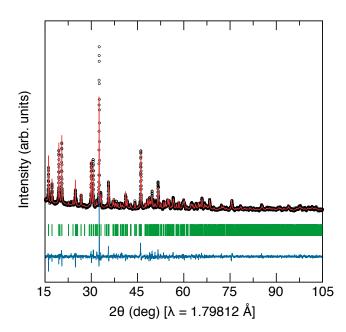
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

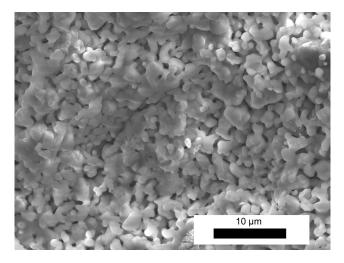
Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxx


Lithium-ion conductivity in Li₆Y(BO₃)₃: a thermally and electrochemically robust solid electrolyte[†]

Beatriz Lopez-Bermudez,^{*a} Wolfgang G. Zeier,^a Shiliang Zhou,^a Anna J. Lehner,^b Jerry Hu,^b David O. Scanlon,^{c,d} Benjamin J. Morgan,^{d*} and Brent C. Melot^{a*}


Received Date Accepted Date

DOI: 10.1039/xxxxxxxxxx

www.rsc.org/journalname

Figure S 1 Results of the Rietveld refinement of laboratory X-ray diffraction data on $\text{Li}_6\text{Y}(\text{BO}_3)_3$. R_{Bragg} =9.5%. The reflection markers (green) show no secondary reflections of any possible secondary phases.

Figure S 2 Scanning electron microscopy micrographs of a fractured surface of Li₆Y(BO₃)₃ in secondary electron mode, showing a $\sim 70\%$ dense materials with grain sizes between 1 μm to 5 μm and good connectivity between the grains. The random orientation of the grains corroborates a negligible degree of preferred orientation.

Table S 1 Temperature dependent lithium ion conductivity of $Li_6Y(BO_3, obtained using AC impedance measurements$

T (K)	σ (S·cm ⁻¹)
323	$1.93 \cdot 10^{-8}$
373	$3.23 \cdot 10^{-7}$
423	$2.64 \cdot 10^{-6}$
473	$1.57 \cdot 10^{-5}$
523	$4.71 \cdot 10^{-5}$
573	$1.74 \cdot 10^{-4}$
623	$7.04 \cdot 10^{-4}$
673	$2.27 \cdot 10^{-3}$
723	$6.59 \cdot 10^{-3}$
773	$1.75 \cdot 10^{-2}$

^a Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA E-mail: melot@usc.edu

- ^b Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- ^c University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- ^d Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- ^e Department of Chemistry, University of Bath, Claverton Down, BA2 7AY, United Kingdom

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

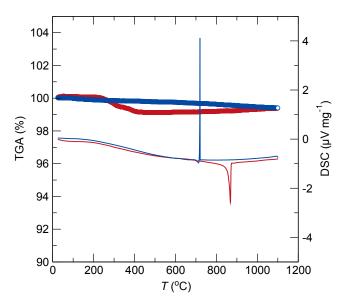


Figure S 3 Thermal analysis of $Li_6Y(BO_3)_3$ exhibits no changes in weight or reactions up to the melting point of 870°. The very minor change in weight, on the order of 1%, can be attributed to small errors associated with changes in buoyancy or potentially the evaporation of a small amount of surface moisture.

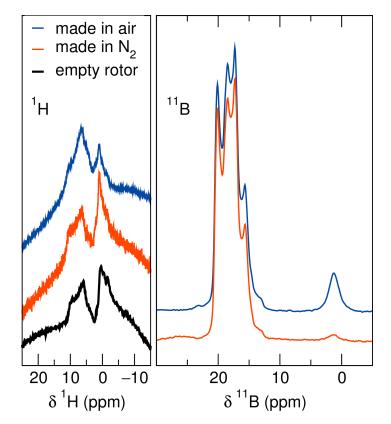


Figure S 4 1 H and 11 B MAS NMR spectra of Li₆Y(BO₃)₃ samples prepared by heating in air or N₂.

Table S 2 Energy of formation for vacancies at various Li positions, ΔE_f and energies relative to the most stable vacancy position, ΔE_{vac} .

Li site	ΔE_f (eV)	ΔE_{vac} (eV)
А	4.094	0.000
В	4.267	0.174
С	4.401	0.307
D	4.512	0.418
Е	4.715	0.621
F	4.794	0.701