Opens in a new windowOpens an external websiteOpens an external website in a new window
This website utilizes technologies such as cookies to enable essential site functionality, as well as for analytics, personalization, and targeted advertising purposes. To learn more, view the following link: Cookie Policy
1. The document discusses various statistical and neural network-based models for representing words and modeling semantics, including LSI, PLSI, LDA, word2vec, and neural network language models.
2. These models represent words based on their distributional properties and contexts using techniques like matrix factorization, probabilistic modeling, and neural networks to learn vector representations.
3. Recent models like word2vec use neural networks to learn word embeddings that capture linguistic regularities and can be used for tasks like analogy-making and machine translation.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include:
1. Masked prediction tasks that predict masked patches of the input image.
2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image.
3. Self-distillation methods like DINO that distill a teacher ViT into a student ViT using different views of the same image.
4. Hybrid approaches that combine masked prediction with self-distillation, such as iBOT.
本スライドは、弊社の梅本により弊社内の技術勉強会で使用されたものです。
近年注目を集めるアーキテクチャーである「Transformer」の解説スライドとなっております。
"Arithmer Seminar" is weekly held, where professionals from within and outside our company give lectures on their respective expertise.
The slides are made by the lecturer from outside our company, and shared here with his/her permission.
Arithmer株式会社は東京大学大学院数理科学研究科発の数学の会社です。私達は現代数学を応用して、様々な分野のソリューションに、新しい高度AIシステムを導入しています。AIをいかに上手に使って仕事を効率化するか、そして人々の役に立つ結果を生み出すのか、それを考えるのが私たちの仕事です。
Arithmer began at the University of Tokyo Graduate School of Mathematical Sciences. Today, our research of modern mathematics and AI systems has the capability of providing solutions when dealing with tough complex issues. At Arithmer we believe it is our job to realize the functions of AI through improving work efficiency and producing more useful results for society.
This document discusses Python and machine learning libraries like scikit-learn. It provides code examples for loading data, fitting models, and making predictions using scikit-learn algorithms. It also covers working with NumPy arrays and loading data from files like CSVs.
This document discusses Mahout, an Apache project for machine learning algorithms like classification, clustering, and pattern mining. It describes using Mahout with Hadoop to build a Naive Bayes classifier on Wikipedia data to classify articles into categories like "game" and "sports". The process includes splitting Wikipedia XML, training the classifier on Hadoop, and testing it to generate a confusion matrix. Mahout can also integrate with other systems like HBase for real-time classification.