SCOPE_~1- technology of green house and poyhousebala464780
Ad
ComandosDePython_ComponentesBasicosImpl.ppt
1. Introduction to
Scientific Computing
with Python
Many excellent resources on the web
>> google: "learn python"
some good example:
http://www.diveintopython.org/toc/index.html
http://www.scipy.org/Documentation
Adjusted from:
http://www.nanohub.org/resources/?id=99
Original Authors are: Eric Jones and Travis Oliphant
3. What Is Python?
ONE LINER
Python is an interpreted programming language that allows
you to do almost anything possible with a compiled language
(C/C++/Fortran) without requiring all the complexity.
PYTHON HIGHLIGHTS
• Automatic garbage
collection
• Dynamic typing
• Interpreted and interactive
• Object-oriented
• “Batteries Included”
• Free
• Portable
• Easy to Learn and Use
• Truly Modular
4. Who is using Python?
NATIONAL SPACE TELESCOPE
LABORATORY
ENTHOUGHT
LAWRENCE LIVERMORE
NATIONAL LABORATORIES
INDUSTRIAL LIGHT AND MAGIC
Data processing and calibration for
instruments on the Hubble Space
Telescope.
REDHAT
PAINT SHOP PRO 8
WALT DISNEY
Anaconda, the Redhat Linux installer
program, is written in Python.
Scripting and extending parallel
physics codes. pyMPI is their doing.
Scripting Engine for JASC
PaintShop Pro 8 photo-editing software
Digital Animation Digital animation development
environment.
CONOCOPHILLIPS
Oil exploration tool suite Geophysics and Electromagnetics
engine scripting, algorithm
development, and visualization
6. Interactive Calculator
# adding two values
>>> 1 + 1
2
# setting a variable
>>> a = 1
>>> a
1
# checking a variables type
>>> type(a)
<type 'int'>
# an arbitrarily long integer
>>> a = 1203405503201
>>> a
1203405503201L
>>> type(a)
<type 'long'>
The four numeric types in Python on
32-bit architectures are:
integer (4 byte)
long integer (any precision)
float (8 byte like C’s double)
complex (16 byte)
The Numeric module, which we will
see later, supports a larger number
of numeric types.
# real numbers
>>> b = 1.2 + 3.1
>>> b
4.2999999999999998
>>> type(b)
<type 'float'>
# complex numbers
>>> c = 2+1.5j
>>> c
(2+1.5j)
7. Complex Numbers
>>> a=1.5+0.5j
>>> abs(a)
1.5811388
CREATING COMPLEX NUMBERS
# to extract real and im
# component
>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5
EXTRACTING COMPONENTS
ABSOLUTE VALUE
# Use "j" or "J" for imaginary
# part. Create by "(real+imagj)",
# or "complex(real, imag)" .
>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)
8. Strings
# using double quotes
>>> s = “hello world”
>>> print s
hello world
# single quotes also work
>>> s = ‘hello world’
>>> print s
hello world
>>> s = “12345”
>>> len(s)
5
CREATING STRINGS
# concatenating two strings
>>> “hello “ + “world”
‘hello world’
# repeating a string
>>> “hello “ * 3
‘hello hello hello ’
STRING OPERATIONS
STRING LENGTH
FORMAT STRINGS
# the % operator allows you
# to supply values to a
# format string. The format
# string follows
# C conventions.
>>> s = “some numbers:”
>>> x = 1.34
>>> y = 2
>>> s = “%s %f, %d” % (s,x,y)
>>> print s
some numbers: 1.34, 2
9. The string module
>>> import string
>>> s = “hello world”
# split space delimited words
>>> wrd_lst = string.split(s)
>>> print wrd_lst
[‘hello’, ‘world’]
# python2.2 and higher
>>> s.split()
[‘hello’, ‘world’]
# join words back together
>>> string.join(wrd_lst)
hello world
# python2.2 and higher
>>> ‘ ‘.join(wrd_lst)
hello world
# replacing text in a string
>>> string.replace(s,’world’
... ,’Mars’)
‘hello Mars’
# python2.2 and higher
>>> s.replace(’world’ ,’Mars’)
‘hello Mars’
# strip whitespace from string
>>> s = “t hello n”
>>> string.strip(s)
‘hello’
# python2.2 and higher
>>> s.strip()
‘hello’
10. Multi-line Strings
# triple quotes are used
# for mutli-line strings
>>> a = ”””hello
... world”””
>>> print a
hello
world
# multi-line strings using
# “” to indicate
continuation
>>> a = “hello ”
... “world”
>>> print a
hello world
# including the new line
>>> a = “hellon”
... “world”
>>> print a
hello
world
11. List objects
>>> l = [10,11,12,13,14]
>>> print l
[10, 11, 12, 13, 14]
LIST CREATION WITH BRACKETS
# simply use the + operator
>>> [10, 11] + [12,13]
[10, 11, 12, 13]
CONCATENATING LIST
REPEATING ELEMENTS IN LISTS
# the range method is helpful
# for creating a sequence
>>> range(5)
[0, 1, 2, 3, 4]
>>> range(2,7)
[2, 3, 4, 5, 6]
>>> range(2,7,2)
[2, 4, 6]
# the multiply operator
# does the trick.
>>> [10, 11] * 3
[10, 11, 10, 11, 10, 11]
range( start, stop, step)
12. Indexing
# list
# indices: 0 1 2 3 4
>>> l = [10,11,12,13,14]
>>> l[0]
10
RETREIVING AN ELEMENT
The first element in an
array has index=0 as
in C. Take note Fortran
programmers!
NEGATIVE INDICES
# negative indices count
# backward from the end of
# the list.
#
# indices: -5 -4 -3 -2 -1
>>> l = [10,11,12,13,14]
>>> l[-1]
14
>>> l[-2]
13
SETTING AN ELEMENT
>>> l[1] = 21
>>> print l
[10, 21, 12, 13, 14]
OUT OF BOUNDS
>>> l[10]
Traceback (innermost last):
File "<interactive input>",line 1,in ?
IndexError: list index out of range
13. More on list objects
# use in or not in
>>> l = [10,11,12,13,14]
>>> 13 in l
1
>>> 13 not in l
0
DOES THE LIST CONTAIN x ?
LIST CONTAINING MULTIPLE
TYPES
# list containing integer,
# string, and another list.
>>> l = [10,’eleven’,[12,13]]
>>> l[1]
‘eleven’
>>> l[2]
[12, 13]
# use multiple indices to
# retrieve elements from
# nested lists.
>>> l[2][0]
12
>>> len(l)
3
LENGTH OF A LIST
# use the del keyword
>>> del l[2]
>>> l
[10,’eleven’]
DELETING OBJECT FROM LIST
14. Slicing
# indices: 0 1 2 3 4
>>> l = [10,11,12,13,14]
# [10,11,12,13,14]
>>> l[1:3]
[11, 12]
# negative indices work also
>>> l[1:-2]
[11, 12]
>>> l[-4:3]
[11, 12]
SLICING LISTS
# omitted boundaries are
# assumed to be the beginning
# (or end) of the list.
# grab first three elements
>>> l[:3]
[10,11,12]
# grab last two elements
>>> l[-2:]
[13,14]
var[lower:upper]
Slices extract a portion of a sequence by specifying a lower and upper
bound. The extracted elements start at lower and go up to, but do not
include, the upper element. Mathematically the range is [lower,upper).
OMITTING INDICES
15. A few methods for list objects
some_list.reverse( )
Add the element x to the end
of the list, some_list.
some_list.sort( cmp )
some_list.append( x )
some_list.index( x )
some_list.count( x )
some_list.remove( x )
Count the number of times x
occurs in the list.
Return the index of the first
occurrence of x in the list.
Delete the first occurrence of x
from the list.
Reverse the order of elements in
the list.
By default, sort the elements in
ascending order. If a compare
function is given, use it to sort
the list.
16. List methods in action
>>> l = [10,21,23,11,24]
# add an element to the list
>>> l.append(11)
>>> print l
[10,21,23,11,24,11]
# how many 11s are there?
>>> l.count(11)
2
# where does 11 first occur?
>>> l.index(11)
3
# remove the first 11
>>> l.remove(11)
>>> print l
[10,21,23,24,11]
# sort the list
>>> l.sort()
>>> print l
[10,11,21,23,24]
# reverse the list
>>> l.reverse()
>>> print l
[24,23,21,11,10]
17. Mutable vs. Immutable
# Mutable objects, such as
# lists, can be changed
# in-place.
# insert new values into list
>>> l = [10,11,12,13,14]
>>> l[1:3] = [5,6]
>>> print l
[10, 5, 6, 13, 14]
MUTABLE OBJECTS IMMUTABLE OBJECTS
# Immutable objects, such as
# strings, cannot be changed
# in-place.
# try inserting values into
# a string
>>> s = ‘abcde’
>>> s[1:3] = ‘xy’
Traceback (innermost last):
File "<interactive input>",line 1,in ?
TypeError: object doesn't support
slice assignment
# here’s how to do it
>>> s = s[:1] + ‘xy’ + s[3:]
>>> print s
'axyde'
The cStringIO module treats
strings like a file buffer
and allows insertions. It’s
useful when working with
large strings or when speed
is paramount.
18. Dictionaries
Dictionaries store key/value pairs. Indexing a dictionary by a key
returns the value associated with it.
# create an empty dictionary using curly brackets
>>> record = {}
>>> record[‘first’] = ‘Jmes’
>>> record[‘last’] = ‘Maxwell’
>>> record[‘born’] = 1831
>>> print record
{'first': 'Jmes', 'born': 1831, 'last': 'Maxwell'}
# create another dictionary with initial entries
>>> new_record = {‘first’: ‘James’, ‘middle’:‘Clerk’}
# now update the first dictionary with values from the new one
>>> record.update(new_record)
>>> print record
{'first': 'James', 'middle': 'Clerk', 'last':'Maxwell', 'born':
1831}
DICTIONARY EXAMPLE
19. A few dictionary methods
some_dict.clear( )
some_dict.copy( )
some_dict.has_key( x )
some_dict.keys( )
some_dict.values( )
some_dict.items( )
Remove all key/value pairs from
the dictionary, some_dict.
Create a copy of the dictionary
Test whether the dictionary
contains the key x.
Return a list of all the keys in the
dictionary.
Return a list of all the values in
the dictionary.
Return a list of all the key/value
pairs in the dictionary.
20. Dictionary methods in action
>>> d = {‘cows’: 1,’dogs’:5,
... ‘cats’: 3}
# create a copy.
>>> dd = d.copy()
>>> print dd
{'dogs':5,'cats':3,'cows': 1}
# test for chickens.
>>> d.has_key(‘chickens’)
0
# get a list of all keys
>>> d.keys()
[‘cats’,’dogs’,’cows’]
# get a list of all values
>>> d.values()
[3, 5, 1]
# return the key/value pairs
>>> d.items()
[('cats', 3), ('dogs', 5),
('cows', 1)]
# clear the dictionary
>>> d.clear()
>>> print d
{}
21. Tuples
Tuples are a sequence of objects just like lists. Unlike lists, tuples are
immutable objects. While there are some functions
and statements that require tuples, they are rare. A good rule of
thumb is to use lists whenever you need a generic sequence.
# tuples are built from a comma separated list enclosed by ( )
>>> t = (1,’two’)
>>> print t
(1,‘two’)
>>> t[0]
1
# assignments to tuples fail
>>> t[0] = 2
Traceback (innermost last):
File "<interactive input>", line 1, in ?
TypeError: object doesn't support item assignment
TUPLE EXAMPLE
22. 3 4
Assignment
>>> x = [0, 1, 2]
Assignment creates object references.
0 1 2
x
y
# y = x cause x and y to point
# at the same list
>>> y = x
# changes to y also change x
>>> y[1] = 6
>>> print x
[0, 6, 2]
0 6 2
x
y
# re-assigning y to a new list
# decouples the two lists
>>> y = [3, 4]
x 0 6 2
y
23. Multiple assignments
# creating a tuple without ()
>>> d = 1,2,3
>>> d
(1, 2, 3)
# multiple assignments
>>> a,b,c = 1,2,3
>>> print b
2
# multiple assignments from a
# tuple
>>> a,b,c = d
>>> print b
2
# also works for lists
>>> a,b,c = [1,2,3]
>>> print b
2
24. If statements
if/elif/else provide conditional execution of
code blocks.
if <condition>:
<statements>
elif <condition>:
<statements>
else:
<statements>
# a simple if statement
>>> x = 10
>>> if x > 0:
... print 1
... elif x == 0:
... print 0
... else:
... print –1
... < hit return >
1
IF EXAMPLE
IF STATEMENT FORMAT
25. Test Values
• True means any non-zero number
or non-empty object
• False means not true: zero, empty object, or
None
# empty objects evaluate false
>>> x = []
>>> if x:
... print 1
... else:
... print 0
... < hit return >
0
EMPTY OBJECTS
26. For loops
For loops iterate over a sequence of objects.
>>> for i in range(5):
... print i,
... < hit return >
0 1 2 3 4
>>> l=[‘dogs’,’cats’,’bears’]
>>> accum = ‘’
>>> for item in l:
... accum = accum + item
... accum = accum + ‘ ‘
... < hit return >
>>> print accum
dogs cats bears
for <loop_var> in <sequence>:
<statements>
TYPICAL SCENARIO
LOOPING OVER A STRING
>>> for i in ‘abcde’:
... print i,
... < hit return >
a b c d e
LOOPING OVER A LIST
27. While loops
While loops iterate until a condition is met.
# the condition tested is
# whether lst is empty.
>>> lst = range(3)
>>> while lst:
... print lst
... lst = lst[1:]
... < hit return >
[0, 1, 2]
[1, 2]
[2]
while <condition>:
<statements>
WHILE LOOP BREAKING OUT OF A LOOP
# breaking from an infinite
# loop.
>>> i = 0
>>> while 1:
... if i < 3:
... print i,
... else:
... break
... i = i + 1
... < hit return >
0 1 2
28. Anatomy of a function
def add(arg0, arg1):
a = arg0 + arg1
return a
The keyword def
indicates the start
of a function.
A colon ( : ) terminates
the function definition.
Indentation is
used to indicate
the contents of
the function. It
is not optional,
but a part of the
syntax. An optional return statement specifies
the value returned from the function. If
return is omitted, the function returns the
special value None.
Function arguments are listed
separated by commas. They are passed
by assignment. More on this later.
29. Our new function in action
# We’ll create our function
# on the fly in the
# interpreter.
>>> def add(x,y):
... a = x + y
... return a
# test it out with numbers
>>> x = 2
>>> y = 3
>>> add(x,y)
5
# how about strings?
>>> x = ‘foo’
>>> y = ‘bar’
>>> add(x,y)
‘foobar’
# functions can be assigned
# to variables
>>> func = add
>>> func(x,y)
‘foobar’
# how about numbers and strings?
>>> add(‘abc',1)
Traceback (innermost last):
File "<interactive input>", line 1, in ?
File "<interactive input>", line 2, in add
TypeError: cannot add type "int" to string
30. More about functions
# Every function returns
# a value (or NONE)
# but you don't need to
# specify returned type!
# Function documentation
>>> def add(x,y):
... """this function
... adds two numbers"""
... a = x + y
... return a
# You can always retrieve
# function documentation
>>> print add.__doc__
this function
adds two numbers
# FUNCTIONAL PROGRAMMING:
# "map(function, sequence)"
>>> def cube(x): return
x*x*x ...
>>> map(cube, range(1, 6))
[1, 8, 27, 64, 125]
# "reduce (function,
sequence)"
>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55
# "filter (function,
sequence)"
>>> def f(x): return x % 2 !=
0
...
>>> filter(f, range(2, 10))
31. Even more on functions
# buld-in function "dir" is
# used to list all
# definitions in a module
>>> import scipy
>>> dir(scipy)
.......................
...<a lot of stuf>...
.......................
# Lambda function:
# Python supports one-line mini-
# functions on the fly.
# Borrowed from Lisp, lambda
# functions can be used anywhere
# a function is required.
>>> def f(x): return x*x
>>> f(3)
9
>> g = lambda x:x*x
>> g(3)
9
# more on lambda function:
>>> foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
>>> print filter(lambda x: x % 3 == 0, foo)
[18, 9, 24, 12, 27]
>>> print map(lambda x: x * 2 + 10, foo)
[14, 46, 28, 54, 44, 58, 26, 34, 64]
>>> print reduce(lambda x, y: x + y, foo)
139
32. Modules
# ex1.py
PI = 3.1416
def sum(lst):
tot = lst[0]
for value in lst[1:]:
tot = tot + value
return tot
l = [0,1,2,3]
print sum(l), PI
EX1.PY FROM SHELL
[ej@bull ej]$ python ex1.py
6, 3.1416
FROM INTERPRETER
# load and execute the module
>>> import ex1
6, 3.1416
# get/set a module variable.
>>> ex1.PI
3.1415999999999999
>>> ex1.PI = 3.14159
>>> ex1.PI
3.1415899999999999
# call a module variable.
>>> t = [2,3,4]
>>> ex1.sum(t)
9
33. Modules cont.
# ex1.py version 2
PI = 3.14159
def sum(lst):
tot = 0
for value in lst:
tot = tot + value
return tot
l = [0,1,2,3,4]
print sum(l), PI
EDITED EX1.PY
INTERPRETER
# load and execute the module
>>> import ex1
6, 3.1416
< edit file >
# import module again
>>> import ex1
# nothing happens!!!
# use reload to force a
# previously imported library
# to be reloaded.
>>> reload(ex1)
10, 3.14159
34. Modules cont. 2
Modules can be executable scripts or libraries or both.
“ An example module “
PI = 3.1416
def sum(lst):
””” Sum the values in a
list.
”””
tot = 0
for value in lst:
tot = tot + value
return tot
EX2.PY EX2.PY CONTINUED
def add(x,y):
” Add two values.”
a = x + y
return a
def test():
l = [0,1,2,3]
assert( sum(l) == 6)
print ‘test passed’
# this code runs only if this
# module is the main program
if __name__ == ‘__main__’:
test()
35. Classes
>>> class particle:
... # Constructor method
... def __init__(self,mass, velocity):
... # assign attribute values of new object
... self.mass = mass
... self.velocity = velocity
... # method for calculating object momentum
... def momentum(self):
... return self.mass * self.velocity
... # a “magic” method defines object’s string representation
... def __repr__(self):
... msg = "(m:%2.1f, v:%2.1f)" % (self.mass,self.velocity)
... return msg
SIMPLE PARTICLE CLASS
EXAMPLE
>>> a = particle(3.2,4.1)
>>> a
(m:3.2, v:4.1)
>>> a.momentum()
13.119999999999999
36. Reading files
>>> results = []
>>> f = open(‘c:rcs.txt’,’r’)
# read lines and discard header
>>> lines = f.readlines()[1:]
>>> f.close()
>>> for l in lines:
... # split line into fields
... fields = line.split()
... # convert text to numbers
... freq = float(fields[0])
... vv = float(fields[1])
... hh = float(fields[2])
... # group & append to results
... all = [freq,vv,hh]
... results.append(all)
... < hit return >
FILE INPUT EXAMPLE
EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
100 -20.3 -31.2
200 -22.7 -33.6
>>> for i in results: print i
[100.0, -20.30…, -31.20…]
[200.0, -22.70…, -33.60…]
PRINTING THE RESULTS
37. More compact version
>>> results = []
>>> f = open(‘c:rcs.txt’,’r’)
>>> f.readline()
‘#freq (MHz) vv (dB) hh (dB)n'
>>> for l in f:
... all = [float(val) for val in l.split()]
... results.append(all)
... < hit return >
>>> for i in results:
... print i
... < hit return >
ITERATING ON A FILE AND LIST COMPREHENSIONS
EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
100 -20.3 -31.2
200 -22.7 -33.6
38. Same thing, one line
>>> print [[float(val) for val in l.split()] for
... l in open("c:temprcs.txt","r")
... if l[0] !="#"]
OBFUSCATED PYTHON CONTEST…
EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
100 -20.3 -31.2
200 -22.7 -33.6
39. Sorting
# The builtin cmp(x,y)
# function compares two
# elements and returns
# -1, 0, 1
# x < y --> -1
# x == y --> 0
# x > y --> 1
>>> cmp(0,1)
-1
# By default, sorting uses
# the builtin cmp() method
>>> x = [1,4,2,3,0]
>>> x.sort()
>>> x
[0, 1, 2, 3, 4]
CUSTOM CMP METHODS
THE CMP METHOD
# define a custom sorting
# function to reverse the
# sort ordering
>>> def descending(x,y):
... return -cmp(x,y)
# Try it out
>>> x.sort(descending)
>>> x
[4, 3, 2, 1, 0]
40. Sorting
# Comparison functions for a variety of particle values
>>> def by_mass(x,y):
... return cmp(x.mass,y.mass)
>>> def by_velocity(x,y):
... return cmp(x.velocity,y.velocity)
>>> def by_momentum(x,y):
... return cmp(x.momentum(),y.momentum())
# Sorting particles in a list by their various properties
>>> x = [particle(1.2,3.4),particle(2.1,2.3),particle(4.6,.7)]
>>> x.sort(by_mass)
>>> x
[(m:1.2, v:3.4), (m:2.1, v:2.3), (m:4.6, v:0.7)]
>>> x.sort(by_velocity)
>>> x
[(m:4.6, v:0.7), (m:2.1, v:2.3), (m:1.2, v:3.4)]
>>> x.sort(by_momentum)
>>> x
[(m:4.6, v:0.7), (m:1.2, v:3.4), (m:2.1, v:2.3)]
SORTING CLASS INSTANCES
41. Criticism of Python
# All function arguments are called by reference. Changing data in
# subroutine effects global data!
>>> def sum(lst):
... tot=0
... for i in range(0,len(lst)):
... lst[i]+=1
... tot += lst[i]
... return tot
>>> a=range(1,4)
>>> sum(a)
9
>>> a
[2,3,4]
# Can be fixed by
>>> a=range(1,4)
>>> a_copy = a[:] # be careful: a_copy = a would not work
>>> sum(a_copy)
9
>>> a
[1,2,3]
FUNCTION ARGUMENTS
42. Criticism of Python
Python does not support something like "const" in C++. If users checks
function declaration, it has no clue which arguments are meant as input
(unchanged on exit) and which are output
FUNCTION ARGUMENTS
User has "no direct contact" with data structures. User might not be
aware of data handling. Python is optimized for speed -> references.
COPYING DATA
>>> a=[1,2,3,[4,5]]
>>> b=a[:]
>>> a[0]=2
>>> b
[1,2,3,[4,5]]
>>> a[3][0]=0
>>> b
[1,2,3,[0,5]]
# Can be fixed by
>>> import copy
>>> a=[1,2,3,[4,5]]
>>> b = copy.deepcopy(a)
>>> a[3][0]=0
>>> b
[1,2,3,[4,5]]
43. Criticism of Python
CLASS DATA
In C++ class declaration uncovers all important information about the
class - class members (data and methods). In Python, data comes into
existence when used. User needs to read implementation of the class
(much more code) to find class data and understand the logic of the class.
This is particularly important in large scale codes.
If you import a module in command-line interpreter, but the module was
later changed on disc, you can reload the module by typing
reload modulexxx
This reloads the particular modulexxx, but does not recursively reload
modules that might also be changed on disc and are imported by the
modulexxx.
RELODING MODULES
45. NumPy and SciPy
In 2005 Numarray and Numeric were merged into common
project called "NumPy". On top of it, SciPy was build
recently and spread very fast in scientific community.
Home: http://www.scipy.org/SciPy
>>> from numpy import *
>>> import numpy
>>> numpy.__version__
’1.0.1’
or better
>>> from scipy import *
>>> import scipy
>>> scipty.__version__
'0.5.2'
IMPORT NUMPY AND SCIPY
46. Array Operations
>>> a = array([1,2,3,4])
>>> b = array([2,3,4,5])
>>> a + b
array([3, 5, 7, 9])
# Create array from 0 to 10
>>> x = arange(11.)
# multiply entire array by
# scalar value
>>> a = (2*pi)/10.
>>> a
0.628318530718
>>> a*x
array([ 0.,0.628,…,6.283])
# apply functions to array.
>>> y = sin(a*x)
SIMPLE ARRAY MATH MATH FUNCTIONS
NumPy defines the following
constants:
pi = 3.14159265359
e = 2.71828182846
47. Introducing Numeric Arrays
>>> a = array([0,1,2,3])
>>> a
array([0, 1, 2, 3])
SIMPLE ARRAY CREATION
>>> type(a)
<type 'array'>
CHECKING THE TYPE
>>> a.typecode()
'l‘ # ‘l’ = Int
NUMERIC TYPE OF ELEMENTS
>>>
a.itemsize()
4
BYTES IN AN ARRAY ELEMENT
>>> a.shape
(4,)
>>> shape(a)
(4,)
ARRAY SHAPE
>>> a.tolist()
[0, 1, 2, 3]
CONVERT TO PYTHON LIST
>>> a[0]
0
>>> a[0] = 10
>>> a
[10, 1, 2, 3]
ARRAY INDEXING
48. >>> a[1,3]
13
>>> a[1,3] = -1
>>> a
array([[ 0, 1, 2, 3],
[10,11,12,-1]])
Multi-Dimensional Arrays
>>> a = array([[ 0, 1, 2, 3],
[10,11,12,13]])
>>> a
array([[ 0, 1, 2, 3],
[10,11,12,13]])
>>> a[1]
array([10, 11, 12, 13])
row
column
MULTI-DIMENSIONAL ARRAYS
>>> shape(a)
(2, 4)
(ROWS,COLUMNS)
GET/SET ELEMENTS
ADDRESS FIRST ROW USING
SINGLE INDEX
FLATTEN TO 1D ARRAY
A.FLAT AND RAVEL()
REFERENCE ORIGINAL
MEMORY
>>> a.flat
array(0,1,2,3,10,11,12,-1)
>>> ravel(a)
array(0,1,2,3,10,11,12,-1)
>>> a.flat[5] = -2
>>> a
array([[ 0, 1, 2, 3],
[10,-2,12,-1]])
50. Slices Are References
>>> a = array([0,1,2])
# create a slice containing only the
# last element of a
>>> b = a[2:3]
>>> b[0] = 10
# changing b changed a!
>>> a
array([ 1, 2, 10])
Slices are references to memory in original array. Changing
values in a slice also changes the original array.
51. Array Constructor
array(sequence, typecode=None, copy=1, savespace=0)
sequence - any type of Python sequence. Nested list create multi-
dimensional arrays.
typecode - character (string). Specifies the numerical type of the array.
If it is None, the constructor makes its best guess at the numeric type.
copy - if copy=0 and sequence is an array object, the returned
array is a reference that data. Otherwise, a copy of the data in sequence
is made.
savespace - Forces Numeric to use the smallest possible numeric type for
the array. Also, it prevents upcasting to a different type during math
operations with scalars. (see coercion section for more details)
52. Array Constructor Examples
>>> a = array([0,1.,2,3])
>>> a.dtype()
‘d‘ notice decimal
FLOATING POINT ARRAYS
DEFAULT TO DOUBLE
PRECISION
>>> a = array([0,1.,2,3],'f')
>>> a.dtype()
'f‘
>>> len(a.flat)*a.itemsize()
16
USE TYPECODE TO REDUCE
PRECISION
ARRAYS REFERENCING SAME
DATA
>>> a = array([1,2,3,4])
>>> b = array(a,copy=0)
>>> b[1] = 10
>>> a
array([ 1, 10, 3, 4])
BYTES FOR MAIN ARRAY
STORAGE
# flat assures that
# multidimensional arrays
# work
>>>len(a.flat)*a.itemsize
32
53. 32-bit Typecodes
Character Bits (Bytes) Identifier
D 128 (16) Complex, Complex64
F 64 (8) Complex0, Complex8, Complex16, Complex32
d 64 (8) Float, Float64
f 32 (4) Float0, Float8, Float16, Float32
l 32 (4) Int
i 32 (4) Int32
s 16 (2) Int16
1 (one) 8 (1) Int8
u 32 (4) UnsignedInt32
w 16 (2) UnsignedInt16
b 8 (1) UnsignedInt8
O 4 (1) PyObject
Highlighted typecodes correspond to Python’s standard Numeric types.
54. Array Creation Functions
arange(start,stop=None,step=1,typecode=None)
Nearly identical to Python’s range(). Creates an array of values in the
range [start,stop) with the specified step value. Allows non-integer
values for start, stop, and step. When not specified, typecode is
derived from the start, stop, and step values.
>>> arange(0,2*pi,pi/4)
array([ 0.000, 0.785, 1.571, 2.356, 3.142,
3.927, 4.712, 5.497])
ones(shape,typecode=None,savespace=0)
zeros(shape,typecode=None,savespace=0)
shape is a number or sequence specifying the dimensions of the array. If
typecode is not specified, it defaults to Int.
>>> ones((2,3),typecode=Float32)
array([[ 1., 1., 1.],
[ 1., 1., 1.]],'f')
56. Mathematic Binary Operators
a + b add(a,b)
a - b subtract(a,b)
a % b remainder(a,b)
a * b multiply(a,b)
a / b divide(a,b)
a ** b power(a,b)
MULTIPLY BY A SCALAR
ELEMENT BY ELEMENT
ADDITION
ADDITION USING AN OPERATOR
FUNCTION
>>> a = array((1,2))
>>> a*3.
array([3., 6.])
>>> a = array([1,2])
>>> b = array([3,4])
>>> a + b
array([4, 6])
>>> add(a,b)
array([4, 6])
# Overwrite contents of a.
# Saves array creation
# overhead
>>> add(a,b,a) # a += b
array([4, 6])
>>> a
array([4, 6])
IN PLACE OPERATION
57. Comparison and Logical Operators
>>> a = array(((1,2,3,4),(2,3,4,5)))
>>> b = array(((1,2,5,4),(1,3,4,5)))
>>> a == b
array([[1, 1, 0, 1],
[0, 1, 1, 1]])
# functional equivalent
>>> equal(a,b)
array([[1, 1, 0, 1],
[0, 1, 1, 1]])
equal (==)
greater_equal (>=)
logical_and (and)
logical_not (not)
not_equal (!=)
less (<)
logical_or (or)
greater (>)
less_equal (<=)
logical_xor
2D EXAMPLE
58. Bitwise Operators
>>> a = array((1,2,4,8))
>>> b = array((16,32,64,128))
>>> bitwise_and(a,b)
array([ 17, 34, 68, 136])
# bit inversion
>>> a = array((1,2,3,4),UnsignedInt8)
>>> invert(a)
array([254, 253, 252, 251],'b')
# surprising type conversion
>>> left_shift(a,3)
array([ 8, 16, 24, 32],'i')
bitwise_and (&)
bitwise_or (|)
right_shift(a,shifts)
left_shift (a,shifts)
invert (~)
bitwise_xor
BITWISE EXAMPLES
Changed from
UnsignedInt8
to Int32
59. Element by element distance
calculation using
Trig and Other Functions
sin(x) sinh(x)
cos(x) cosh(x)
arccos(x) arccosh(x)
arctan(x) arctanh(x)
arcsin(x) arcsinh(x)
arctan2(x,y)
2
2
y
x
TRIGONOMETRIC
exp(x) log(x)
log10(x) sqrt(x)
absolute(x) conjugate(x)
negative(x) ceil(x)
floor(x) fabs(x)
hypot(x,y) fmod(x,y)
maximum(x,y) minimum(x,y)
OTHERS
hypot(x,y)
61. Overview
CURRENT PACKAGES
• Special Functions (scipy.special)
• Signal Processing (scipy.signal)
• Fourier Transforms (scipy.fftpack)
• Optimization (scipy.optimize)
• General plotting (scipy.[plt, xplt, gplt])
• Numerical Integration (scipy.integrate)
• Linear Algebra (scipy.linalg)
• Input/Output (scipy.io)
• Genetic Algorithms (scipy.ga)
• Statistics (scipy.stats)
• Distributed Computing (scipy.cow)
• Fast Execution (weave)
• Clustering Algorithms (scipy.cluster)
• Sparse Matrices* (scipy.sparse)
62. Basic Environment
>>> info(linspace)
linspace(start, stop, num=50, endpoint=1, retstep=0)
Evenly spaced samples.
Return num evenly spaced samples from start to stop. If endpoint=1
then
last sample is stop. If retstep is 1 then return the step value used.
>>> linspace(-1,1,5)
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> r_[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> logspace(0,3,4)
array([ 1., 10., 100., 1000.])
>>> info(logspace)
logspace(start, stop, num=50, endpoint=1)
Evenly spaced samples on a logarithmic scale.
Return num evenly spaced samples from 10**start to 10**stop. If
endpoint=1 then last sample is 10**stop.
CONVENIENCE FUNCTIONS
info help system for scipy
similar to dir for the rest of python
linspace get equally spaced
points.
r_[] also does this (shorthand)
logspace get equally spaced
points in log10 domain
65. Input and Output
scipy.io --- Reading and writing ASCII files
Student Test1 Test2 Test3 Test4
Jane 98.3 94.2 95.3 91.3
Jon 47.2 49.1 54.2 34.7
Jim 84.2 85.3 94.1 76.4
textfile.txt
>>> a = io.read_array(‘textfile.txt’,columns=(1,-1),lines=(3,-1))
>>> print a
[[ 98.3 94.2 95.3 91.3]
[ 47.2 49.1 54.2 34.7]
[ 84.2 85.3 94.1 76.4]]
>>> b = io.read_array(‘textfile.txt’,columns=(1,-2),lines=(3,-2))
>>> print b
[[ 98.3 95.3]
[ 84.2 94.1]]
Read from column 1 to the end
Read from line 3 to the end
Read from column 1 to the end every second column
Read from line 3 to the end every second line
66. Input and Output
scipy.io --- Reading and writing raw binary files
fid = fopen(file_name, permission='rb', format='n')
Class for reading and writing binary files into Numeric arrays.
•file_name The complete path name to
the file to open.
•permission Open the file with given
permissions: ('r', 'w', 'a')
for reading, writing, or
appending. This is the same
as the mode argument in the
builtin open command.
•format The byte-ordering of the file:
(['native', 'n'], ['ieee-le', 'l'],
['ieee-be', 'b']) for native, little-
endian, or big-endian.
read read data from file and return
Numeric array
write write to file from Numeric array
fort_read read Fortran-formatted binary data
from the file.
fort_write write Fortran-formatted binary data
to the file.
rewind rewind to beginning of file
size get size of file
seek seek to some position in the file
tell return current position in file
close close the file
Methods
68. Integration
>>> info(integrate)
.....<documentation of integrate module>.....
>>> integrate.quad(lambda t:
special.j1(t)/t,0,pi)
(1.062910971494,1.18e-14)
Suppose we want to integrate Bessel function
from scipy import *
def fun(x):
return integrate.quad(lambda t: special.j1(t)/t,0,x)
x=r_[0:30:0.01]
for tx in x:
print tx, fun(tx)[0]
j1int.py module:
1
0
( ) /
x
dtJ t t
69. Minimization
>>> from scipy import *
>>> import scipy
>>> info(scipy)
.... <documentation of all available modules>
>>> info(optimize)
>>> info(optimize.fmin_powell)
>>> def func((x,y),(a,b)): return (x-a)**2+(y-b)**2
>>> optimize.fmin_powell(func, (0,0), ((5,6),))
Opimization terminated successfully,
Current function value: 0.00000
Iterations: 2
Function evaluations: 38
array([5.,6.])
2 2
( ) ( ) min
x a y b
Suppose we want to minimize the function
Starting guess
additional arguments
70. Root finding and integration
1.0
0.8
0.6
0.4
0.2
0.0
25
20
15
10
5
0
1
0
( )/ 1
x
dtJ t t
The function
has many solutions. Suppose we want to find all solution in the range [0:100]
1
0
( ) /
x
dtJ t t
71. Put it all together
from scipy import *
"""
Finds all solutions of the equation Integrate[j1(t)/t,{t,0,x}] == 1
in the range x=[0,100]
"""
def func(x,a):
" Computes Integrate[j1(t)/t,{t,0,x}] - a"
return integrate.quad(lambda t: special.j1(t)/t, 0, x)[0] - a
# Finds approxiate solutions of the equation in the range [0:100]
x = r_[0:100:0.2] # creates an equaly spaced array
b = map(lambda t: func(t,1), x) # evaluates function on this array
z = []; # approximate solutions of the equation
for i in range(1,len(b)): # if the function changes sign,
if (b[i-1]*b[i]<0): z.append(x[i]) # the solution is bracketed
print "Zeros of the equation in the interval [0:100] are"
j=0
for zt in z:
print j, optimize.fsolve(func,zt,(1,)) # calling root finding
routine, finds all zeros.
j+=1
72. It takes around 2 seconds to get
Zeros of the equation in the interval [0:100] are
0 2.65748482457
1 5.67254740317
2 8.75990144967
3 11.872242395
4 14.9957675329
5 18.1251662422
6 21.2580027553
7 24.3930147628
8 27.5294866728
9 30.666984016
10 33.8052283484
11 36.9440332549
12 40.0832693606
13 43.2228441315
14 46.362689668
15 49.5027550388
16 52.6430013038
17 55.7833981883
18 58.9239218038
19 62.0645530515
20 65.2052764808
21 68.3460794592
22 71.4869515584
23 74.6278840946
24 77.7688697786
25 80.9099024466
26 84.0509768519
27 87.1920884999
28 90.3332335188
29 93.4744085549
30 96.615610689
31 99.7568373684
73. Linear Algebra
scipy.linalg --- FAST LINEAR ALGEBRA
•Uses ATLAS if available --- very fast
•Low-level access to BLAS and LAPACK routines in
modules linalg.fblas, and linalg.flapack (FORTRAN order)
•High level matrix routines
•Linear Algebra Basics: inv, solve, det, norm, lstsq, pinv
•Decompositions: eig, lu, svd, orth, cholesky, qr, schur
•Matrix Functions: expm, logm, sqrtm, cosm, coshm, funm (general
matrix functions)
74. Some simple examples
>>> A=matrix(random.rand(5,5)) # creates random matrix
>>> A.I
<inverse of the random matrix>
>>> linalg.det(A)
<determinant of the matrix>
>>> linalg.eigvals(A)
<eigenvalues only>
>>> linalg.eig(A)
<eigenvalues and eigenvectors>
>>> linalg.svd(A)
<SVD decomposition>
>>> linalg.cholesky(A)
<Cholesky decomposition for positive definite A>
>>> B=matrix(random.rand(5,5))
>>> linalg.solve(A,B)
<Solution of the equation A.X=B>
75. Special Functions
FIRST ORDER BESSEL EXAMPLE
#environment setup
>>> import gui_thread
>>> gui_thread.start()
>>> from scipy import *
>>> import scipy.plt as plt
>>> x = r_[0:100:0.1]
>>> j0x = special.j0(x)
>>> plt.plot(x,j0x)
Includes over 200 functions:
Airy, Elliptic, Bessel, Gamma, HyperGeometric, Struve, Error, Orthogonal
Polynomials, Parabolic Cylinder, Mathieu, Spheroidal Wave, Kelvin
scipy.special
76. Special Functions
AIRY FUNCTIONS EXAMPLE
>>> z = r_[-5:1.5:100j]
>>> vals = special.airy(z)
>>> xplt.figure(0, frame=1,
color='blue')
>>> xplt.matplot(z,vals)
>>> xplt.legend(['Ai', 'Aip',
‘Bi‘,'Bip'],
color='blue')
>>> xplt.xlabel('z',
color='magenta')
>>> xplt.title('Airy
Functions and
Derivatives‘)
scipy.special
78. Statistics
scipy.stats --- Discrete Distributions
10 standard
discrete
distributions
(plus any
arbitrary
finite RV)
pdf
cdf
rvs
ppf
stats
Methods
79. Statistics
scipy.stats --- Basic Statistical Calculations for samples
•stats.mean (also mean) compute the sample mean
•stats.std (also std) compute the sample
standard deviation
•stats.var sample variance
•stats.moment sample central moment
•stats.skew sample skew
•stats.kurtosis sample kurtosis
80. Interpolation
scipy.interpolate --- General purpose Interpolation
•1-d linear Interpolating Class
•Constructs callable function from data points
•Function takes vector of inputs and returns linear
interpolants
•1-d and 2-d spline interpolation (FITPACK)
•Splines up to order 5
•Parametric splines
81. Integration
scipy.integrate --- General purpose Integration
•Ordinary Differential Equations (ODE)
integrate.odeint, integrate.ode
•Samples of a 1-d function
integrate.trapz (trapezoidal Method), integrate.simps
(Simpson Method), integrate.romb (Romberg Method)
•Arbitrary callable function
integrate.quad (general purpose), integrate.dblquad
(double integration), integrate.tplquad (triple integration),
integrate.fixed_quad (fixed order Gaussian integration),
integrate.quadrature (Gaussian quadrature to tolerance),
integrate.romberg (Romberg)
86. Optimization
EXAMPLE: MINIMIZING ROSENBROCK FUNCTION
Rosenbrock function
>>> rosen_der = optimize.rosen_der
>>> x0 = [1.3,0.7,0.8,1.9,1.2]
>>> start = time.time()
>>> xopt = optimize.fmin_bfgs(rosen,
x0, fprime=rosen_der, avegtol=1e-7)
>>> stop = time.time()
>>> print_stats(start, stop, xopt)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 111
Function evaluations: 266
Gradient evaluations: 112
Found in 0.0521121025085 seconds
Solution: [ 1. 1. 1. 1. 1.]
Function value: 1.3739103475e-18
Avg. Error: 1.13246034772e-10
USING DERIVATIVE
WITHOUT DERIVATIVE
>>> rosen = optimize.rosen
>>> import time
>>> x0 = [1.3,0.7,0.8,1.9,1.2]
>>> start = time.time()
>>> xopt = optimize.fmin(rosen,
x0, avegtol=1e-7)
>>> stop = time.time()
>>> print_stats(start, stop, xopt)
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 316
Function evaluations: 533
Found in 0.0805299282074 seconds
Solution: [ 1. 1. 1. 1. 1.]
Function value: 2.67775760157e-15
Avg. Error: 1.5323906899e-08
87. GA and Clustering
scipy.ga --- Basic Genetic Algorithm Optimization
Routines and classes to simplify setting up a
genome and running a genetic algorithm evolution
scipy.cluster --- Basic Clustering Algorithms
•Observation whitening cluster.vq.whiten
•Vector quantization cluster.vq.vq
•K-means algorithm cluster.vq.kmeans
Editor's Notes
#50:Good
1. More efficient because it doesn’t force array copies for every operation.
2. It is often nice to rename the view of an array for manipulation. (A view of the odd and even arrays)
Bad
1. Can cause unexpected side-effects that are hard to track down.
2. When you would rather have a copy, it requires some ugliness.
#58:Bitwise operators only work on Integer arrays.
note: invert means bitwise_not (there is not a bitwise_not operator) -- probably should be though. invert is ambiguous. bitwise_not isn’t.
?? Why does left_shift convert the array from ‘b’ to ‘i’?
#59:difference between fabs, abs,absolute?
timing wise, fabs is about twice as slow on
Windows 2K as the other two. yikes!!