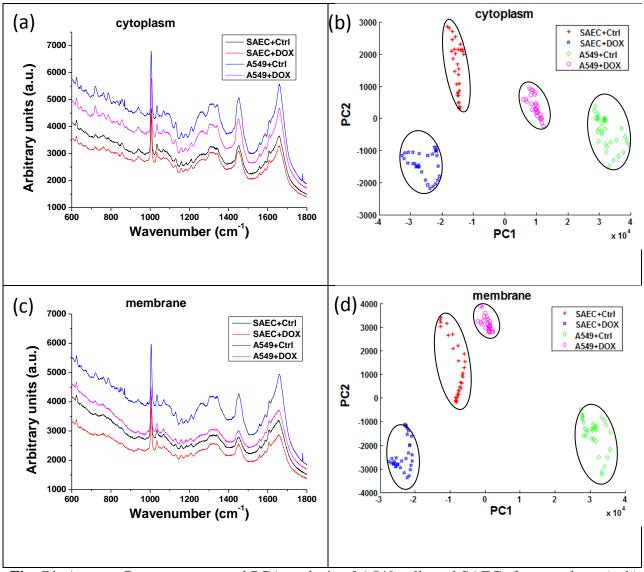
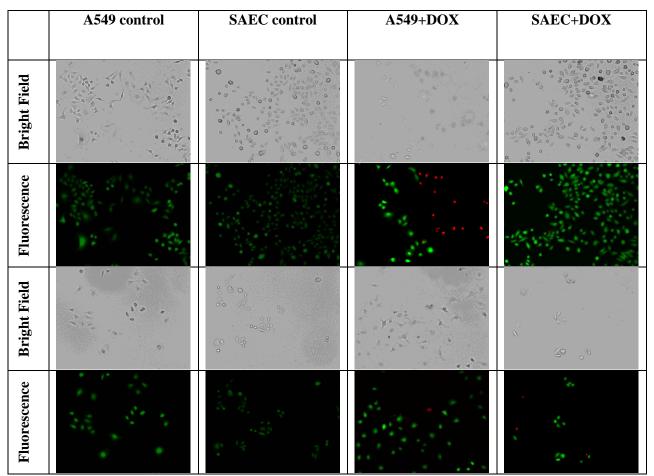
Non-invasive detection of biomechanical and biochemical responses of human lung cells to short time chemotherapy exposure using AFM and Confocal Raman Spectroscopy

Lifu Xiao, Mingjie Tang, Qifei Li, and Anhong Zhou


Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, U.S.A. Fax:1(435)797-1248; Tel:1(435)797-2863; E-mail: Anhong.Zhou@usu.edu

Electronic Supplementary Information


Experimental

1. Cell viability test:

The cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay Kit (Invitrogen) according to the manufacturer's instruction. Briefly, (1) Cells were cultured in poly-D-lysine coated glass-bottom dishes (MatTek Cop. USA) and MgF2 substrate which was put in Petri dishes for 24 hours; (2) cells were then washed with PBS twice; (3) 2 ml of mixed solution of 2 μ M Calcein AM and 4 μ M ethidium homodimer-1 (EthD-1) (both from Invitrogen) was added directly to cells, and incubated cells for 30 mins at room temperature; (5) cells were imaged using fluorescence microscope with DP30BW CCD camera (Olympus IX71) to analyze the relative proportion of live/dead cells. Here, a 10× objective was used to observe fluorescence. Calcein AM is well retained within live cells producing green fluorescence; however, EthD-1 enters cells with damaged membrane and binds to nucleic acids, thereby producing a red fluorescence in dead or membrane-damaged cells. Therefore, the live/dead cells were differentiated visually.

Fig. S1. Average Raman spectra and PCA analysis of A549 cells and SAECs for cytoplasm (a, b) and membrane (c, d) areas of control and DOX treatment (70nM, 4hr) experiment.

Fig. S2. Representative fluorescence images of cell viability test. Images of A549 cells and SAEC control (column 1, 2) and with DOX treatment (column 3, 4) were exhibited. Cells were stained with Invitrogen LIVE/DEAD Viability/ Cytotoxicity Assay Kit. Green fluorescence presented live cells, whereas red fluorescence showed dead or membrane-damaged cells. All images were obtained with $10\times$ lens. These fluorescence images together revealed that A549 cells and SAECs which were used for AFM (row 1, 2) and Raman (row 3, 4) experiments were mostly alive.

Table S1. Tentative Raman band assignments of Small Airway Epithelial Cells (SAEC) and human lung adenocarcinoma epithelial cell (A549)

Raman shift (cm ⁻¹)				
SAEC	A549	Band assignment		
624	624	Phenylalanine		
643	643	C-C twist Phenylalanine		
662	662	C-S stretching mode of cystine (collagen type I)		
666	666	G, T-tyrosine-G backbone in RNA		
672	669	C-S stretching mode of cytosine		
719	719	C-C-N+ symmetric stretching in phosphatidylcholine		
720	720	DNA		
762	762	Tryptophan		
786	785	DNA & phosphdiester bands DNA		
813	813	Phosphodiester bands RNA		
832	832	PO_2^- stretch nucleic acids		
854	853	Tyrosine		
880	881	Tryptophan		
900	901	Monosaccharides (b-glucose), (C-O-C) skeletal mode		
939	939	Skeletal modes (polysaccharides)		

961	961	Phosphate of HA; Calcium-phosphate stretch band
1006	1006	Phenylalanine
1034	1034	Phenylalanine
1066	1066	PO_2^- stretching; chain stretching; C-O, C-C stretching
1070-90	1070-90	Symmetric PO_2^- stretching of DNA (represents more DNA in cell)
1095	1095	Phosphodioxy group (PO_2^- in nucleic acids); Lipid
1129	1129	C-C skeletal stretch transconformation
1158	1158	Lipids and nucleic acids (C, G and A)
1179	1176	Cytosine, guanine
1213	1213	Tyrosine, phenylalanine
1254	1254	Lipid; A,T breathing mode (DNA/RNA); Amide III (protein)
1304	1304	CH ₂ deformation (lipid), adenine, cytosine
1306	1306	C-N stretching aromatic amines
1317-9	1317-9	Guanine (B,Z-marker)
1343	1342	G (DNA/RNA); CH deformation (proteins and carbohydrates)
1400-30	1400-30	γ (C=O) O ⁻ (amino acids aspartic & glutamic acid)
1451	1450	CH ₂ deformation (nucleic acid, proteins, lipids)
1579	1581	Pyrimidine ring (nucleic acids)

1608	1608	Phenylalanine, Tryptophan		
1660	1661	Amide I		
1740	1740	Collagen III		
Band assignment is based on ¹⁻⁹ .				

References

- 1. Z. Movasaghi, S. Rehman and I. U. Rehman, *Appl Spectrosc Rev*, 2007, **42**, 493-541.
- 2. C. Yu, E. Gestl, K. Eckert, D. Allara and J. Irudayaraj, *Cancer Detect Prev*, 2006, **30**, 515-522.
- 3. N. Stone, C. Kendall, J. Smith, P. Crow and H. Barr, *Faraday Discuss*, 2004, **126**, 141-157; discussion 169-183.
- 4. N. Stone, C. Kendall, N. Shepherd, P. Crow and H. Barr, *J Raman Spectrosc*, 2002, **33**, 564-573.
- 5. W. T. Cheng, M. T. Liu, H. N. Liu and S. Y. Lin, *Microsc Res Techniq*, 2005, **68**, 75-79.
- 6. G. Shetty, C. Kendall, N. Shepherd, N. Stone and H. Barr, *Brit J Cancer*, 2006, **94**, 1460-1464.
- 7. A. J. Ruiz-Chica, M. A. Medina, F. Sanchez-Jimenez and F. J. Ramirez, *J Raman Spectrosc*, 2004, **35**, 93-100.
- 8. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara and T. Huser, *Biophys J*, 2006, **90**, 648-656.
- 9. L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim and M. Diem, *Biospectroscopy*, 1998, **4**, 47-53.