobeen Mustafa
 
Mathematical Analysis of Non-Recursive Algorithm.
mohanrathod18
 
SHA-256.pptx
JadhavSujeet
 
Formal Languages and Automata Theory unit 5
Srimatre K
 
Ll(1) Parser in Compilers
Mahbubur Rahman
 
Ad

Viewers also liked (18)

PDF
Computer Security Lecture 3: Classical Encryption Techniques 2
Mohamed Loey
 
PDF
Computer Security Lecture 4.1: DES Supplementary Material
Mohamed Loey
 
PDF
PMP Lecture 4: Project Integration Management
Mohamed Loey
 
PDF
Computer Security Lecture 2: Classical Encryption Techniques 1
Mohamed Loey
 
PPTX
Data encryption standard
Mohammad Golyani
 
PDF
Tx 3 hill shuman_oliver
OPUNITE
 
PPTX
Applications of-linear-algebra-hill-cipher
Aashirwad Kashyap
 
PPT
6.hash mac
Virendrakumar Dhotre
 
PPT
Evansville Project Management Presentation
Andrew Scales
 
PDF
General-T-M_Wall-Street-Journal_Oct-2013_OPT
Octave Living
 
PDF
Public Key Cryptography
Israel Herraiz
 
PPTX
Protecting Your Data with Encryption
Ed Leighton-Dick
 
PDF
كيف تحمي خصوصيتك علي مواقع التواصل الاجتماعي فيسبوك
Mohamed Loey
 
DOCX
Data encryption standard
Prasad Prabhu
 
PPSX
PHP Comprehensive Overview
Mohamed Loey
 
PPT
Data encryption standard (des)
Mecheko Sha
 
PPTX
Data Encryption Standard (DES)
Haris Ahmed
 
Computer Security Lecture 3: Classical Encryption Techniques 2
Mohamed Loey
 
Computer Security Lecture 4.1: DES Supplementary Material
Mohamed Loey
 
PMP Lecture 4: Project Integration Management
Mohamed Loey
 
Computer Security Lecture 2: Classical Encryption Techniques 1
Mohamed Loey
 
Data encryption standard
Mohammad Golyani
 
Tx 3 hill shuman_oliver
OPUNITE
 
Applications of-linear-algebra-hill-cipher
Aashirwad Kashyap
 
Evansville Project Management Presentation
Andrew Scales
 
General-T-M_Wall-Street-Journal_Oct-2013_OPT
Octave Living
 
Public Key Cryptography
Israel Herraiz
 
Protecting Your Data with Encryption
Ed Leighton-Dick
 
كيف تحمي خصوصيتك علي مواقع التواصل الاجتماعي فيسبوك
Mohamed Loey
 
Data encryption standard
Prasad Prabhu
 
PHP Comprehensive Overview
Mohamed Loey
 
Data encryption standard (des)
Mecheko Sha
 
Data Encryption Standard (DES)
Haris Ahmed
 
Ad

Similar to Computer Security Lecture 4: Block Ciphers and the Data Encryption Standard (20)

PPT
Chapter 3: Block Ciphers and the Data Encryption Standard
Shafaan Khaliq Bhatti
 
PPT
data encryption standard algorithm in cryptography
sweetysinghal2
 
PPT
DATA ENCRYPTION STANDARD ALGORITHM , PPT
pg636002
 
PDF
3-Block Ciphers and DES.pdf
MuhammadShoaibHussai2
 
PPT
Cryptography Symmetric Key Algorithm (CSE)
SoumyaBhattacharyya14
 
PPT
DATA ENCRYPTION STANDARD (DES) / lucifer
sahadcse8bu
 
PPTX
Information and data security block cipher and the data encryption standard (...
Mazin Alwaaly
 
PPT
Unit II.ppt.............................
r47381047
 
PDF
sheet4.pdf
aminasouyah
 
PDF
paper4.pdf
aminasouyah
 
PDF
lecture3.pdf
aminasouyah
 
PDF
doc4.pdf
aminasouyah
 
PDF
doc4.pdf
aminasouyah
 
PPTX
Data Encryption standard in cryptography
NithyasriA2
 
PPT
Block Cipher Stream Cipher DESUnit 3.ppt
SuryaBasnet3
 
PPT
ch03_block_ciphers_nemo (2) (1).ppt
MrsPrabhaBV
 
PPT
Ch03 Ch06 Des And Others
nathanurag
 
PPT
4255596.ppt
ShahidMehmood285010
 
PPTX
Overview on Cryptography and Network Security
Dr. Rupa Ch
 
PPT
block ciphers
Asad Ali
 
Chapter 3: Block Ciphers and the Data Encryption Standard
Shafaan Khaliq Bhatti
 
data encryption standard algorithm in cryptography
sweetysinghal2
 
DATA ENCRYPTION STANDARD ALGORITHM , PPT
pg636002
 
3-Block Ciphers and DES.pdf
MuhammadShoaibHussai2
 
Cryptography Symmetric Key Algorithm (CSE)
SoumyaBhattacharyya14
 
DATA ENCRYPTION STANDARD (DES) / lucifer
sahadcse8bu
 
Information and data security block cipher and the data encryption standard (...
Mazin Alwaaly
 
Unit II.ppt.............................
r47381047
 
sheet4.pdf
aminasouyah
 
paper4.pdf
aminasouyah
 
lecture3.pdf
aminasouyah
 
doc4.pdf
aminasouyah
 
doc4.pdf
aminasouyah
 
Data Encryption standard in cryptography
NithyasriA2
 
Block Cipher Stream Cipher DESUnit 3.ppt
SuryaBasnet3
 
ch03_block_ciphers_nemo (2) (1).ppt
MrsPrabhaBV
 
Ch03 Ch06 Des And Others
nathanurag
 
4255596.ppt
ShahidMehmood285010
 
Overview on Cryptography and Network Security
Dr. Rupa Ch
 
block ciphers
Asad Ali
 

More from Mohamed Loey (20)

PDF
Lecture 6: Deep Learning Applications
Mohamed Loey
 
PDF
Lecture 5: Convolutional Neural Network Models
Mohamed Loey
 
PDF
Lecture 4: Deep Learning Frameworks
Mohamed Loey
 
PDF
Lecture 4: How it Works: Convolutional Neural Networks
Mohamed Loey
 
PPTX
Lecture 3: Convolutional Neural Networks
Mohamed Loey
 
PDF
Lecture 2: Artificial Neural Network
Mohamed Loey
 
PDF
Lecture 1: Deep Learning for Computer Vision
Mohamed Loey
 
PDF
Design of an Intelligent System for Improving Classification of Cancer Diseases
Mohamed Loey
 
PDF
Computer Security - CCNA Security - Lecture 2
Mohamed Loey
 
PDF
Computer Security - CCNA Security - Lecture 1
Mohamed Loey
 
PDF
Algorithms Lecture 8: Pattern Algorithms
Mohamed Loey
 
PDF
Algorithms Lecture 7: Graph Algorithms
Mohamed Loey
 
PDF
Algorithms Lecture 6: Searching Algorithms
Mohamed Loey
 
PDF
Algorithms Lecture 5: Sorting Algorithms II
Mohamed Loey
 
PDF
Algorithms Lecture 4: Sorting Algorithms I
Mohamed Loey
 
PDF
Algorithms Lecture 3: Analysis of Algorithms II
Mohamed Loey
 
PDF
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
PDF
Algorithms Lecture 1: Introduction to Algorithms
Mohamed Loey
 
PDF
Convolutional Neural Network Models - Deep Learning
Mohamed Loey
 
PDF
Deep Learning - Overview of my work II
Mohamed Loey
 
Lecture 6: Deep Learning Applications
Mohamed Loey
 
Lecture 5: Convolutional Neural Network Models
Mohamed Loey
 
Lecture 4: Deep Learning Frameworks
Mohamed Loey
 
Lecture 4: How it Works: Convolutional Neural Networks
Mohamed Loey
 
Lecture 3: Convolutional Neural Networks
Mohamed Loey
 
Lecture 2: Artificial Neural Network
Mohamed Loey
 
Lecture 1: Deep Learning for Computer Vision
Mohamed Loey
 
Design of an Intelligent System for Improving Classification of Cancer Diseases
Mohamed Loey
 
Computer Security - CCNA Security - Lecture 2
Mohamed Loey
 
Computer Security - CCNA Security - Lecture 1
Mohamed Loey
 
Algorithms Lecture 8: Pattern Algorithms
Mohamed Loey
 
Algorithms Lecture 7: Graph Algorithms
Mohamed Loey
 
Algorithms Lecture 6: Searching Algorithms
Mohamed Loey
 
Algorithms Lecture 5: Sorting Algorithms II
Mohamed Loey
 
Algorithms Lecture 4: Sorting Algorithms I
Mohamed Loey
 
Algorithms Lecture 3: Analysis of Algorithms II
Mohamed Loey
 
Algorithms Lecture 2: Analysis of Algorithms I
Mohamed Loey
 
Algorithms Lecture 1: Introduction to Algorithms
Mohamed Loey
 
Convolutional Neural Network Models - Deep Learning
Mohamed Loey
 
Deep Learning - Overview of my work II
Mohamed Loey
 

Recently uploaded (20)

PPTX
Nursing Management of Patients with Disorders of Ear, Nose, and Throat (ENT) ...
RAKESH SAJJAN
 
PDF
Electricity-Magnetic-and-Heating-Effects 4th Chapter/8th-science-curiosity.pd...
Sandeep Swamy
 
PDF
High Ground Student Revision Booklet Preview
jpinnuck
 
DOCX
UPPER GASTRO INTESTINAL DISORDER.docx
BANDITA PATRA
 
PPTX
Care of patients with elImination deviation.pptx
AneetaSharma15
 
PPTX
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
PDF
Landforms and landscapes data surprise preview
jpinnuck
 
PPTX
PPTs-The Rise of Empiresghhhhhhhh (1).pptx
academysrusti114
 
DOCX
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
PPTX
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
PPTX
NOI Hackathon - Summer Edition - GreenThumber.pptx
MartinaBurlando1
 
PPTX
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
PPTX
How to Manage Global Discount in Odoo 18 POS
Celine George
 
PPTX
ACUTE NASOPHARYNGITIS. pptx
AneetaSharma15
 
PPTX
Introduction and Scope of Bichemistry.pptx
shantiyogi
 
PPTX
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
PPTX
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
PPTX
Congenital Hypothyroidism pptx
AneetaSharma15
 
PDF
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
PPTX
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 
Nursing Management of Patients with Disorders of Ear, Nose, and Throat (ENT) ...
RAKESH SAJJAN
 
Electricity-Magnetic-and-Heating-Effects 4th Chapter/8th-science-curiosity.pd...
Sandeep Swamy
 
High Ground Student Revision Booklet Preview
jpinnuck
 
UPPER GASTRO INTESTINAL DISORDER.docx
BANDITA PATRA
 
Care of patients with elImination deviation.pptx
AneetaSharma15
 
An introduction to Prepositions for beginners.pptx
drsiddhantnagine
 
Landforms and landscapes data surprise preview
jpinnuck
 
PPTs-The Rise of Empiresghhhhhhhh (1).pptx
academysrusti114
 
SAROCES Action-Plan FOR ARAL PROGRAM IN DEPED
Levenmartlacuna1
 
Tips Management in Odoo 18 POS - Odoo Slides
Celine George
 
NOI Hackathon - Summer Edition - GreenThumber.pptx
MartinaBurlando1
 
CARE OF UNCONSCIOUS PATIENTS .pptx
AneetaSharma15
 
How to Manage Global Discount in Odoo 18 POS
Celine George
 
ACUTE NASOPHARYNGITIS. pptx
AneetaSharma15
 
Introduction and Scope of Bichemistry.pptx
shantiyogi
 
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
PREVENTIVE PEDIATRIC. pptx
AneetaSharma15
 
Congenital Hypothyroidism pptx
AneetaSharma15
 
Review of Related Literature & Studies.pdf
Thelma Villaflores
 
Information Texts_Infographic on Forgetting Curve.pptx
Tata Sevilla
 

Computer Security Lecture 4: Block Ciphers and the Data Encryption Standard

  • 1. Classical Encryption Techniques Block Ciphers and the Data Encryption Standard
  • 2. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 3. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 4. Classical Encryption Techniques  Stream cipher is one that encrypts a digital data stream one bit or one byte at a time.  Block cipher is one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.
  • 7. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 8. Classical Encryption Techniques  Data Encryption Standard is a symmetric-key algorithm for the encryption of electronic data.  Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel.  DES was issued in 1977 by the National Bureau of Standards, now the National Institute of Standards and Technology (NIST), as Federal Information Processing Standard 46
  • 9. Classical Encryption Techniques  DES, data are encrypted in 64-bit blocks using a 56 bits (+8 parity bits) key.  The algorithm transforms 64-bit input in a series of steps into a 64- bit output.  The same steps, with the same key, are used to reverse the encryption.
  • 10. Classical Encryption Techniques  DES uses "keys" where are also apparently 16 hexadecimal numbers long, or apparently 64 bits long. However, every 8th key bit is ignored in the DES algorithm, so that the effective key size is 56 bits.
  • 11. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 12. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 13. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 14. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 15. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 16. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 17. Classical Encryption Techniques  Let K be the hexadecimal key K = 133457799BBCDFF1  K (binary) = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001  K=64bit  The DES algorithm uses the following steps:
  • 18. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 19. Classical Encryption Techniques 1) Step 1: Apply permutation choice -1 (PC-1)  The 64-bit key is permuted according to the following table, PC-1
  • 20. Classical Encryption Techniques  K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001  we get the 56-bit permutation  Kp = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
  • 21. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 22. Classical Encryption Techniques 2) Split Kp key into left and right halves  Kp = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111  KL = 1111000 0110011 0010101 0101111  KR = 0101010 1011001 1001111 0001111
  • 23. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 24. Classical Encryption Techniques 2) Apply Shifts (Left) as describe on table  KL = 1111000 0110011 0010101 0101111  KR = 0101010 1011001 1001111 0001111  KL1 =Shift(KL)= 1110000110011001010101011111  KR1 =Shift(KR)= 1010101011001100111100011110  KL2 =Shift(KL1)= 1100001100110010101010111111  KR2 =Shift(KR1)= 0101010110011001111000111101  KL3 =Shift(KL2)= 0000110011001010101011111111  KR3 =Shift(KR2)= 0101011001100111100011110101
  • 25. Classical Encryption Techniques 2) Apply Shifts (Left) as describe on table  KL4 = 0011001100101010101111111100  KR4 = 0101100110011110001111010101  KL5 = 1100110010101010111111110000  KR5 = 0110011001111000111101010101  KL6 = 001100101010101111111100001  KR6 = 1001100111100011110101010101  KL7 = 1100101010101111111100001100  KR7 = 0110011110001111010101010110
  • 26. Classical Encryption Techniques 2) Apply Shifts (Left) as describe on table  KL8 = 0010101010111111110000110011  KR8 = 1001111000111101010101011001  KL9 = 0101010101111111100001100110  KR9 = 0011110001111010101010110011  KL10 = 0101010111111110000110011001  KR10 = 1111000111101010101011001100  KL11 = 0101011111111000011001100101  KR11 = 1100011110101010101100110011
  • 27. Classical Encryption Techniques 2) Apply Shifts (Left) as describe on table  KL12 = 0101111111100001100110010101  KR12 = 0001111010101010110011001111  KL13 = 0111111110000110011001010101  KR13 = 0111101010101011001100111100  KL14 = 1111111000011001100101010101  KR14 = 1110101010101100110011110001  KL15 = 1111100001100110010101010111  KR15 = 1010101010110011001111000111
  • 28. Classical Encryption Techniques 2) Apply Shifts (Left) as describe on table  KL16 = 1111000011001100101010101111  KR16 = 0101010101100110011110001111
  • 29. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 30. Classical Encryption Techniques 3) Concatenate KL and KR  K1=1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110 4) Apply PC-2 to all 16 keys  we get the 48-bit permutation for each key  K1=000110 110000 001011 101111 111111 000111 000001 110010
  • 31. Classical Encryption Techniques Key (56 bits) Left Right PC-2 16-Keys (48 bits) Key (64 bits) PC-1 Shift (generate 16 keys) Concatenate
  • 32. Classical Encryption Techniques  K1 = 000110 110000 001011 101111 111111 000111 000001 110010  K2 = 011110 011010 111011 011001 110110 111100 100111 100101  K3 = 010101 011111 110010 001010 010000 101100 111110 011001  K4 = 011100 101010 110111 010110 110110 110011 010100 011101  K5 = 011111 001110 110000 000111 111010 110101 001110 101000  K6 = 011000 111010 010100 111110 010100 000111 101100 101111  K7 = 111011 001000 010010 110111 111101 100001 100010 111100  K8 = 111101 111000 101000 111010 110000 010011 101111 111011  K9 = 111000 001101 101111 101011 111011 011110 011110 000001  K10 = 101100 011111 001101 000111 101110 100100 011001 001111
  • 33. Classical Encryption Techniques  K11 = 001000 010101 111111 010011 110111 101101 001110 000110  K12 = 011101 010111 000111 110101 100101 000110 011111 101001  K13 = 100101 111100 010111 010001 111110 101011 101001 000001  K14 = 010111 110100 001110 110111 111100 101110 011100 111010  K15 = 101111 111001 000110 001101 001111 010011 111100 001010  K16 = 110010 110011 110110 001011 000011 100001 011111 110101
  • 34. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 35. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 36. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 37. Classical Encryption Techniques  Assume: M = 0123456789ABCDEF  M=0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
  • 38. Classical Encryption Techniques  M=0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  Applying the initial permutation to the block of text P (64bit).  IP=100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010
  • 39. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 40. Classical Encryption Techniques  Divide the permuted block IP into a left half L0 of 32 bits, and a right half R0 of 32 bits.  L0 = 1100 1100 0000 0000 1100 1100 1111 1111  R0 = 1111 0000 1010 1010 1111 0000 1010 1010  Ln = Rn-1  Rn = Ln-1 ⊕ f (Rn-1,Kn)
  • 42. Classical Encryption Techniques  Example: For n = 1, we have  L0 = 1100 1100 0000 0000 1100 1100 1111 1111  R0 = 1111 0000 1010 1010 1111 0000 1010 1010  K1 = 000110 110000 001011 101111 111111 000111 000001 110010  L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010  R1 = L0 ⊕ f (R0,K1) K=48bit but R0=32bit problem
  • 44. Classical Encryption Techniques  Calculate f (R0,K1)
  • 45. Classical Encryption Techniques  R1 = L0 ⊕ f (R0,K1)  E(R0)  R0 = 1111 0000 1010 1010 1111 0000 1010 1010  E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
  • 46. Classical Encryption Techniques  R1 = L0 ⊕ f (R0,K1)  K1 = 000110 110000 001011 101111 111111 000111 000001 110010  E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101  K1 ⊕ E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111
  • 48. Classical Encryption Techniques  We have not yet finished calculating the function f  We now have 48 bits, or eight groups of six bits. We now do something strange with each group of six bits: we use them as addresses in tables called "S boxes".  f(Kn , E(Rn-1)) =B1B2B3B4B5B6B7B8  where each Bi is a group of six bits. We now calculate  S1(B1) S2(B2) S3(B3) S4(B4) S5(B5) S6(B6) S7(B7) S8(B8)
  • 49. Classical Encryption Techniques  The net result is that the eight groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits total.
  • 50. Classical Encryption Techniques  For example, for input block B = 011011 the first bit is "0" and the last bit "1" giving 01 as the row. This is row 1. The middle four bits are "1101". This is the binary equivalent of decimal 13, so the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the output is 0101. Hence S1(011011) = 0101.
  • 52. Classical Encryption Techniques  K1 ⊕ E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.  S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111  The final stage in the calculation of f is to do a permutation P of the S-box output to obtain the final value of f :  f = P(S1(B1)S2(B2)...S8(B8))
  • 54. Classical Encryption Techniques  S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111  f = 0010 0011 0100 1010 1010 1001 1011 1011
  • 56. Classical Encryption Techniques  R1 = L0 ⊕ f (R0 , K1 ) = 1100 1100 0000 0000 1100 1100 1111 1111 ⊕ 0010 0011 0100 1010 1010 1001 1011 1011 = 1110 1111 0100 1010 0110 0101 0100 0100
  • 57. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 58. Classical Encryption Techniques  In the next round, we will have L2 = R1, which is the block we just calculated, and then we must calculate R2 =L1 ⊕ f( R1, K2), and so on for 16 rounds.  At the end of the sixteenth round we have the blocks L16 and R16. We then reverse the order of the two blocks into the 64-bit block
  • 59. Classical Encryption Techniques  If we process all 16 blocks using the method defined previously, we get, on the 16th round  L16 = 0100 0011 0100 0010 0011 0010 0011 0100  R16 = 0000 1010 0100 1100 1101 1001 1001 0101  We reverse the order of these two blocks and apply the final permutation to  R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100
  • 60. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 61. Classical Encryption Techniques  Then apply a final permutation IP-1 as defined by the following table:
  • 62. Classical Encryption Techniques  R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100  IP-1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101  which in hexadecimal format is 85E813540F0AB405
  • 63. Classical Encryption Techniques Initial permutation Round 1 Round 2 Round 16 32 bit Swap Inverse initial permutation 64-bit Plain text 64-bit Cipher text Permuted choice 1 Left Circular Shift Left Circular Shift Left Circular Shift 64-bit Key Permuted choice 2 Permuted choice 2 Permuted choice 2 56 bit 56 bit 56 bit 56 bit 56 bit 56 bit 48 bit 48 bit 48 bit K1 K2 K16 64 bit 64 bit 64 bit 64 bit 64 bit
  • 64. Classical Encryption Techniques This is the encrypted form of M = 0123456789ABCDEF with K = 133457799BBCDFF1 C = 85E813540F0AB405
  • 65. Classical Encryption Techniques Stream Ciphers and Block Ciphers Data Encryption Standard DES Algorithm DES Key Creation DES Encryption The Strength Of DES
  • 66. Classical Encryption Techniques  With a key length of 56 bits, there are 256 possible keys  Brute force search looks hard  Fast forward to 1998. Under the direction of John Gilmore of the EFF, a team spent $220,000 and built a machine that can go through the entire 56-bit DES key space in an average of 4.5 days.  On July 17, 1998, they announced they had cracked a 56-bit key in 56 hours. The computer, called Deep Crack, uses 27 boards each containing 64 chips, and is capable of testing 90 billion keys a second.
  • 68. Classical Encryption Techniques www.YourCompany.com © 2020 Companyname PowerPoint Business Theme. All Rights Reserved. THANKS FOR YOUR TIME