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A. INTERACTION POTENTIAL

We use a regularised inverse power law 1/r12 pairwise additive potential [1] with

Uij = ε

[
1

(rij/σ̃ij)a
+ c0 + c1(rij/σ̃ij)

2 + c2(rij/σ̃ij)
4

]
Θ(rc − rij/σ̃ij), (A1)

σ̃ij =
σi + σj

2
(1− 0.2|σi − σj |), (A2)

a = 12, rc = 1.25, c0 = −8 + a(a+ 6)

8rac
, c1 =

a(a+ 4)

4ra+2
c

, c2 = −a(a+ 2)

8ra+4
c

. (A3)

The coefficients c0, c1, and c2 make the potential and its first two derivatives continuous at the cutoff distance rc –
which is needed by the conjugate gradient minimisation method – and the pair interaction is slightly non-additive to
improve the glass-forming ability of the system. The continuity of the second derivative of the potential is a necessary
condition for the convergence of our conjugate gradient algorithm.

B. ELASTIC DISPLACEMENTS

We consider the Hessian matrix H with elements

Hiγ,jδ =
∂2

∂rγi ∂r
δ
j

U (B1)

where Greek indices are used for spatial dimensions and Latin indices for particles. Eq. (12) is equivalent to

−
∑
j,δ

Hiγ,jδδr
δ
j + Ξiγ = 0 (B2)

and can be inverted as

δriγ =
∑
j,δ

(H−1)iγ,jδΞjδ. (B3)

The Hessian matrix H is symmetric and real-valued so that, by virtue of the spectral theorem, there exists an
orthonormal basis of eigenvectors ea, associated with eigenvalues Λa, that diagonalises it:

Hiγ,jδ =
∑
a

Λaea,iγea,jδ. (B4)

Introducing the projection of the affine force along eigenvector ea,

Ξa =
∑
j,δ

Ξjδea,jδ (B5)
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and employing the diagonalised form of the Hessian, Eq. (B3) then becomes

δriγ =
∑
a

ΞaΛ
−1
a ea,iγ . (B6)

Here we have implicitly omitted eigenvectors with zero eigenvalues Λa = 0: these correspond to translations, which
are explicitly excluded from δriγ as we work in the centre-of-mass frame.

We now approximate the eigenvectors of H as the transverse and longitudinal plane wave eigenstates of the Navier
operator [2, 3] for the displacement field in an elastic medium, with the associated eigenvalues proportional to the
square of the wavevector,

a ≡ (m,n, α), Ξa ≡ Ξα
mn, ea,iγ ≈ eikmn·ri k̂αmnγ/N, Λa ≈ λα(m2 + n2)/N (B7)

where α = ||,⊥ is the polarisation direction, kmn = (2πm/L, 2πn/L) is the wavevector, k̂
||
mn = kmn/|kmn|, and

k̂⊥
mn = ez × k̂

||
mn. The displacement field (B6) can then be written as

δriγ =
∑

m,n,α

Ξα
mn

eikmn·ri k̂αmnγ

λα(m2 + n2)
(B8)

which is equivalent to Eq. (14).

We have checked numerically that the approximate plane wave eigenvectors are still orthonormal to O(1/N), and
that the projections of the affine forces Ξi onto both the exact and the approximate eigenvectors of the Hessian H all
have the same variance within statistical accuracy.

C. RESIDUAL FORCE

We compute the Taylor expansion of the force at time t:

−∇U(r(t)) = −∇U((r(t)− r(0)) + r(0)) = −∇U(r(0))−H(0)(r(t)− r(0)) +O(|r(t)− r(0)|2)
= −∇U(r(0)) + flin(t) + fres(t)

(C1)

where H(0) is the Hessian matrix computed at time 0, flin(t) = −H(0)(r(t) − r(0)) is the elastic (linear) force
corresponding to the displacement field r(t) − r(0), and fres(t) is the residual force. The effective potential energy
Ueff (7) is minimised at all times, therefore

−∇U(r(t)) + p(t)− p(t) = −∇U(r(0)) + p(0)− p(0) = 0

⇔ fres(t) = −flin(t)− [(p(t)− p(t))− (p(0)− p(0))]

⇔ fres(t) = H(0)(r(t)− r(0))− [(p(t)− p(t))− (p(0)− p(0))].

(C2)

One sees that fres(t) vanishes if and only if the displacement associated with the change in propulsion is purely elastic.

We plot in Fig. C1 the log-distribution of |fres(t)| for different rescaled times t′ = t/τp. At intermediate times, the
log-distribution is bimodal, with the 2 peaks separated by the value |fres| ≈ 20. This is similar to what is observed for
supercooled liquids (Ref. [4], Fig. SM4), and we thus use |fres| ≈ 20 as the threshold to identify rearranging particles.
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FIG. C1. Log-distribution of residual force (C2) for different lag times t′ = t/τp.
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