SlideShare a Scribd company logo
Germán Ferrari
Instituto de Computación, Universidad de la República, Uruguay
An embedded DSL to
manipulate MathProg
Mixed Integer
Programming
models within Scala
An embedded DSL to
manipulate MathProg
Mixed Integer
Programming
models within Scala
Germán Ferrari
Instituto de Computación, Universidad de la República, Uruguay
GNU MathProg
MathProg = Mathematical Programming
Has nothing to do with computer programming
It’s a synonym of “mathematical optimization”
A “program” here refers to a plan or schedule
GNU MathProg
It’s a modeling language
Optimization problem
Mathematical modeling
GNU MathProg
Computational experiments
Supported by the GNU Linear Programming Kit
GNU MathProg
Supports linear models, with either real or
integer decision variables
This is called “Mixed Integer Programming”
(MIP) because it mixes integer and real
variables
Generic MIP optimization problem
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Generic MIP optimization problem
Find x[j] and y[k], that minimize a function f,
satisfying constraints g[i]
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Generic MIP optimization problem
Find x[j] and y[k], that minimize a function f,
satisfying constraints g[i]
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Decision variables
(real or integer)
Generic MIP optimization problem
Find x[j] and y[k], that minimize a function f,
satisfying constraints g[i]
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Decision variables
(real or integer)
Objective
function
Generic MIP optimization problem
Find x[j] and y[k], that minimize a function f,
satisfying constraints g[i]
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Decision variables
(real or integer)
Objective
function
Constraints
Generic MIP optimization problem
Find x[j] and y[k], that minimize a function f,
satisfying constraints g[i]
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <= b[i];
Decision variables
(real or integer)
Objective
function
Constraints
Linear
Generic MIP optimization problem
Full model
param m; param n; param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J}; param d{K};
param a{I, J}; param e{I, K}; param b{I};
var x{J} integer, >= 0;
var y{K} >= 0;
minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
param m; param n; param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J}; param d{K};
param a{I, J}; param e{I, K}; param b{I};
var x{J} integer, >= 0;
var y{K} >= 0;
minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
Generic MIP optimization problem
Declaration of
variables
param m; param n; param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J}; param d{K};
param a{I, J}; param e{I, K}; param b{I};
var x{J} integer, >= 0;
var y{K} >= 0;
minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
Generic MIP optimization problem
Parameters
Generic MIP optimization problem
param m; param n; param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J}; param d{K};
param a{I, J}; param e{I, K}; param b{I};
var x{J} integer, >= 0;
var y{K} >= 0;
minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k];
subject to g{i in I}:
sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
Indexing sets
Why MathProg in Scala
Why MathProg in Scala
Generate constraints
Create derived models
Develop custom resolution methods at high
level
...
MathProg in Scala (deep embedding)
Syntax
Represent MathProg models with Scala data
types
Mimic MathProg syntax with Scala functions
Semantics
Generate MathProg code, others ...
MathProg in Scala (deep embedding)
Syntax
Represent MathProg models with Scala data
types
Mimic MathProg syntax with Scala functions
Semantics
Generate MathProg code, others ...
Abstract syntax tree
MathProg in Scala (deep embedding)
Syntax
Represent MathProg models with Scala data
types
Mimic MathProg syntax with Scala functions
Semantics
Generate MathProg code, others ...
Smart constructors and
combinators
Abstract syntax tree
MathProg EDSL
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
MathProg EDSL
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
set
param
xvar ...
MathProg EDSL
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
set
param
xvar ...
ParamStat(
"c",
domain = Some(
IndExpr(
List(
IndEntry(
Nil,
SetRef(J)
)
))))
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
MathProg EDSL
Scala range
notation for
arithmetic
sets
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
MathProg EDSL
Varargs for
simple indexing
expressions
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
MathProg EDSL
Returns a new
variable with the
`integer’ attribute
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
MathProg EDSL
Another variable,
now adding the
lower bound
attribute
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
val m = param("m")
val n = param("n")
val l = param("l")
val I = set("I") := 1 to m
val J = set("J") := 1 to n
val K = set("K") := 1 to l
val c = param("c", J)
val d = param("d", K)
val a = param("a", I, J)
// ...
val x = xvar("x", J).integer >= 0
val y = xvar("y", K) >= 0
param m;
param n;
param l;
set I := 1 .. m;
set J := 1 .. n;
set K := 1 .. l;
param c{J};
param d{K};
param a{I, J};
// ...
var x{J} integer, >= 0;
var y{K} >= 0;
MathProg EDSL
Everything is
immutable
MathProg EDSL
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL minimize
st ...
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL Multiple
parameters lists
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL Multiple
parameters lists
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL addition,
multiplication,
summation ...
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL References to
individual parameters
and variables by
application
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL
Constraint
minimize f:
sum{j in J} c[j] * x[j] +
sum{k in K} d[k] * y[k];
s.t. g{i in I}:
sum{j in J} a[i,j] * x[j] +
sum{k in K} e[i,k] * y[k] <=
b[i];
val f =
minimize("f") {
sum(j in J)(c(j) * x(j)) +
sum(k in K)(d(k) * y(k))
}
val g =
st("g", i in I) {
sum(j in J)(a(i, j) * x(j)) +
sum(k in K)(e(i, k) * y(k)) <=
b(i)
}
MathProg EDSL
Creates a new
constraint with the
specified name and
indexing
Implementing the syntax
Implementing the syntax
Many of the syntactic constructs require:
A broad (open?) number of overloadings
Be used with infix notation
Many of the syntactic constructs require:
A broad (open?) number of overloadings
Be used with infix notation
Implementing the syntax
type classes and
object-oriented forwarders
Many of the syntactic constructs require:
A broad (open?) number of overloadings
Be used with infix notation
Implementing the syntax
type classes and
object-oriented forwarders
implicits prioritization
Implementing the syntax: “>=”
param("p", J) >= 0
Implementing the syntax: “>=”
param("p", J) >= 0
ParamStat
Implementing the syntax: “>=”
param("p", J) >= 0
ParamStat
ParamStat doesn’t have a `>=’
method
Implementing the syntax: “>=”
param("p", J) >= 0
implicit conversion to
something that
provides the method
ParamStat doesn’t have a `>=’
method
ParamStat
Implementing the syntax: “>=”
param("p", J) >= 0 // ParamStat
param("p", J) >= p2 // ParamStat
xvar("x", I) >= 0 // VarStat
i >= j // LogicExpr
p(j1) >= p(j2) // LogicExpr
x(i) >= 0 // ConstraintStat
10 >= x(i) // ConstraintStat
Many overloadings
… more
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
Fully generic
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
trait GTEOp[A,B,C] {
def gte(lhe: A, rhe: B): C
}
Type class
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
trait GTEOp[A,B,C] {
def gte(lhe: A, rhe: B): C
}
Type class
The implementation is
forwarded to the implicit
instance
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
The available implicit instances
encode the rules by which the
operators can be used
Implementing the syntax: “>=”
implicit class GTESyntax[A](lhe: A) {
def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C =
GTEOp.gte(lhe, rhe)
}
The instance of the type class is
required at the method level, so
both A and B can be used in the
implicits search
Implementing the syntax: “>=”
instances
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr):
GTEOp[ParamStat, A, ParamStat] = /* ... */
>= for parameters and “numbers”
param(“p”) >= m
Implementing the syntax: “>=”
instances
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr):
GTEOp[ParamStat, A, ParamStat] = /* ... */
>= for parameters and “numbers”
param(“p”) >= m
Implementing the syntax: “>=”
instances
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr):
GTEOp[ParamStat, A, ParamStat] = /* ... */
>= for parameters and “numbers”
param(“p”) >= m
View bound
Implementing the syntax: “>=”
instances
implicit def VarStatGTEOp[A](
implicit conv: A => NumExpr):
GTEOp[VarStat, A, VarStat] = /* ... */
>= for variables and “numbers”
xvar(“x”) >= m
Analogous to the
parameter case
Implementing the syntax: “>=”
instances
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr):
GTEOp[A, B, LogicExpr] = /* ... */
>= for two “numbers”
i >= j
Implementing the syntax: “>=”
instances
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr):
GTEOp[A, B, LogicExpr] = /* ... */
>= for two “numbers”
i >= j
Implementing the syntax: “>=”
instances
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr):
GTEOp[A, B, LogicExpr] = /* ... */
>= for two “numbers”
i >= j
Implementing the syntax: “>=”
instances
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr,
convB: B => LinExpr):
GTEOp[A, B, ConstraintStat] = /* ... */
>= for two “linear expressions”
x(i) >= 0 and 10 >= x(i)
Analogous to the
numerical
expression case
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr)
conflicts with:
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr)
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr,
convB: B => LinExpr)
Instances are ambiguous
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr)
conflicts with:
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr)
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr,
convB: B => LinExpr)
Instances are ambiguous
`ParamStat <% NumExpr‘
to allow
`param(“p2”) >= p1’
Instances are ambiguous
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr,
convB: B => NumExpr)
conflicts with:
implicit def ParamStatGTEOp[A](
implicit conv: A => NumExpr)
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr,
convB: B => LinExpr)
NumExpr <: LinExpr
=>
NumExpr <% LinExpr
Implicits prioritization
trait GTEInstances extends GTEInstancesLowPriority1 {
implicit def ParamStatGTEOp[A](implicit conv: A => NumExpr) /* */
implicit def VarStatGTEOp[A](implicit conv: A => NumExpr) /* */
}
trait GTEInstancesLowPriority1 extends GTEInstancesLowPriority2 {
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr, convB: B => NumExpr) /* */
}
trait GTEInstancesLowPriority2 {
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr, convB: B => LinExpr) /* */
}
Implicits prioritization
trait GTEInstances extends GTEInstancesLowPriority1 {
implicit def ParamStatGTEOp[A](implicit conv: A => NumExpr) /* */
implicit def VarStatGTEOp[A](implicit conv: A => NumExpr) /* */
}
trait GTEInstancesLowPriority1 extends GTEInstancesLowPriority2 {
implicit def NumExprGTEOp[A, B](
implicit convA: A => NumExpr, convB: B => NumExpr) /* */
}
trait GTEInstancesLowPriority2 {
implicit def LinExprGTEOp[A, B](
implicit convA: A => LinExpr, convB: B => LinExpr) /* */
}
> priority
> priority
Next steps
New semantics
More static controls
Support other kind of problems beyond MIP
Talk directly to solvers
Arity, scope, ...
Multi-stage stochastic programming
import amphip.dsl._import amphip.dsl._
amphip is a collection of
experiments around
manipulating MathProg
models within Scala
github.com/gerferra/amphip
amphip is a collection of
experiments around
manipulating MathProg
models within Scala
github.com/gerferra/amphip
FIN
github.com/gerferra/amphip

More Related Content

PDF
Scala Abide: A lint tool for Scala
Iulian Dragos
 
PDF
Relational Databases are Evolving To Support New Data Capabilities
EDB
 
PDF
Your Code is Wrong
nathanmarz
 
PDF
Puppet at Google
Puppet
 
PPTX
Why Spark?
Álvaro Agea Herradón
 
PPT
Lp and ip programming cp 9
M S Prasad
 
PDF
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
In-Memory Computing Summit
 
PPT
Bba 3274 qm week 10 integer programming
Stephen Ong
 
Scala Abide: A lint tool for Scala
Iulian Dragos
 
Relational Databases are Evolving To Support New Data Capabilities
EDB
 
Your Code is Wrong
nathanmarz
 
Puppet at Google
Puppet
 
Lp and ip programming cp 9
M S Prasad
 
IMCSummit 2015 - Day 2 IT Business Track - 4 Myths about In-Memory Databases ...
In-Memory Computing Summit
 
Bba 3274 qm week 10 integer programming
Stephen Ong
 

Viewers also liked (14)

PDF
The Need for Async @ ScalaWorld
Konrad Malawski
 
PDF
Integer Programming, Gomory
AVINASH JURIANI
 
PDF
Integer programming
Hakeem-Ur- Rehman
 
PDF
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Helena Edelson
 
PPTX
Purely Functional Data Structures in Scala
Vladimir Kostyukov
 
PDF
Monadic Java
Mario Fusco
 
PDF
NewSQL overview, Feb 2015
Ivan Glushkov
 
PDF
The Newest in Session Types
Roland Kuhn
 
PPT
Scala Days San Francisco
Martin Odersky
 
PDF
Espresso: LinkedIn's Distributed Data Serving Platform (Paper)
Amy W. Tang
 
PDF
Mixed Integer Programming: Analyzing 12 Years of Progress
IBM Decision Optimization
 
PDF
Functional Programming Patterns (BuildStuff '14)
Scott Wlaschin
 
PDF
Concurrency: The Good, The Bad and The Ugly
legendofklang
 
PPT
Simplex two phase
Shakti Ranjan
 
The Need for Async @ ScalaWorld
Konrad Malawski
 
Integer Programming, Gomory
AVINASH JURIANI
 
Integer programming
Hakeem-Ur- Rehman
 
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Helena Edelson
 
Purely Functional Data Structures in Scala
Vladimir Kostyukov
 
Monadic Java
Mario Fusco
 
NewSQL overview, Feb 2015
Ivan Glushkov
 
The Newest in Session Types
Roland Kuhn
 
Scala Days San Francisco
Martin Odersky
 
Espresso: LinkedIn's Distributed Data Serving Platform (Paper)
Amy W. Tang
 
Mixed Integer Programming: Analyzing 12 Years of Progress
IBM Decision Optimization
 
Functional Programming Patterns (BuildStuff '14)
Scott Wlaschin
 
Concurrency: The Good, The Bad and The Ugly
legendofklang
 
Simplex two phase
Shakti Ranjan
 

Recently uploaded (20)

PPT
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
DOCX
Can You Build Dashboards Using Open Source Visualization Tool.docx
Varsha Nayak
 
PDF
Bandai Playdia The Book - David Glotz
BluePanther6
 
PDF
What to consider before purchasing Microsoft 365 Business Premium_PDF.pdf
Q-Advise
 
PPTX
ASSIGNMENT_1[1][1][1][1][1] (1) variables.pptx
kr2589474
 
PDF
lesson-2-rules-of-netiquette.pdf.bshhsjdj
jasmenrojas249
 
PDF
49784907924775488180_LRN2959_Data_Pump_23ai.pdf
Abilash868456
 
PPTX
Why Use Open Source Reporting Tools for Business Intelligence.pptx
Varsha Nayak
 
PPTX
Contractor Management Platform and Software Solution for Compliance
SHEQ Network Limited
 
PPTX
classification of computer and basic part of digital computer
ravisinghrajpurohit3
 
PDF
QAware_Mario-Leander_Reimer_Architecting and Building a K8s-based AI Platform...
QAware GmbH
 
PDF
Micromaid: A simple Mermaid-like chart generator for Pharo
ESUG
 
PPTX
Odoo Integration Services by Candidroot Solutions
CandidRoot Solutions Private Limited
 
PDF
IEEE-CS Tech Predictions, SWEBOK and Quantum Software: Towards Q-SWEBOK
Hironori Washizaki
 
PPT
Activate_Methodology_Summary presentatio
annapureddyn
 
PDF
Become an Agentblazer Champion Challenge Kickoff
Dele Amefo
 
PPTX
Smart Panchayat Raj e-Governance App.pptx
Rohitnikam33
 
PPTX
Presentation about variables and constant.pptx
safalsingh810
 
PDF
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 
PDF
advancepresentationskillshdhdhhdhdhdhhfhf
jasmenrojas249
 
Why Reliable Server Maintenance Service in New York is Crucial for Your Business
Sam Vohra
 
Can You Build Dashboards Using Open Source Visualization Tool.docx
Varsha Nayak
 
Bandai Playdia The Book - David Glotz
BluePanther6
 
What to consider before purchasing Microsoft 365 Business Premium_PDF.pdf
Q-Advise
 
ASSIGNMENT_1[1][1][1][1][1] (1) variables.pptx
kr2589474
 
lesson-2-rules-of-netiquette.pdf.bshhsjdj
jasmenrojas249
 
49784907924775488180_LRN2959_Data_Pump_23ai.pdf
Abilash868456
 
Why Use Open Source Reporting Tools for Business Intelligence.pptx
Varsha Nayak
 
Contractor Management Platform and Software Solution for Compliance
SHEQ Network Limited
 
classification of computer and basic part of digital computer
ravisinghrajpurohit3
 
QAware_Mario-Leander_Reimer_Architecting and Building a K8s-based AI Platform...
QAware GmbH
 
Micromaid: A simple Mermaid-like chart generator for Pharo
ESUG
 
Odoo Integration Services by Candidroot Solutions
CandidRoot Solutions Private Limited
 
IEEE-CS Tech Predictions, SWEBOK and Quantum Software: Towards Q-SWEBOK
Hironori Washizaki
 
Activate_Methodology_Summary presentatio
annapureddyn
 
Become an Agentblazer Champion Challenge Kickoff
Dele Amefo
 
Smart Panchayat Raj e-Governance App.pptx
Rohitnikam33
 
Presentation about variables and constant.pptx
safalsingh810
 
Salesforce Implementation Services Provider.pdf
VALiNTRY360
 
advancepresentationskillshdhdhhdhdhdhhfhf
jasmenrojas249
 

An embedded DSL to manipulate MathProg Mixed Integer Programming models within Scala

  • 1. Germán Ferrari Instituto de Computación, Universidad de la República, Uruguay An embedded DSL to manipulate MathProg Mixed Integer Programming models within Scala An embedded DSL to manipulate MathProg Mixed Integer Programming models within Scala Germán Ferrari Instituto de Computación, Universidad de la República, Uruguay
  • 2. GNU MathProg MathProg = Mathematical Programming Has nothing to do with computer programming It’s a synonym of “mathematical optimization” A “program” here refers to a plan or schedule
  • 3. GNU MathProg It’s a modeling language Optimization problem Mathematical modeling GNU MathProg Computational experiments Supported by the GNU Linear Programming Kit
  • 4. GNU MathProg Supports linear models, with either real or integer decision variables This is called “Mixed Integer Programming” (MIP) because it mixes integer and real variables
  • 5. Generic MIP optimization problem minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
  • 6. Generic MIP optimization problem Find x[j] and y[k], that minimize a function f, satisfying constraints g[i] minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
  • 7. Generic MIP optimization problem Find x[j] and y[k], that minimize a function f, satisfying constraints g[i] minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Decision variables (real or integer)
  • 8. Generic MIP optimization problem Find x[j] and y[k], that minimize a function f, satisfying constraints g[i] minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Decision variables (real or integer) Objective function
  • 9. Generic MIP optimization problem Find x[j] and y[k], that minimize a function f, satisfying constraints g[i] minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Decision variables (real or integer) Objective function Constraints
  • 10. Generic MIP optimization problem Find x[j] and y[k], that minimize a function f, satisfying constraints g[i] minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Decision variables (real or integer) Objective function Constraints Linear
  • 11. Generic MIP optimization problem Full model param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; param e{I, K}; param b{I}; var x{J} integer, >= 0; var y{K} >= 0; minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i];
  • 12. param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; param e{I, K}; param b{I}; var x{J} integer, >= 0; var y{K} >= 0; minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Generic MIP optimization problem Declaration of variables
  • 13. param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; param e{I, K}; param b{I}; var x{J} integer, >= 0; var y{K} >= 0; minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Generic MIP optimization problem Parameters
  • 14. Generic MIP optimization problem param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; param e{I, K}; param b{I}; var x{J} integer, >= 0; var y{K} >= 0; minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; subject to g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; Indexing sets
  • 16. Why MathProg in Scala Generate constraints Create derived models Develop custom resolution methods at high level ...
  • 17. MathProg in Scala (deep embedding) Syntax Represent MathProg models with Scala data types Mimic MathProg syntax with Scala functions Semantics Generate MathProg code, others ...
  • 18. MathProg in Scala (deep embedding) Syntax Represent MathProg models with Scala data types Mimic MathProg syntax with Scala functions Semantics Generate MathProg code, others ... Abstract syntax tree
  • 19. MathProg in Scala (deep embedding) Syntax Represent MathProg models with Scala data types Mimic MathProg syntax with Scala functions Semantics Generate MathProg code, others ... Smart constructors and combinators Abstract syntax tree
  • 20. MathProg EDSL param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0
  • 21. MathProg EDSL param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 set param xvar ...
  • 22. MathProg EDSL param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 set param xvar ... ParamStat( "c", domain = Some( IndExpr( List( IndEntry( Nil, SetRef(J) ) ))))
  • 23. val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 MathProg EDSL Scala range notation for arithmetic sets param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0;
  • 24. val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; MathProg EDSL Varargs for simple indexing expressions
  • 25. val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; MathProg EDSL Returns a new variable with the `integer’ attribute
  • 26. val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 MathProg EDSL Another variable, now adding the lower bound attribute param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0;
  • 27. val m = param("m") val n = param("n") val l = param("l") val I = set("I") := 1 to m val J = set("J") := 1 to n val K = set("K") := 1 to l val c = param("c", J) val d = param("d", K) val a = param("a", I, J) // ... val x = xvar("x", J).integer >= 0 val y = xvar("y", K) >= 0 param m; param n; param l; set I := 1 .. m; set J := 1 .. n; set K := 1 .. l; param c{J}; param d{K}; param a{I, J}; // ... var x{J} integer, >= 0; var y{K} >= 0; MathProg EDSL Everything is immutable
  • 28. MathProg EDSL minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) }
  • 29. MathProg EDSL minimize st ... minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) }
  • 30. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL Multiple parameters lists
  • 31. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL Multiple parameters lists
  • 32. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL addition, multiplication, summation ...
  • 33. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL References to individual parameters and variables by application
  • 34. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL Constraint
  • 35. minimize f: sum{j in J} c[j] * x[j] + sum{k in K} d[k] * y[k]; s.t. g{i in I}: sum{j in J} a[i,j] * x[j] + sum{k in K} e[i,k] * y[k] <= b[i]; val f = minimize("f") { sum(j in J)(c(j) * x(j)) + sum(k in K)(d(k) * y(k)) } val g = st("g", i in I) { sum(j in J)(a(i, j) * x(j)) + sum(k in K)(e(i, k) * y(k)) <= b(i) } MathProg EDSL Creates a new constraint with the specified name and indexing
  • 37. Implementing the syntax Many of the syntactic constructs require: A broad (open?) number of overloadings Be used with infix notation
  • 38. Many of the syntactic constructs require: A broad (open?) number of overloadings Be used with infix notation Implementing the syntax type classes and object-oriented forwarders
  • 39. Many of the syntactic constructs require: A broad (open?) number of overloadings Be used with infix notation Implementing the syntax type classes and object-oriented forwarders implicits prioritization
  • 40. Implementing the syntax: “>=” param("p", J) >= 0
  • 41. Implementing the syntax: “>=” param("p", J) >= 0 ParamStat
  • 42. Implementing the syntax: “>=” param("p", J) >= 0 ParamStat ParamStat doesn’t have a `>=’ method
  • 43. Implementing the syntax: “>=” param("p", J) >= 0 implicit conversion to something that provides the method ParamStat doesn’t have a `>=’ method ParamStat
  • 44. Implementing the syntax: “>=” param("p", J) >= 0 // ParamStat param("p", J) >= p2 // ParamStat xvar("x", I) >= 0 // VarStat i >= j // LogicExpr p(j1) >= p(j2) // LogicExpr x(i) >= 0 // ConstraintStat 10 >= x(i) // ConstraintStat Many overloadings … more
  • 45. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) }
  • 46. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) } Fully generic
  • 47. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) } trait GTEOp[A,B,C] { def gte(lhe: A, rhe: B): C } Type class
  • 48. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) } trait GTEOp[A,B,C] { def gte(lhe: A, rhe: B): C } Type class The implementation is forwarded to the implicit instance
  • 49. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) } The available implicit instances encode the rules by which the operators can be used
  • 50. Implementing the syntax: “>=” implicit class GTESyntax[A](lhe: A) { def >=[B, C](rhe: B)(implicit GTEOp: GTEOp[A,B,C]): C = GTEOp.gte(lhe, rhe) } The instance of the type class is required at the method level, so both A and B can be used in the implicits search
  • 51. Implementing the syntax: “>=” instances implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr): GTEOp[ParamStat, A, ParamStat] = /* ... */ >= for parameters and “numbers” param(“p”) >= m
  • 52. Implementing the syntax: “>=” instances implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr): GTEOp[ParamStat, A, ParamStat] = /* ... */ >= for parameters and “numbers” param(“p”) >= m
  • 53. Implementing the syntax: “>=” instances implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr): GTEOp[ParamStat, A, ParamStat] = /* ... */ >= for parameters and “numbers” param(“p”) >= m View bound
  • 54. Implementing the syntax: “>=” instances implicit def VarStatGTEOp[A]( implicit conv: A => NumExpr): GTEOp[VarStat, A, VarStat] = /* ... */ >= for variables and “numbers” xvar(“x”) >= m Analogous to the parameter case
  • 55. Implementing the syntax: “>=” instances implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr): GTEOp[A, B, LogicExpr] = /* ... */ >= for two “numbers” i >= j
  • 56. Implementing the syntax: “>=” instances implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr): GTEOp[A, B, LogicExpr] = /* ... */ >= for two “numbers” i >= j
  • 57. Implementing the syntax: “>=” instances implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr): GTEOp[A, B, LogicExpr] = /* ... */ >= for two “numbers” i >= j
  • 58. Implementing the syntax: “>=” instances implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr): GTEOp[A, B, ConstraintStat] = /* ... */ >= for two “linear expressions” x(i) >= 0 and 10 >= x(i) Analogous to the numerical expression case
  • 59. implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr) conflicts with: implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr) implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr) Instances are ambiguous
  • 60. implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr) conflicts with: implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr) implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr) Instances are ambiguous `ParamStat <% NumExpr‘ to allow `param(“p2”) >= p1’
  • 61. Instances are ambiguous implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr) conflicts with: implicit def ParamStatGTEOp[A]( implicit conv: A => NumExpr) implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr) NumExpr <: LinExpr => NumExpr <% LinExpr
  • 62. Implicits prioritization trait GTEInstances extends GTEInstancesLowPriority1 { implicit def ParamStatGTEOp[A](implicit conv: A => NumExpr) /* */ implicit def VarStatGTEOp[A](implicit conv: A => NumExpr) /* */ } trait GTEInstancesLowPriority1 extends GTEInstancesLowPriority2 { implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr) /* */ } trait GTEInstancesLowPriority2 { implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr) /* */ }
  • 63. Implicits prioritization trait GTEInstances extends GTEInstancesLowPriority1 { implicit def ParamStatGTEOp[A](implicit conv: A => NumExpr) /* */ implicit def VarStatGTEOp[A](implicit conv: A => NumExpr) /* */ } trait GTEInstancesLowPriority1 extends GTEInstancesLowPriority2 { implicit def NumExprGTEOp[A, B]( implicit convA: A => NumExpr, convB: B => NumExpr) /* */ } trait GTEInstancesLowPriority2 { implicit def LinExprGTEOp[A, B]( implicit convA: A => LinExpr, convB: B => LinExpr) /* */ } > priority > priority
  • 64. Next steps New semantics More static controls Support other kind of problems beyond MIP Talk directly to solvers Arity, scope, ... Multi-stage stochastic programming
  • 65. import amphip.dsl._import amphip.dsl._ amphip is a collection of experiments around manipulating MathProg models within Scala github.com/gerferra/amphip amphip is a collection of experiments around manipulating MathProg models within Scala github.com/gerferra/amphip