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On the Modularity of Normal Forms in Rewriting
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The last open problem regarding the modularity of the fundamental properties of Term
Rewriting Systems concerns the property of uniqueness of normal forms w.r.t. reduction
(UN→). In this article we solve this open problem, showing that UN→ is modular for left-
linear Term Rewriting Systems. The novel “pile and delete” technique here introduced
allows for quite a short proof, and is of independent interest in the study of modu-
lar properties. Moreover, we also study the modularity of consistency w.r.t. reduction
(CON→), showing its modularity for left-linear Term Rewriting Systems.
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1. Introduction

Modularity, the ability to solve a problem by solving its smaller subparts, is a fundamental
topic in modern computer science. Indeed, besides being of interest from a theoretical
point of view, modularity has been receiving more and more attention in view of its great
potential for practical applications, both for the development and the analysis of large
systems.

As far as Term Rewriting Systems (TRSs) are concerned, a property is called modular
provided it is valid for two TRSs if and only if it holds for their disjoint union. This area
is nowadays a well established theory (see for instance Klop, 1990, 1992; Middledorp,
1990; Ohlebusch, 1995). It is known of every important property whether it is modular
or not, except for one: the last open problem, dating back to 1989 (Middledorp, 1989;
Dershowitz et al., 1991), regards the modularity of the uniqueness of normal forms with
respect to reduction (UN→ for short).

A TRS is said to have the UN→ property if every term has at most one normal form. As
is well known (cf. Middledorp, 1989), UN→ is not modular in general: for instance, despite
the two TRSs {a → c, a → e, b → d, b → e, e → e} and {F (X,X) → A} are UN→(as it
is easy to see), in their disjoint union the term F (a, b) has two distinct normal forms,
namely F (c, d) and A. However, whether UN→ is modular when also left-linearity is
assumed (that is, when the left-hand side of every rewrite rule has distinct variables) is
a question that remains unanswered.
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In this article we give a solution to this open problem, showing that UN→ is a modular
property for left-linear TRSs.

First, a suitable definition of modular marking of a term is introduced; this naturally
leads to the formulation of the key concept of modular collapsing (m-collapsing), that will
prove to be essential. Indeed, it is shown that, provided only that the TRS is left-linear,
failure of UN→ cannot occur without m-collapsings.

Second, the strategy we follow is not to analyse the complex behaviour that a general
reduction in the disjoint union of two TRSs can have, but instead to modify the reduction
in order to get a simpler one: using a novel technique called “pile and delete”, every
possible counterexample to the modularity of UN→ is translated into one without m-
collapsings, thus obtaining a contradiction.

This technique, besides allowing for a rather concise proof, turned out to be important
on its own. Since its application does not require the full power of UN→ but the weaker
property of consistency with respect to reduction (CON→), stating that a term cannot
be rewritten to two different variables, the same proof given here also yields the result
that CON→ is modular for left-linear Term Rewriting Systems.

In addition, a new easy and short proof of the modularity of completeness (see Toyama
et al., 1989, 1995) has been given in Marchiori (1995a) (even more: see Section 5).

Moreover, the technique has been recently extended in Marchiori (1995b) into a general
framework, called neatening, which provides a unique, uniform method able to prove
easily all the existing results on the modularity of every basic property of left-linear
Term Rewriting Systems.

The article is organized as follows: after giving the necessary preliminaries in Section 2,
Section 3 introduces the concepts of modular marking and modular collapsing, showing
their relevance in the study of UN→. Section 4 proves the main theorem stating the
modularity of UN→ for left-linear TRSs by means of the “pile and delete” technique.
Finally, Section 5 shows that, via the same proof, CON→ is modular for left-linear TRSs
as well, and examines the modular behaviour of other various weakenings of UN→.

2. Preliminaries

The notation used is essentially the one in Klop (1992) and Middledorp (1990).
We denote the fixed set of variables as V, and the set of terms built from some signature

Σ and V as T (Σ,V).
The root symbol of a term t ∈ T (Σ,V) is f if t = f(t1, . . . , tn), and t itself otherwise.
When talking about terms, we also need a way to manipulate the subterms contained in

them. So, given a signature Σ, a Σ-context (context for short) is a term in T (Σ∪{2},V),
where 2 is a special new symbol (which, intuitively, denotes an “empty place”). If C is a
context with n occurrences of 2, and t1, . . . , tn are terms, then C[t1, . . . , tn] denotes the
term obtained from C by replacing from left to right the occurrences of 2 with t1, . . . , tn.
For instance, if C = g(2, h(a,2)), then C[a, b] = g(a, h(a, b)).

A term rewriting system (TRS) R consists of a signature ΣR and a set of rewrite rules
(sometimes called simply rules). A rewrite rule is an object of the form l → r, where l
and r are terms from T (ΣR,V), such that l is not a variable and all the variables of r
appear also in l. l and r are called respectively the left-hand side and the right-hand side
of the rule.

A rewrite rule is is called left-linear if in the left-hand side every variable does not occur
more than once (e.g. f(g(X, g(Y, Z))→ g(X,X)). It is called collapsing if the right-hand
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side is a variable (e.g. f(X) → X). It is called duplicating if there is a variable which
occurs more times in the right-hand side than in the left-hand side (e.g. f(X)→ g(X,X)).
It is called erasing if there is a variable in the left-hand side which is not present in the
right-hand side (e.g. g(X,Y )→ f(X)). Also, we say a rule is non-collapsing (resp. non-
duplicating , non-erasing) if it is not collapsing (resp. duplicating, erasing). Analogously,
a term rewriting system is left-linear, non-collapsing, non-duplicating, non-erasing if each
of its rewrite rules is respectively left-linear, non-collapsing, non-duplicating, non-erasing.

A term rewriting system R determines a rewrite relation →R on T (ΣR,V), defined
this way. Given two terms t and t′, t→R t

′ if t = C[lσ] and t′ = C[rσ], for some context
C, substitution σ, and rewrite rule l → r in R. If t0 →R t1 →R t2 →R · · · →R tn
(n > 0), then we say that t0 reduces to tn in R; correspondingly, we call a reduction the
sequence t0, t1, . . . , tn, together with the information on what rewrite rule li → ri has
been used to reduce ti to ti+1 (0 ≤ i < n), and where it has been applied in ti (i.e. what
subterm of ti the rule rewrites).
→→R denotes the transitive and reflexive closure of→R. The convertibility relation ↔↔R

is the transitive, reflexive and symmetric closure of→R: we will then say that two terms
t and t′ are convertible if t ↔↔R t′. When R is clear from the context, we will simply
write Σ, →, →→ and ↔↔ in place of ΣR, →R, →→R, and ↔↔R.

A term t is in normal form for a TRS R if there is no other term t′ such that t → t′

(i.e., t cannot be reduced).
A TRS R is said to have unique normal forms w.r.t. reduction (briefly, to be UN→), if

every term reduces to at most one normal form in R. It is said consistent w.r.t. reduction
(CON→) if every term cannot reduce to two different variables.

2.1. modularity

When two term rewriting systems A and B have disjoint signatures, we denote with
A⊕ B their disjoint union, that is to say the TRS having as signature the union of the
signatures ΣA and ΣB, and as rewrite rules both the rewrite rules of A and those of B.
A property P of term rewriting systems is said to be modular if for every couple of TRSs
A and B with disjoint signatures, A ∈ P,B ∈ P ⇔ A⊕ B ∈ P.

Throughout the article we will indicate with A and B the two TRSs to operate on.
When not otherwise specified, all symbols and notions not having a TRS label are to
be intended operating on the disjoint union A ⊕ B. For clarity we will talk of function
symbols belonging to A and B like white and black functions, indicating the first ones
with upper case functions, and the second ones with lower case. Variables, instead, have
no colour.

Let t = C[t1, . . . , tn] ∈ T (ΣA ∪ ΣB,V) and C 6= 2; we write t = C[[t1, . . . , tn]] if C is
an ΣA-context and each of the ti has root(ti) ∈ ΣB, or vice versa (exchanging A and B).
The topmost homogeneous part (briefly top) of a term C[[t1, . . . , tn]] is the context C.

Definition 2.1. The rank of a term t ∈ T (ΣA ∪ ΣB,V) is 1 if t ∈ T (ΣA,V) or t ∈
T (ΣB,V), and maxni=1{rank(ti)}+ 1 if t = C[[t1, . . . , tn]] (n > 0).

The next well-known lemma will be implicitly used in the following:

Lemma 2.2. s→→ t⇒ rank(s) ≥ rank(t).
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Proof. Clear. 2

Definition 2.3. The multiset S(t) of the special subterms of a term t is

1 S(t) =
{
{t} if t ∈ (T (ΣA,V) ∪ T (ΣB,V))\V
∅ if t ∈ V

2 S(t) = ∪ni=1S(ti) ∪ {t} if t = C[[t1, . . . , tn]] (n > 0).

Note that this definition is slightly different from the usual ones in the literature (for
example in Middledorp, 1990), since variables are not considered to be special subterms.

If t = C[[t1, . . . , tn]], the ti are called the principal special subterms of t. Furthermore, a
reduction step of a term t is called outer if the rewrite rule is not applied in the principal
special subterms of t.

A (strict) partial order on the special subterms of a term can be naturally given defining
t1 Â t2 iff t2 is a proper special subterm of t1.

The following proposition is useful:

Proposition 2.4. If A and B are left-linear, then rewrite rules that have the possibility
to act outer on a special subterm t are exactly those that have the possibility to act on
its top.

Proof. Let t = C[[t1, . . . , tn]]: since t1, . . . , tn have a root belonging to the other TRS
(with respect to C), they are matched by variables from any rewrite rule applicable to C,
and for the left-linearity assumption these variables are independent of each other. 2

Note that left-linearity is essential for this proposition.

3. Marking and Collapsing

To be able to describe the special subterms of a given term throughout a reduction, it
is natural to develop a concept of (modular) marking. A first, näıve approach of modular
marking for a term is to take an assignment from the multiset of its special subterms to
a (fixed) set of markers. So, for instance, given the term F (f(G, a), H), we could mark
F (2, H) to m1, f(2, a) to m2, G to m3. Then reduction steps, as usual, should preserve
the markers. However, this simple definition presents a problem, since for one case there
is ambiguity: when a collapsing rule makes an inner top vanish. In this case, we have the
situation illustrated in Figure 1, where there is a conflict between m1 and m4.

This situation is dealt with by defining the modular marking for a term to be an
assignment from the multiset of its special subterms to sets of markers, and taking in the
ambiguous case just described the union of the marker sets of the two special subterms
involved.

Thus, the previous example would give what is shown in Figure 2 (singletons like {m3}
are written simply m3).

When this situation occurs, we say that the special subterm m4 has been absorbed
by m1, and the special subterm m2 has had a modular collapsing (briefly m-collapsing).
This last concept is crucial in the study of the UN→ property (cf. Theorem 3.3).

When dealing with reductions t→→ t′ we will always assume, in order to distinguish all
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m1

m2
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m1

m4 m3m3

m0 m0

?

?

Figure 1. Näıve modular marking.

m 3

m 0

{m   ,m   }41

Figure 2. Correct modular marking.

the special subterms, that the initial modular marking of t is injective and maps special
subterms to singletons.

Inside a reduction a notion of descendant for every special subterm can be defined: in
a reduction a special subterm is a descendant (resp. pure descendant) of another if the
set of markers of the former contains (resp. is equal to) the set of markers of the latter.
Note, en passant, that due to the presence of duplicating rules, there may be more than
one descendant, or even none (due to erasing rules).

Summing up, a special subterm, when a reduction step is applied, can only: (i) be
erased (ii) m-collapse (iii) be preserved (i.e. have descendants).

Observe also that, since in a reduction without m-collapsings all the descendants are
pure, the first special subterm to m-collapse in a generic reduction is a pure descendant.
Hence it readily holds the following:

Fact 3.1. A reduction has m-collapsings iff a pure descendant m-collapses.

3.1. left-linearity and UN→

When the left-linearity and UN→ properties are introduced, m-collapsings enjoy some
remarkable properties. First of all, they behave in a “deterministic” way, in the following
sense:
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Proposition 3.1. Let A be left-linear and UN→, and t = C[[t1, . . . , tn]] a top white
special subterm. Then, if t m-collapses into ti (1 ≤ i ≤ n) via a white reduction (i.e.
using only rules from A), the index i is unique.

Proof. SinceA is left-linear, by Proposition 2.4 the white reduction depends only on the
top of t. Hence, if we take instead of t = C[[t1, . . . , tn]] a term t′ = C[[X1, . . . , Xn]] (with
X1, . . . , Xn new fresh variables), then every previous white reduction that m-collapsed t
to ti can be repeated on t′ to reduce it to Xi, and if the index i were not unique t′ could
be reduced to different normal forms, contradicting the fact A is UN→. 2

Moreover, the concept of m-collapsing is crucial in the study of UN→ modularity for
the following reason:

Definition 3.2. A UN→ counterexample (briefly counterexample) is a pair (d1, d2),
where d1 : s →→ n1 and d2 : s →→ n2 are reductions starting from the same term s
(called the start) and ending in two normal forms n1 6= n2 (called the ends).

Theorem 3.3. If A and B are left-linear and UN→, then there is no counterexample
without m-collapsings.

Proof. Take a reduction without m-collapsings ending in a normal form. Every rule
acts on the top of a well specified special subterm, and this top cannot change since
no m-collapsing is present. Moreover, by Proposition 2.4, the application of these rules
depends only on the top itself. So for every top of a special subterm a separate reduction
is performed, that must eventually lead in the end to a unique top for the UN→ property,
and hence the resulting normal form is unique as well. 2

4. Pile and Delete

The pile and delete technique employed here allows (once given a term and some
reductions that normalize it) us to transform the given term (and correspondingly the
reductions too) in such a way as to preserve the set of normal forms previously obtained,
but this time with reductions in a nice form, that is without m-collapsings.

Proposition 4.1. If A and B are left-linear and UN→, every counterexample can be
translated into a counterexample without m-collapsings.

Proof. If the counterexample is already without m-collapsings, the assertion is trivially
satisfied. So, suppose it is not. Select a special subterm of the start of the counterexample
that has rank minimal amongst the ones with a pure descendant that m-collapses in the
counterexample itself: say t = τ [[t1, . . . , tn]].

This special subterm cannot have a pure descendant in the ends of the counterexample.
Indeed, suppose it is so, and t reaches a normal form n. Because of its rank minimality, t
must m-collapse by Proposition 3.1 into a fixed principal subterm, namely ti. So, substi-
tuting (in t) ti with a new fresh variable X, we can obtain by Proposition 2.4 a reduction
from this new term t′ to the normal form X which is without m-collapsings. On the
other hand, t also reduces to the normal form n via a reduction without m-collapsings
(again, by the minimality assumption) and so, by Proposition 2.4, disregarding what is
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in ti: therefore, also t′ reduces to n via the same reduction. So, t′ reduces both to X and
to n (which is different from X), hence giving a counterexample without m-collapsings,
in contrast with Theorem 3.3.

The fact that t alone cannot reach the ends does not mean that its top, τ , is not
needed at all in the counterexample: it may be needed, via absorption, from other white
tops of (≺)-greater special subterms in the counterexample. All of these special subterms
r̄1, . . . , r̄` are descendants of some special subterms of the start r1, . . . , rk (k ≤ `).

We can so try to perform “in advance” these absorptions, modifying directly the start
of the counterexample, using the following “pile and delete” technique.

First, we “pile” τ [[t1, . . . , ti−1,2, ti+1, . . . , tn]] just below the tops of the r1, . . . , rk. That
is to say if ri = ri[[s1, . . . , sv]] and t is in sj (viz. t ≺ sj), then ri is replaced with

ri[[s1, . . . , sj−1, τ [t1, . . . , ti−1, sj , ti+1, . . . , tn], sj+1, . . . , sv]].

The situation is illustrated in Figure 3.
Intuitively, the top of t is not really needed any more, since we have already inserted

copies of it where needed for absorption, and it has been proved earlier that t alone
cannot stay till an end of the counterexample: therefore we “delete” it replacing t by ti
(see Figure 4).

Now it has to be shown that the original counterexample can still be mimicked using
this revised start term; this can be done because we can get rid of the piled τ , when
not needed, using the original reduction from the counterexample that m-collapsed it
(t→→ ti).

- By minimality of t, the only effect of the rules acting on the pure descendants of t
but not on the pure descendants of ti was to m-collapse t into a descendant of ti
(if this is not the case, then it means that the descendant of t must be erased), and
so they can be dropped since we already replaced t with ti.

- When a descendant of t was absorbed by, say, r̄q, we have piled to its ancestor rp
(and so to its descendant r̄q) in that place τ [[t1, . . . , ti−1,2, ti+1, . . . , tn]], whereas the
old descendant of t is now the corresponding descendant of ti. So it only remains to
reduce the piled τ [[t1, . . . , ti−1,2, ti+1, . . . , tn]] as previously in the counterexample
to obtain exactly the same situation as before, and the new counterexample can
proceed in the mimicking (see Figure 5).
Note how these postponed reductions produce no m-collapsings.

- We inserted τ [[t1, . . . , ti−1,2, ti+1, . . . , tn]] below all the r1, . . . , rk, but actually pure
descendants of t may be absorbed in the initial counterexample only by part of the
descendants of these special subterms. However, we can get rid of these superfluous
occurrences of material acting, as hinted previously, with the rules that in the
initial counterexample made τ [[t1, . . . , ti−1,2, ti+1, . . . , tn]] collapse into 2: they are
applied to all of these extra descendants when the piled material is not needed any
more. This means that these “deleting sequences” must be applied

(i) when in the sequel of the original reduction the descendant of an rp will not
absorb a pure descendant of t any more, or

(ii) when the descendant of an rp absorbs another descendant of an rq (Figure 6).

Again, it is immediate to see that these deleting sequences produce no m-collapsings.
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Figure 3. The “pile” process.
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Figure 6. An application of a deleting sequence.
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This way we have obtained a new counterexample with a different start but the same
ends as the initial one. Once again, note that left-linearity, via Proposition 2.4, was
essential to be able to mimic the old counterexample.

Now consider the number of special subterms of the start with a descendant that m-
collapses in the counterexample itself: this new counterexample obtained via the pile and
delete technique has this number diminished at least by one with respect to the initial
counterexample; indeed, t is no more present, and as remarked no new m-collapsings are
introduced modifying the original reductions.

So, repeating this “pile and delete” process leads, ultimately, to a counterexample
without m-collapsings. 2

Example 4.2. Consider the two following (left-linear and UN→) TRSs

A =


F (X)→ G(X,X)
G(L(X,Y ), Z)→ Y
H(X,Y )→ L(X,Y )
A→ B

B =

 f(X)→ X
g(f(X))→ a
g(X)→ g(X)

and the reduction (unary functions like f(A) are for short written fA from now on)

gFfH(A, fA)→ gFfH(A, fB)→ gG(fH(A, fB), fH(A, fB))
→ gG(fH(A, fB), H(A, fB))→ gG(fH(A, fB), H(A,B))
→ gG(H(A, fB), H(A,B))→ gG(L(A, fB), H(A,B))→ gfB → a.

The special subterm of the starting term with minimal rank among the ones that m-
collapse in this reduction is fA. Thus, after the pile and delete process we get

gfFffH(A,A)→ gfFffH(A,B)→ gfG(ffH(A,B), ffH(A,B))
→ gfG(ffH(A,B), fH(A,B))→ gfG(ffH(A,B), H(A,B))
→ gfG(fH(A,B), H(A,B))→ gfG(H(A,B), H(A,B))
→ gfG(L(A,B), H(A,B))→ gfB → a.

Now the minimal special subterm of the starting term that m-collapses is ffH(A,A);
the corresponding reduction after the pile and delete is

gfffFH(A,A)→ gffFH(A,A)→ gfFH(A,A)→ gfFH(A,B)
→ gfG(H(A,B), H(A,B))→ gfG(L(A,B), H(A,B))→ gfB → a

and this reduction is without m-collapsings.

Theorem 4.3. UN→ is a modular property for left-linear TRSs.

Proof. One implication is obvious. On the other hand, if A and B are UN→ but A⊕B is
not, then it has a counterexample that can be translated into a counterexample without
m-collapsings by the above Proposition 4.1, contradicting Theorem 3.3. 2

5. Weakening UN→

The “pile and delete” technique does not need the full power of UN→, but it can be
applied under the weaker assumption of consistency with respect to reduction (briefly
CON→), that is satisfied if every term cannot be rewritten to two different variables.
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This is true since the “pile and delete” technique essentially relies upon Proposition 3.1,
that still holds if CON→ is required in place of UN→. Hence, if we replace the definition
of UN→-counterexample with the corresponding definition of CON→-counterexample
(where the ends are required to be variables), exactly the same proof here used for the
modularity of UN→ shows that:

Theorem 5.1. CON→ is a modular property for left-linear TRSs.

This result, together with the modularity of UN→ for left-linear TRSs, completes
an interesting parallelism between the pairs (UN, UN→) and (CON, CON→) (a TRS is
consistent, CON for short, if different variables cannot be convertible; analogously, a TRS
has the unique normal form property (UN) if different normal forms are not convertible).
Indeed, this parallelism is present in all the other cases, since:

(i) UN⇒ UN→ and UN 6⇐ UN→: the first implication is straightforward, while for the
second fact (cf. Middledorp, 1989), the TRS {a→ b, a→ c, c→ c, d→ c, d→ e} is
UN→ but not UN.

(ii) CON ⇒ CON→ and CON 6⇐ CON→: again, the first implication is trivial; for
the second fact, take the TRS {f(X) → X, f(X) → a} that is CON→ but X ←
f(X)→ a← f(Y )→ Y .

(iii) UN is modular unlike UN→: the modularity of UN has been proved in Middle-
dorp (1989), and a counterexample to the modularity of UN→ can be found in the
introduction of this paper.

(iv) CON is modular unlike CON→: the modularity of CON has been proved in Schmidt-
Schauß (1989), whereas to see that CON→ is not modular take the two TRSs
{f(X)→ X, f(X)→ a} and {F (X,X, Y )→ Y, F (X,Y, Y )→ X} that are CON→

but in their disjoint union X ← f(X) ← F (f(X), a, a) ← F (f(X), a, f(Y )) →
F (a, a, f(Y ))→ f(Y )→ Y .

Furthermore, using the fact that CON→ suffices to apply the pile and delete tech-
nique, exactly the same pile and delete technique employed here has been utilized in
Marchiori (1995a) not only to give a new easy and short proof of the deep result in
Toyama et al., (1989, 1995) stating the modularity of completeness for left-linear TRSs,
but also to extend that result by showing the modularity of termination for left-linear
and consistent with respect to reduction TRSs.

In this connection, Theorem 5.1 is extremely useful since it allows us to lift that result
to an arbitrary number of TRSs: if T1 and T2 are left-linear, CON→ and terminating
then T1⊕T2 is again left-linear (obvious), CON→ (by Theorem 5.1) and terminating (by
the aforementioned result), hence we can repeat this reasoning to prove termination for
the disjoint union of an arbitrary number of TRSs T1, . . . , Tn.

Other weakenings of UN→ do not have good modular behaviour. Indeed, consider the
property k-UN→ (k ≥ 1), satisfied if every term has at most k normal forms. Then for k =
1 we get just UN→, and for 1 ≤ i < j we have i-UN→⇒ j-UN→ but not vice versa (as it is
trivial to check). All the weaker properties k-UN→ (k > 1) are not modular even for left-
linear TRSs, as shown by the following counterexample. Let T (k)

1 = {a→ a1, . . . , a→ ak}
and T (k)

2 = {F (X,Y )→ G(X,Y )}. Then T (k)
1 and T (k)

2 are left-linear, k-UN→ and even
non-erasing and non-collapsing. Nevertheless, T (k)

1 ⊕ T (k)
2 is not k-UN→, since F (a, a)

has k2 normal forms corresponding toG(a1, a1), G(a1, a2), . . . , G(ak, ak). Note one cannot
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even provide a bound on the number of normal forms, since F (a, F (a, . . . , F (a, a) · · ·))
(with n occurrences of F ) has kn+1 normal forms.

Finally, let us conclude by saying that the main results proved in Theorems 4.3 and 5.1
do not hold for the more general combinations of TRSs so far studied, where the signa-
tures can somehow overlap (see e.g. Kurihara and Ohuchi, 1991; Klop, 1992; Ohlebusch,
1995). Even in the limited case of constructor-sharing systems (TRSs that can share
“constructors”, i.e. symbols not present at the top of the left-hand side in some rewrite
rule) there is a counterexample: T1 = {F (C(X), Y, Z) → Y, F (D(X), Y, Z) → Z} and
T2 = {a→ C(a), a→ D(a)} are left-linear and UN→, and share only the constructors C
and D, but their union is not CON→ (and so, a fortiori, also not UN→), since we have
the reductions Y ← F (C(a), Y, Z)← F (a, Y, Z)→ F (D(a), Y, Z)→ Z.
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