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Abstract

In this thesis, we consider optimization and variational problems where the data is
constrained to lie on a Riemannian manifold. Two examples, we will particularly focus
on, are the denoising of manifold-valued images by minimizing a total variation (TV)
functional and the minimization of the harmonic energy with prescribed boundary data.
Typical examples for the manifold in these applications are the sphere Sn (e.g. for the
chromaticity part of an RGB-image, or unit vector fields), the special orthogonal group
SO(n) (e.g. for rigid body motion) or the set of positive definite matrices SPD(n) (e.g.
for diffusion tensor magnetic resonance imaging (DT-MRI)).

For the optimization problems, we will use techniques of Absil et al. [3], which general-
ize many optimization techniques for functionals on Rn to optimization techniques for
functionals on manifolds. We present a theory which shows how these techniques can be
applied to our problems.

To minimize the TV functional, we propose an iteratively reweighted minimization
(IRM) algorithm, which is an adaptation of the well-known iteratively reweighted least
squares (IRLS) algorithm. We show that the algorithm can be applied to Hadamard
manifolds and the half-sphere.

To minimize the harmonic energy, we use a natural discretization. As it turns out, this
discretization has the same structure as the functional occuring in the IRM algorithm.
This will allow us to reuse derived results. In particular, it follows that the discretiza-
tion of the harmonic energy has a unique minimizer. For the half-sphere we can prove
convergence of the discrete minimizer towards the minimizer of the harmonic energy.
We will also present a general technique to numerically solve variational problems with
manifold valued data by minimizing the functional on a subspace. This subspace is
constructed from a classical “finite element space”. Minimizing a functional over the
subspace will reduce to an optimization problem on a Cartesian power of the manifold.
To estimate the discretization error, we will derive a nonlinear Céa lemma showing that
the discretization error can be bounded by the best approximation error. To estimate
the best approximation error, we generalize a class of approximation operators into finite
element spaces and show that the generalization satisfies the same error estimate as its
linear counterpart.

The thesis can be summarized by saying that we generalize numerical methods and theo-
ries for optimization and variational problems from the real-valued case to the manifold-
valued case.
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Zusammenfassung

In dieser Dissertation betrachten wir Optimierungs- und Variationsprobleme mit der Ne-
benbedingung, dass die Daten auf einer Riemannschen Mannigfaltigkeit liegen müssen.
Zwei Beispiele, denen wir uns besonders widmen, sind das Entrauschen von mannigfaltig-
keitswertigen Bildern mittels Minimierung eines Variationsfunktionals und die Minimie-
rung der harmonischen Energie mit vorgebenen Randdaten. Typische Beispiele für die
Mannigfaltigkeit in diesen Anwendungen sind die Sphäre Sn (z.B. für den Chromati-
zitätsanteil eines RGB-Bildes, oder Einheitsvektorfelder), die spezielle orthogonale Grup-
pe SO(n) (z.B. für starre Bewegungen) oder die Menge der positiv definiten Matrizen
SPD(n) (z.B. für die Diffusions-Tensor-Bildgebung (DT-MRI)).

Für die Optimierungsprobleme verwenden wir Techniken von Absil et al. [3], welche vie-
le Optimierungstechniken für Funktionale auf Rn zu Optimierungstechniken für Funk-
tionale auf Mannigfaltigkeiten verallgemeinern. Wir leiten eine Theorie her um diese
Techniken auf unsere Probleme anwenden zu können.

Um das Variationsfunktional zu minimieren, schlagen wir einen iterativen Neugewich-
tungsalgorithmus (IRM) vor, welcher eine Abwandlung des allgemein bekannten itera-
tiven kleinste Quadrate Neugewichtungsalgorithmus (IRLS) ist. Wir zeigen, dass unser
Algorithmus auf Hadamardmannigfaltigkeiten und die Halbkugel anwendbar ist.

Um die harmonische Energie zu minimieren, verwenden wir eine natürliche Diskreti-
sierung. Wie sich zeigen wird hat diese Diskretisierung die gleiche Struktur wie das
Funktional, welches beim IRM-Algorithmus auftritt. Dies wird uns erlauben, hergeleite-
te Resultate wiederzuverwenden. Unter anderem folgt dann, dass die Diskretisierung der
harmonischen Energie einen eindeutigen Minimierer hat. Für die Halbkugel können wir
zeigen, dass dieser Minimierer gegen den Minimierer der harmonischen Energie konver-
giert. Wir werden auch eine allgemeine Methode präsentieren, um numerisch Variations-
probleme mit mannigfaltigkeitswertigen Daten zu lösen. Die Methode basiert auf dem
Lösen des Minimierungsproblems auf einem Unterraum. Dieser Unterraum stammt je-
weils von einem “Finite Elemente Raum” ab. Minimierung eines Funktionals über diesen
Unterraum reduziert sich auf die Minimierung eines Funktionals auf dem kartesischen
Produkt einer Mannigfaltigkeit. Um den Diskretisierungsfehler abzuschätzen, werden
wir ein nichtlineares Céa-lemma herleiten, welches zeigt, dass der Diskretisierungsfeh-
ler mit dem bestmöglichen Fehler abgeschätzt werden kann. Um den bestmöglichen
Fehler abzuschätzen, verallgemeinern wir eine Klasse von Approximationsoperatoren
in Finite-Elemente-Räume und zeigen, dass die Verallgemeinerung die gleichen Fehler-
abschätzungen erfüllt wie das lineare Gegenstück.
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Zusammenfassend kann man sagen, dass die Arbeit numerische Methoden und Theorien
für Optimierungs- und Variationsprobleme vom reellwertigen auf den mannigfaltigkeits-
wertigen Fall verallgemeinert.
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Introduction

Many problems in physics and related disciplines can be formulated as optimization
or variational problems. Sometimes the solution we seek has to satisfy nonlinear con-
straints. In liquid crystal physics [5] or micromagnetics [20] we seek vector fields with
the constraint that the vectors have length 1, i.e. the vector field is a map from a do-
main Ω ⊂ Rs, s ∈ N into the sphere Sn := {x ∈ Rn+1 ∣∣ |x| = 1} with | · | the Euclidean
norm. The sphere is a classical example of a Riemannian manifold. In this thesis, we
design and analyze numerical methods for optimization and variational problems where
we have the constraint that our data has to lie on a Riemannian manifold M . In an
optimization problem, we want to find a minimizer of a functional J : M → R. In a
variational problem, we want to find a minimizer of a functional J : H → R where H is
a set of functions mapping Ω into M .

In Chapter 1, we introduce some basic concepts to deal with manifold-valued data.
That includes Riemannian manifolds, geodesics, the exponential map, the closest point
projection, optimization of manifold-valued functions and averages of manifold-valued
data.

Optimization problems on Riemannian manifolds have already been studied in Absil et
al. [3]. There, many optimization algorithms for functionals on the Euclidean space Rn
are generalized to optimization algorithms for functionals on a Riemannian manifold M .
The classical Newton method given by the iteration

φRn(p) = p− (Hess J(p))−1 grad J(p)

can for example be generalized using the iteration

φM (p) = expp(−(Hess J(p))−1 grad J(p)), (0.1)

where expp : TpM → M is the exponential map (Definition 1.1.4), TpM the tangent
space at p ∈ M , and Hess J(p) : TpM → TpM and grad J(p) ∈ TpM the Riemannian
Hessian and gradient defined in Section 1.3.1.

In Chapter 2, we deal with a concrete example of an optimization problem. We consider
images V →M where V is a set of pixels (usually a two-dimensional grid). Such images
appear naturally in various signal and image processing applications. Some examples
are:

• Grayscale images V → R [12].
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• RGB-images V → R3 [31].

• Chromaticity components V → S2 [50] of RGB-images u : V → R3 defined by
i 7→ ui/|ui| for all i ∈ V .

• DT-MRI (diffusion tensor magnetic resonance images) V → SPD(3) [29], where
SPD(3) denotes the set of positive definite 3× 3 matrices.

In many applications we are given only noisy measurements. Additionally, often various
pixel values are corrupted which leaves us with noisy measurements on a subset Vk ⊂ V
of the pixel set. The task is to restore the image u : V →M from partial and noisy data
un : Vk → M such that natural invariances of the manifold M are preserved. To solve
this task we minimize the functional J : MV → R defined by

J(u) :=
∑

i∈Vk⊂V
d2(ui, uni ) + λ

∑
(i,j)∈E

d(ui, uj) for all u = (ui)i∈V ∈MV . (0.2)

where λ > 0 is a positive constant balancing the fidelity and the total variation part
of the functional, E ⊂ V × V is a given set of pairs of pixels that are considered to be
close to each other and d : M ×M → R≥0 is a metric on M . If V is a two-dimensional
grid the edges E ⊂ V × V could be for example all pairs of pixels which are adjacent
(horizontally or vertically).

Unfortunately, the functional (0.2) does not have the required amount of smoothness to
apply the generalized Newton method (0.1) directly. To circumvent this problem, we
define a series of smooth optimization problems with functionals of the form

Jw(u) :=
∑

i∈Vk⊂V
d2(ui, uni ) + λ

∑
(i,j)∈E

wi,jd
2(ui, uj) for all u = (ui)i∈V ∈MV , (0.3)

where the weights w = (wi,j)(i,j)∈E ⊂ R>0 depend on the solution of the preceding
problem. Note that in (0.3) all distances are squared whereas in (0.2) also distances
without a square occur. To minimize Jw we propose to use the Riemannian Newton
method (0.1). We call the resulting procedure the iteratively reweighted minimization
(IRM) algorithm.

To study convergence properties of IRM, we examine under which conditions the func-
tional Jw has a unique critical point and consequently also a unique minimizer. In the
case M = R and d the Euclidean metric the functionals J respectively Jw are convex,
respectively strictly convex. One can use this to prove the existence of a unique critical
point of Jw. The same statement can be made for manifolds with non positive (sectional)
curvature, the so-called Hadamard manifolds. However, there are manifolds where J is
not convex and has multiple minimizers. An important example is the sphere (Example
2.4.1). However, if we restrict ourselves to the open half-sphere, we can, in spite of the
non-convexity, prove uniqueness of a minimizer of Jw (Theorem 2.4.2). The idea is to
prove local convexity at critical points and then use a tool from differential topology,
namely the Poincaré–Hopf theorem. An interesting open problem is whether this result
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for the half-sphere can be generalized to arbitrary manifolds, i.e. if for any Riemannian
manifold M , and a geodesically closed subset U ⊂M homeomorphic to a ball the func-
tional Jw restricted to U , defined in (0.3), with un : Vk → U , has a unique critical point
in U .

In Chapter 4, the goal is to numerically solve the following variational problem: given a
functional J : H → R, where H is a set of weakly differentiable functions from Ω ⊂ Rs
to a Riemannian manifold M , we want to find

u := arg min
w∈H

J (w). (0.4)

A prototypical functional is the harmonic energy defined by

J (u) := |u|2H1(Ω,M) :=
∫

Ω

s∑
i=1
|∂iu(x)|2g(u(x))dx, (0.5)

where ∂i denotes the derivative in the i-th direction and | · |g(p) is the norm on the
tangent space TpM . The set H could for example be all functions in H1(Ω,M), subject
to Dirichlet boundary conditions u|δΩ = g : δΩ → M . We propose and analyze two
numerical methods to solve such problems.

The first method is called finite distance method and is inspired by the well-known finite
difference method. The idea in the one-dimensional case is to approximate the integral
of the squared norm of the derivative by the squared distance, i.e.∫ x+h

x
|∂iu(t)|2dt ≈ h−1d2(u(x+ h), u(x)).

The corresponding discretized functional is of the same form as (0.3) and we can apply
the results for that problem (for example Theorem 2.4.2). We will call the corresponding
algorithm the finite distance method.

The second method, which we will call geometric finite element method, is inspired by
classical finite element theory. The idea is to solve the variational problem (0.4) on a
subspace V ⊂ H, i.e. we seek

v := arg min
w∈V

J (w). (0.6)

In the linear theory (i.e. when M = R) the subspace VR is usually a finite dimensional
vector space, i.e.

VR =
{∑
i∈I

piφi

∣∣∣∣∣ pi ∈ R
}

where I is a finite index set, φi : Ω → R a compactly supported function for all i ∈ I
and (φi)i∈I a basis of VR. Assuming that (φi)i∈I is a partition of unity, i.e. that∑
i∈I φi(x) = 1 holds for all x ∈ Ω, we have that

∑
i∈I piφi(x) is a weighted average of

the values (pi)i∈I ⊂ R with weights (φi(x))i∈I for all x ∈ Ω. In Chapter 1, we introduce
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weighted averages for manifold-valued data (pi)i∈I ⊂M . It follows that we can define a
space V by replacing the linear combination with a weighted average av, i.e.

V := {v : Ω→M, v(x) := av ((φi(x))i∈I , (pi)i∈I) | pi ∈M for all i ∈ I}. (0.7)

Note that a function in V is uniquely determined by the data (pi)i∈I ⊂ M . Hence
problem (0.6) is an optimization problem on the Cartesian power M I of the manifold
M .

To estimate the error |u− v|H1 , we prove a generalization (Lemma 4.3.1) of the classical
Céa lemma, i.e. we show that for elliptic J (Definition 4.1.1) the discretization error is
bounded by a constant times the best approximation error, i.e.

|u− v|H1 ≤ C inf
w∈V
|u− w|H1 ,

where C > 0 is a constant depending only on the ellipticity constants of J : H → R. It
is then sufficient to study the approximation properties of the space VM , which we will
do in Chapter 3.

Notation

Before we start, we fix some notation we are going to use throughout the thesis.

We write AT for the transpose of a matrix A. We denote the standard inner product by
〈·, ·〉. For orthogonal x, y ∈ Rn (i.e. when 〈x, y〉 = 0) we write x ⊥ y. By id we denote
the identity function.

If for two quantities A and B depending on certain parameters there exists a constant
C > 0 such that A ≤ CB independent of the choice of the parameters we write A . B.

If (V, | · |) and (W, | · |) are two normed vector spaces, r ∈ N and A : V → W satisfies
|A(v)| . |v|r for |v| sufficiently small we write A(v) = O(|v|r). Similarly, if |A(v)| < ε|v|r
for any ε > 0 and |v| sufficiently small we write A(v) = o(|v|r).

For a functionG and r ∈ N we denote byG(r) its r-th derivative. We sometimes also write
G′, G′′ respectively G′′′ for the first, second respectively third derivative of G. For the
r-th derivative at x applied to y1, y2, . . . , yr we write G(r)(x)[y1, . . . , yr]. By |·| we denote
the Euclidean norm and by ‖ · ‖ the operator norm with respect to the Euclidean norm.
We write C(X,Y ) respectively Cr(X,Y ) for the space of all continuous respectively r-
times continuously differentiable functions from X to Y . For G ∈ Cr(X,Y ) we define
|G|Cr := supx∈X ‖G(r)(x)‖.

For l ∈ N and p ∈ [1,∞] we denote by W l,p the Sobolev space of l times weakly differen-
tiable functions from a domain Ω ⊂ Rs to R with derivatives in Lp(Ω). By W l,p(Ω,Rn)
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we denote the set of all measurable functions v : Ω → Rn such that |v|2 ∈ W l,p where
|v|2(x) := |v(x)| for all x ∈ Ω. We define a seminorm and norm on W l,p(Ω,Rn) by

|v|W l,p :=

 ∑
~a∈Ns

|~a|1=l

∥∥∥|D~av|2
∥∥∥p
Lp


1
p

and ‖v‖W l,p :=

 ∑
~a∈Ns

|~a|1≤l

∥∥∥|D~av|2
∥∥∥p
Lp


1
p

, (0.8)

where for ~a = (a1, . . . , as) ∈ Ns we define |~a|1 :=
∑s
i=1 ai and

D~a := ∂|~a|1

∂xa1
1 . . . ∂xas

s
. (0.9)

We will write H l for W l,2. Note that (0.8) with l = 1 and p = 2 is compatible with
(0.5).
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1 Preliminaries

In this chapter, we develop the mathematical basics to deal with manifold-valued data.
A major difficulty is that a priori addition, scalar multiplication and more generally
linear combinations are not defined for manifold-valued data. This makes it difficult
or impossible to apply tools from the linear theory (i.e. when M = R). To partially
overcome this issue, we use weighted averages of points on a Riemannian manifold.
First, we will have to study some elementary Riemannian geometry. As we will see
in Section 1.1, there is a natural way of defining an “addition” of a tangent vector
v ∈ TpM to its base point p ∈M by the exponential map expp (Definition 1.1.4). Since
in most applications our data lies on a Riemannian submanifold of Rn, we will pay
special attention to this case. 1 This will be done in Section 1.2, where we introduce
an “addition” of a tangent vector v ∈ TpM to its base point p ∈ M which, in most
cases, is easier to implement than the exponential map. We show that this “addition”
is numerically close to the exponential map (Proposition 1.2.8). As a preparation for
the minimization of functionals J : MN → R, N ∈ N we introduce in Section 1.3 the
Riemannian gradient, the Riemannian Hessian, the Taylor expansion of functions on
manifolds and the Riemannian Newton method. In Section 1.4, we define weighted
averages of manifold-valued data. Finally, in Section 1.5, we take a look at some specific
manifolds one often encounters in real-world applications.

1.1 Riemannian geometry

In this section, we introduce the necessary concepts of Riemannian geometry. We assume
that the reader is familiar with the basic notions of differentiable manifolds, tangent
spaces and vector fields on manifolds.

1.1.1 Riemannian manifolds

We start with the definition of Riemannian manifolds. This additional structure on a
manifold will enable us to measure distances.

1As every Riemannian manifold can be isometrically embedded in Rn for some n ∈ N large enough [39]
one might think that we could restrict ourselves to Riemannian submanifolds of Rn. However, if the
embedding is not known it is not possible to use this fact in practice.

1



1 Preliminaries

Definition 1.1.1. A Riemannian manifold is a differentiable manifold together with a
family of positive definite inner products gp : TpM × TpM → R, p ∈ M on the tangent
spaces TpM , such that for all differentiable vector fields X,Y on M the map p 7→
gp(X(p), Y (p)) is a smooth (i.e. C∞) function.

1.1.2 The geodesic distance and geodesics

The inner product gp on TpM induces a norm on TpM defined by |v| :=
√
gp(v, v) for

v ∈ TpM . Using this norm we can define the geodesic distance on M .

Definition 1.1.2. The geodesic distance dg : M ×M → R on a Riemannian manifold M
is defined by

dg(p, q) := inf
γ∈C1([0,1],M)
γ(0)=p,γ(1)=q

∫ 1

0
|γ̇(t)|dt,

where γ̇(t) ∈ Tγ(t)M is the derivative of γ at t ∈ R. A curve γ ∈ C1([a, b],M) is called
length-minimizing if dg(γ(a), γ(b)) =

∫ b
a |γ̇(t)|dt. A curve γ ∈ C1(I,M), where I ⊂ R is

an interval, is called a geodesic if it is locally length-minimizing and of constant speed,
i.e. if there exists s ≥ 0 such that for every x ∈ R there exists ε > 0 such that for all
y ∈ R with |x− y| < ε we have

dg(γ(x), γ(y)) = |y − x|s. (1.1)

A length-minimizing geodesic can also be expressed as the minimum of an energy func-
tional:

Proposition 1.1.3. Let p, q ∈M and γ ∈ C1([0, 1],M) with γ(0) = p, γ(1) = q. Then γ
is a length-minimizing geodesic if and only if

γ ∈ arg min
α∈C1([0,1],M)
α(0)=p,α(1)=q

∫ 1

0
|α̇(t)|2dt. (1.2)

Proof. By the Cauchy–Schwarz inequality and the definition of the geodesic distance we
have ∫ 1

0
|γ̇(t)|2dt =

(∫ 1

0
12dt

)∫ 1

0
|γ̇(t)|2dt ≥

(∫ 1

0
|γ̇(t)|dt

)2
≥ d2

g(p, q)

with equality if and only if γ is a length-minimizing curve with constant speed, i.e. if
and only if γ is a length-minimizing geodesic.
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1.2 Riemannian submanifolds of Rn

1.1.3 The exponential map

In this section, we define the exponential map. It can be seen as a way to “add” a
tangent vector v ∈ TpM to its base point p ∈ M . By proving that the corresponding
ordinary differential equation has a unique solution it can be shown that for p ∈M and
v ∈ TpM there exists a unique geodesic γ ∈ C1(R,M) with γ(0) = p and γ̇(0) = v.

Definition 1.1.4. The exponential map expp : TpM → M at p ∈ M is defined by
expp(v) := γv(1) for every v ∈ TpM where γv ∈ C1(R,M) is the geodesic with γv(0) = p
and γ̇v(0) = v.

It can be shown that the exponential map at p ∈ M is a local diffeomorphism from a
neighborhood of {0} in TpM onto a neighborhood Up of p in M . Hence, expp is locally
invertible. The inverse of expp is called the logarithm map at p ∈ M and it is denoted
by logp. The function logp : Up → TpM can be thought of as a way to ”subtract“ p ∈M
from another point on the manifold.

1.2 Riemannian submanifolds of Rn

In this section, we consider the case where M is a submanifold of Rn. Note that for a
submanifold M ⊂ Rn there is a natural embedding TpM ↪→ Rn for all p ∈ M . If we
equip a submanifold of Rn with the standard inner product 〈x, y〉 :=

∑n
i=1 xiyi we get a

Riemannian manifold.

Definition 1.2.1. A Riemannian submanifold M of Rn is a submanifold of Rn equipped
with the standard inner product.

An important tool for us is the closest point projection P which simply maps a point in
Rn to its nearest point on M .

Definition 1.2.2. For a submanifold M of Rn the closest point projection P(p) of p ∈ Rn
onto M is defined by

P(p) := arg min
q∈M

|q − p|.

The closest point projection P is usually not well-defined for all p ∈ Rn. For the sphere
Sn−1 := {x ∈ Rn | |x| = 1} ⊂ Rn the closest point projection P is for example not
defined at p = 0. However, if M is sufficiently regular the closest point projection is
well-defined in a neighborhood of M [1]. We denote this neighborhood by U . Using
the closest point projection P : U ⊂ Rn → M we can define a second way of adding a
tangent vector v ∈ TpM to its base point p, which we call the projection-based retraction.
Because of the natural embedding TpM ↪→ Rn the sum p + v ∈ Rn is well-defined for
any p ∈ M and v ∈ TpM . To get back to the manifold we compose this sum with the
closest point projection P : U ⊂ Rn →M .

3



1 Preliminaries

Definition 1.2.3. Let M ⊂ Rn be a submanifold and P : U ⊂ Rn →M the closest point
projection onto M . Then the projection-based retraction ep : TpM ∩ (U − p) → M at
p ∈M is defined by ep(v) := P(p+ v) for all v ∈ TpM ∩ (U − p), where

U − p := {u− p | u ∈ U}.

Together with the exponential map we now have two ways of adding a tangent vector to
a basepoint p ∈M .

In Section 1.2.1, we show that the derivative of the closest point projection at a point
on M is the orthogonal projection onto the tangent space. In Section 1.2.2 we give
some connections of geodesics on Riemannian submanifolds of Rn and the closest point
projection P. This will be applied in Section 1.2.3 where we estimate the difference
between the exponential map and the projection-based retraction.

1.2.1 Derivative of the closest point projection P

The following property of the closest point projection P will turn out to be useful.

Lemma 1.2.4. Let M ⊂ Rn be a submanifold. Assume that the closest point projection
P : U ⊂ Rn → M onto M is differentiable on M . Then P ′(p) : Rn → TpM is the
orthogonal projection onto the tangent space TpM for all p ∈M .

Proof. Let p ∈ M and γ ∈ C1([0, 1],M) with γ(0) = p. Since P(γ(t)) = γ(t) for all
t ∈ [0, 1] we have by differentiating that P ′(γ(0))[γ̇(0)] = γ̇(0). Hence, P ′(p) restricted
to the tangent space is the identity. Let v ∈ TpM⊥ where TpM⊥ is the normal space at
p ∈M , i.e. the orthogonal complement of TpM . Since P is the closest point projection
we have

|P(p+ tv)− (p+ tv)| ≤ |p− (p+ tv)| = |tv| = |t||v|

whenever P(p+tv) is well-defined. Let w := P ′(p)[v]. Since w ∈ TpM we have 〈w, v〉 = 0
and using Taylor expansion

|t||v| ≥ |P(p+ tv)− (p+ tv)|
= |p+ tP ′(p)[v] + o(|t|)− (p+ tv)|
= |t(w − v) + o(|t|)|

= |t|
√
|v|2 + |w|2 + o(|t|),

and therefore

|t|
(√
|v|2 + |w|2 − |v|

)
= o(|t|),

√
|v|2 + |w|2 = |v|

and hence P ′(p)[v] = w = 0.
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1.2 Riemannian submanifolds of Rn

1.2.2 Geodesics on Riemannian submanifolds of Rn

For a Riemannian submanifold M of Rn we can characterize the geodesics γ ∈ C1(R,M)
more precisely. We first show that γ̈(t) ∈ Tγ(t)M

⊥, i.e. the second derivative of γ is
orthogonal to the tangent space.

Proposition 1.2.5. Let M be a Riemannian submanifold of Rn and γ ∈ C2([a, b],M) a
geodesic. Then we have γ̈(t) ∈ Tγ(t)M

⊥ for all t ∈ (a, b).

Proof. Let w : [a, b] → Rn be a function with w(t) ∈ Tγ(t)M for all t ∈ (a, b) and
w(a) = w(b) = 0. Define γε : [a, b] → M by γε(t) = P(γ(t) + εw(t)). As γ is a critical
point of the energy functional (1.2) we have using Lemma 1.2.4 and integration by parts
that

0 = d

dε
〈γ̇ε, γ̇ε〉L2 |ε=0= 2

〈
d

dε
γ̇ε|ε=0, γ̇

〉
L2

= 2〈ẇ, γ̇〉L2 = −2〈w, γ̈〉L2 .

As this equation holds for all w : [a, b] → Rn with w(t) ∈ Tγ(t)M for all t ∈ (a, b) and
w(a) = w(b) = 0, we have γ̈(t) ∈ Tγ(t)M

⊥ for all t ∈ (a, b).

The following lemma relates the second derivative of a geodesic with its first derivative.
The equation is of the same form as the classical geodesic equation of Riemannian
geometry. From now on we will assume some regularity on the closest point projection
P or equivalently on the submanifold M ⊂ Rn.

Proposition 1.2.6. Let M be a Riemannian submanifold of Rn and γ ∈ C2(R,M) be
a geodesic. Assume that the closest point projection P : Rn → M onto M is two times
differentiable on M . Then we have

γ̈(t) = P ′′(γ(t))[γ̇(t), γ̇(t)] for all t ∈ R. (1.3)

Proof. As γ takes values on M and P is a projection onto M we have γ(t) = P(γ(t)).
Taking two derivatives with respect to t using the chain rule yields

γ̈(t) = P ′(γ(t))[γ̈(t)] + P ′′(γ(t))[γ̇(t), γ̇(t)].

By Lemma 1.2.4 and Proposition 1.2.5 the first term on the right hand side vanishes and
we get (1.3).

An immediate consequence of Proposition 1.2.6 is that the norm of the second derivative
of a geodesic can be controlled by its first derivative assuming that the second derivative
of the closest point projection P is bounded. This is also equivalent to the radius of
curvature of M being bounded.

Corollary 1.2.7. Consider the same situation as in Proposition 1.2.6. Assume that the
second derivative of the closest point projection P onto M is bounded on M . Then we
have

|γ̈(t)| ≤ |P|C2 |γ̇(t)|2.

5



1 Preliminaries

1.2.3 Proximity of the exponential map and the projection-based
retraction

In this section, we show that the projection-based retraction ep is close to the exponential
map expp. The projection-based retraction is a retraction of order 2, i.e. we have
ep(0) = p = expp(0), e′p(0) = id = exp′p(0) and e′′p(0) = exp′′p(0). This allows us to
estimate |expp(v)− ep(v)| by |v|3. A more general statement can be found in [2].

Proposition 1.2.8. Let M be a Riemannian submanifold of Rn and C > 0. Assume
that the closest point projection P : U ⊂ Rn → M onto M is three times differentiable
on A := {p + v | p ∈ M, v ∈ TpM ∩ (U − p) with |v| < C} and the derivatives can be
uniformly bounded. Then we have

|expp(v)− ep(v)| . |v|3 for all p ∈M and v ∈ TpM with |v| < C,

where the implicit constant depends only on the bounds for the first three derivatives of
P on A.

Proof. Let p ∈M and v ∈ ∩(U−p) with |v| < C. Consider the geodesic γg(t) := expp(tv)
and the curve γp(t) := ep(tv). We have γg(0) = p = γp(0), γ̇g(0) = v = γ̇p(0) and by
Proposition 1.2.6 γ̈g(0) = P ′′(p)[v, v] = γ̈p(0). Hence we have by Proposition 1.2.6 and
Corollary 1.2.7

|γg(1)− γp(1)| =
∣∣∣∣12
∫ 1

0
(1− t)2

(
γ(3)
g (t)− γ(3)

p (t)
)
dt

∣∣∣∣
≤ 1

2

∫ 1

0

∣∣∣γ(3)
g (t)

∣∣∣+ ∣∣∣γ(3)
p (t)

∣∣∣ dt
≤ 1

2

∫ 1

0

∣∣P ′′′(γg(t))[γ̇g(t), γ̇g(t), γ̇g(t)] + 2P ′′(γg(t))[γ̇g(t), γ̈g(t)]
∣∣

+
∣∣P ′′′(p+ tv)[v, v, v]

∣∣ dt
.

∫ 1

0
|γ̇g(t)|3 + |γ̇g(t)| |γ̈g(t)|+ |v|3dt

.
∫ 1

0
|γ̇g(t)|3 + |v|3dt

. |v|3.

In Proposition 1.2.8, we used the Euclidean distance dE(p, q) := |p − q| to measure the
distance between expp(v) and ep(v). One might ask what would happen if we would use
the geodesic distance dg of Definition 1.1.2 instead. The following lemma shows that for
points close to each other the Euclidean distance is a good approximation of the geodesic
distance. Proposition 1.2.8 would also hold if the Euclidean distance is replaced by the
geodesic distance.
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1.2 Riemannian submanifolds of Rn

Lemma 1.2.9. Let M be a Riemannian submanifold of Rn. Assume that the closest point
projection P : Rn →M onto M is two times differentiable on M . Then we have

|logp(q)− (q − p)| ≤ 1
2 |P|C2d2

g(p, q).

and

0 ≤ dg(p, q)− dE(p, q) ≤ 1
2 |P|

2
C2d3

g(p, q).

Proof. Let γ : R → M be a geodesic with γ(0) = p, γ(1) = q and dg(p, q) = |γ̇(0)|. By
Corollary 1.2.7 we have

|logp(q)− (q − p)| = |γ̇(0)− (γ(1)− γ(0))| =
∣∣∣∣γ̇(0)−

∫ 1

0
γ̇(t)dt

∣∣∣∣
=
∣∣∣∣∫ 1

0
(1− t)γ̈(t)dt

∣∣∣∣ ≤ ∫ 1

0
(1− t)|P|C2 |γ̇(t)|2dt = 1

2 |P|C2d2
g(p, q).

As the straight line is the closest connection between two points in a Euclidean space
we have dE(p, q) ≤ dg(p, q). To prove the other direction note that we have

〈γ̇(0), γ(1)− γ(0)〉 = 〈γ̇(0), γ̇(0)〉 −
〈
γ̇(0),

∫ 1

0
(1− t)γ̈(t)

〉
= |γ̇(0)|2 +

∫ 1

0
(1− t)〈γ̇(0), γ̈(t)〉dt

= |γ̇(0)|2 +
∫ 1

0
(1− t)

(
〈γ̇(t), γ̈(t)〉 −

∫ t

0
〈γ̈(s), γ̈(t)〉ds

)
dt

= |γ̇(0)|2 −
∫ 1

0
(1− t)

∫ t

0
〈γ̈(s), γ̈(t)〉dsdt

≥ d2
g(p, q)−

1
2 |P|

2
C2d4

g(p, q)

where we used γ̇(t) ⊥ γ̈(t) and Corollary 1.2.7. Therefore by the Cauchy–Schwarz
inequality

dg(p, q)− dE(p, q) =
d2
g(p, q)− |γ̇(0)||γ(1)− γ(0)|

dg(p, q)

≤
d2
g(p, q)− 〈γ̇(0), γ(1)− γ(0)〉

dg(p, q)

≤ 1
2 |P|

2
C2d3

g(p, q).
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1.3 Optimization of functionals on manifolds

In Chapter 2 and 4, we are in a situation in which we have to find minimizers of function-
als J : M → R. As a preparation, we introduce the Riemannian gradient and Riemannian
Hessian of such functionals J in this section. The Riemannian Hessian is usually intro-
duced using the covariant derivative. This requires the knowledge of some advanced
differential geometry. However, the Riemannian Hessian of a functional J at p ∈ M
is also related with the classical Hessian by a simple relation involving the exponential
map (see, e.g. [3]). We will use this relation to give an alternative definition of the
Riemannian Hessian which makes the thesis accessible to readers unfamiliar with ad-
vanced differential geometry. To be able to minimize functionals on manifolds, we will,
in Section 1.3.2, take a look at the generalization of the gradient descent and in Section
1.3.3 at the generalization of the Newton method.

1.3.1 Gradient, Hessian and Taylor expansion on manifolds

Let J : M → R be a two times differentiable functional on a Riemannian manifold M .
Note that the composition J ◦ expp : TpM → R is then a two times differentiable map
from the vector space TpM into R. Hence, there exists grad J(p) ∈ TpM and a self-
adjoint operator Hess J(p) : TpM → TpM of J ◦ expp at p ∈ M such that we have the
Taylor expansion

J(expp(v)) = J(p) + gp(grad J(p), v) + 1
2gp(v,Hess J(p)v) + o(|v|2), (1.4)

where gp is the inner product on TpM (see Definition 1.1.1). The vector gradJ(p) ∈ TpM
is called the Riemannian gradient of J . The operator Hess J(p) : TpM → TpM is called
the Riemannian Hessian of J . Note that for a Riemannian submanifold M of Rn we
have by Proposition 1.2.8 that

J(ep(v)) = J(p) + 〈grad J(p), v〉+ 1
2〈v,Hess J(p)v〉+ o(|v|2), (1.5)

where ep is defined in Definition (1.2.3).

For some functionals J : M → R, with M being a Riemannian submanifold of Rn, there
exists a natural extension J̄ : U ⊂ Rn → R (or J is actually the restriction of J̄ to the
manifold), where U is a neighborhood of M . In some cases it is relatively simple to
compute the classical gradient grad J̄(p) ∈ Rn and Hessian Hess J̄(p) ∈ Rn×n at p ∈ M
of J̄ . The next proposition gives relations between the Riemannian gradient grad J(p)
respectively Hessian HessJ(p) and the classical gradient respectively Hessian.

Proposition 1.3.1. Let M be a Riemannian submanifold of Rn, J : M → R a two times
differentiable functional and J̄ : U ⊂ Rn → R a two times differentiable extension of J .
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1.3 Optimization of functionals on manifolds

Assume that the closest point projection P is two times differentiable on M . Then we
have for p ∈M and v ∈ TpM that

〈grad J(p), v〉 = 〈grad J̄(p), v〉

and
〈v,Hess J(p)v〉 = 〈v,Hess J̄(p)v〉+ 〈grad J̄(p),P ′′(p)[v, v]〉. (1.6)

Proof. Taylor expansion of ep(v) = P(p+ v) at 0 and of J̄ at p yields

ep(v) = p+ v + 1
2P
′′(p)[v, v] + o(|v|2) (1.7)

and
J̄(p+ w) = J̄(p) + 〈grad J̄(p), w〉+ 1

2〈w,Hess J̄(p)w〉+ o(|w|2).

Choosing w = ep(v)− p = v + 1
2P
′′(p)[v, v] + o(|v|2) yields

J̄(p+ w) = J̄(p) + 〈grad J̄(p), v + 1
2P
′′(p)[v, v]〉+ 1

2〈v,Hess J̄(p)v〉+ o(|v|2)

= J̄(p) + 〈grad J̄(p), v〉+ 1
2
(
〈v,Hess J̄(p)v〉+ 〈grad J̄(p),P ′′(p)[v, v]〉

)
+o(|v|2).

Since J̄(p+w) = J̄(ep(v)) = J(ep(v)) the statement can be deduced by comparing with
(1.5).

An alternative approach for computing the Riemannian Hessian from the classical Hes-
sian can be found in [4]. It requires however the Weingarten map.

In some situations it is possible to compute the gradient grad J : M → Rn, with M
being a Riemannian submanifold of Rn of a functional J : M → R and find an extension
G : U ⊂ Rn → Rn of grad J . The following proposition gives a relation between the
Hessian of J and the classical derivative of G.

Proposition 1.3.2. Let M be a Riemannian submanifold of Rn, J : M → R a two times
differentiable functional, grad J : M → TM the gradient of J and G : U ⊂ Rn → Rn
a differentiable extension of grad J . Assume that the closest point projection P is two
times differentiable on M . Then we have for p ∈M ⊂ Rn and v ∈ TpM that

〈v,Hess J(p)v〉 = 〈v,G′(p)[v]〉. (1.8)

Proof. Let q := expp(v) and γ : [0, 1]→M the geodesic from p to q. Using G(p) ∈ TpM
and γ̈(0) ∈ TpM⊥ we have 〈G(p), γ̈(0)〉 = 0 and hence

J(γ(1))− J(γ(0)) =
∫ 1

0

d

dt
J(γ(t))dt

9
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=
∫ 1

0
〈grad J(γ(t)), γ̇(t)〉dt

=
∫ 1

0
〈G(γ(t)), γ̇(t)〉dt

=
∫ 1

0
〈G(γ(0)) +G′(γ(0))[γ(t)− γ(0)] + o(|v|), γ̇(0) + tγ̈(0) + o(|v|2)〉dt

=
∫ 1

0
〈G(p) +G′(p)[tv] + o(|v|〉, v + tγ̈(0) + o(|v|2)〉dt

=
∫ 1

0
〈G(p), v〉+ t〈G′(p)[v], v〉+ o(|v|2)dt

= 〈grad J(p), v〉+ 1
2〈v,G

′(p)[v]〉+ o(|v|2).

Comparing with (1.4) yields the desired result.

The relations in Proposition 1.3.1 respectively 1.3.2 will allow us to compute so called
representations for the Riemannian gradient and the Riemannian Hessian.

Definition 1.3.3. Let M be a Riemannian submanifold of Rn. A representation of the
gradient grad J(p) ∈ TpM , respectively the Hessian Hess J(p) : TpM → TpM , of a two
times differentiable functional J : M → R at p ∈ M is a vector g ∈ Rn respectively a
matrix H ∈ Rn×n such that

〈v, g〉 = 〈v, grad J(p)〉 and 〈v,Hv〉 = 〈v,Hess J(p)v〉 for all v ∈ TpM.

To evaluate Hv the vector v ∈ TpM ⊂ Rn has to be regarded as a vector in Rn.

Note that if H ∈ Rn×n is a representation of Hess J(p) then Sym(H) := (H +HT )/2 is
also a representation for Hess J(p). This new representation has the advantage of being
symmetric. For symmetric representations H the equation 〈u,Hv〉 = 〈u,Hess J(p)v〉
does not only hold on the diagonal, as is required to be a representation, but for all
u, v ∈ TpM .

Proposition 1.3.4. Let M be a Riemannian submanifold of Rn, p ∈M , J : M → R and
H ∈ Rn×n a symmetric representation of Hess J(p). Then we have

〈u,Hv〉 = 〈u,Hess J(p)v〉 for all u, v ∈ TpM.

Proof. Since H is by assumption and Hess J(p) by definition self-adjoint we have

4〈u,Hv〉 = 〈u+ v,H(u+ v)〉 − 〈u− v,H(u− v)〉
= 〈u+ v,Hess J(p)(u+ v)〉 − 〈u− v,Hess J(p)(u− v)〉
= 4〈u,Hess J(p)v〉.
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In Chapter 2 and 4, we will minimize functionals J : Mk → R where k ∈ N and
Mk :=

∏k
i=1M . The Cartesian power Mk is again a manifold and its tangent space

TpM
k at p = (pi)ki=1 ∈ Mk is the Cartesian product of the tangent spaces of M at the

points (pi)ki=1, i.e. we have TpMk =
∏k
i=1 TpiM . With the natural inner product

gp(v, w) :=
k∑
i=1

gpi(vi, wi) for all v = (vi)ki=1, w = (wi)ki=1 ∈ TpMk

the manifold Mk becomes a Riemannian manifold. The gradient grad J(p) ∈ TpMk of a
differentiable functional J at p ∈Mk is

grad J(u) = (grad1 J(u), . . . , gradk J(u))

where gradi J(u) ∈ TpiM is the gradient of the functional with respect to the i-th
coordinate. If M is a Riemannian submanifold of Rn and J̄ : U ⊂ (Rn)k → R an
extension of J we can also consider the classical gradient grad J̄(p) ∈ (Rn)k ∼ Rnk and
Hessian Hess J̄(p) ∈ (Rn×n)k×k ∼ Rnk×nk of J̄ . Corollary 1.3.5 gives a relation between
the Riemannian gradient grad J(p) and Riemannian Hessian Hess J(p) with the classical
gradient grad J̄(p) and classical Hessian Hess J̄(p) of an extension J̄ : U ⊂ (Rn)k → R of
J .

Corollary 1.3.5. Let M be a Riemannian submanifold of Rn, k ∈ N, J : Mk → R a
two times differentiable functional and J̄ : U ⊂ (Rn)k → R a two times differentiable
extension of J . Assume that the closest point projection P is two times differentiable on
M . Then we have for p ∈Mk and v ∈ TpMk that

〈grad J(p), v〉 = 〈grad J̄(p), v〉

and

〈v,Hess J(p)v〉 = 〈v,Hess J̄(p)v〉+
k∑
i=1
〈gradi J̄(p),P ′′(pi)[vi, vi]〉. (1.9)

Proof. This follows from Proposition 1.3.1 together with the fact that the exponential
map on Mk respectively the closest point projection onto Mk is the Cartesian product
of the exponential map on M respectively the closest point projection onto M .

1.3.2 Gradient descent

The gradient descent method is one of the simplest algorithms to numerically compute
a minimum of a functional. The straight forward generalization to functionals defined
on a manifold is given below.
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Definition 1.3.6. For a Riemannian manifoldM and a differentiable functional J : M → R
the gradient descent method with step size t ∈ R is given by the iteration

φR(p) = expp (−t grad J(p)) .

If M ⊂ Rn is a Riemannian submanifold of Rn the projection-based gradient descent
method with step size t ∈ R is given by the iteration

φP(p) = ep (−t grad J(p)) .

1.3.3 The Riemannian Newton method

The classical Newton method can be used to find a critical point (i.e. a zero of the
gradient vector field) of a functional J . The straight forward generalization to functionals
defined on a manifold is given below.

Definition 1.3.7. For a Riemannian manifold M and a two times differentiable functional
J : M → R the Riemannian Newton method is given by the iteration

φR(p) := expp
(
−(Hess J(p))−1 grad J(p)

)
.

If M ⊂ Rn is a Riemannian submanifold of Rn the projection-based Newton method is
given by the iteration

φP(p) := ep
(
−(Hess J(p))−1 grad J(p)

)
= P

(
p− (Hess J(p))−1 grad J(p)

)
.

To prove local quadratic convergence we will need the following lemma. It can be
regarded as a weak version of the fact that the derivative of the gradient is the Hessian.

Lemma 1.3.8. Let M be a Riemannian manifold, p∗ a critical point of a three times
differentiable functional J : M → R and p ∈M . Then we have∣∣∣grad J(p) + Hess J(p)logp(p∗)

∣∣∣ . d2(p, p∗). (1.10)

The implicit constant depends only on the third derivative of J ◦ expp at 0.

Proof. Let v := logp(p∗) and w := grad J(p)+Hess J(p)v. Replacing v in (1.4) by v+ tw
and using that Hess J(p) is self-adjoint yields

J(expp(v + tw)) = J(p) + 〈v + tw, grad J(p)〉+ 1
2〈v + tw,Hess J(p)(v + tw)〉+O(|v + tw|3)

= J(p) + 〈v, grad J(p)〉+ 1
2〈v,Hess J(p)v〉+O(|v|3)

+t
(
〈w, grad J(p) + Hess J(p)v〉+O(|w||v|2)

)
+O(t2)

= J(p∗) + t
(
|w|2 +O(|w||v|2)

)
+O(t2).

Since p∗ is critical point of J we have J(expp(v + tw)) = J(p∗) + O(t2) hence |w|2 =
O(|w||v|2) and therefore |w| . |v|2, which is equivalent to (1.10).

12



1.3 Optimization of functionals on manifolds

We can now prove quadratic convergence.

Theorem 1.3.9. Let M be a Riemannian manifold, p∗ a critical point of a three times
differentiable functional J : M → R, p ∈ M and φR(p) as defined in Definition (1.3.7).
Assume that Hess J(p∗) defined in Section 1.3.1 is invertible. Then we have

d(φR(p), p∗) . d2(p, p∗)

for all p in a neighborhood of p∗. The implicit constant depends only on the third deriva-
tive of J ◦ expp∗ at 0 and on the operator norm of (Hess J(p∗))−1.

Proof. Let v be as in Lemma 1.3.8. By differentiability of J and Lemma 1.3.8 we have∣∣∣(Hess J(p))−1 grad J(p) + v
∣∣∣ .

∥∥∥(Hess J(p))−1
∥∥∥
TpM→TpM

|grad J(p) + Hess J(p)v|

.
(∥∥∥(Hess J(p∗))−1

∥∥∥
TpM→TpM

+O(d(p, p∗))
)
d2(p, p∗)

. d2(p, p∗).

We now have

d (φ(p), p∗) = d
(
expp(−(Hess J(p))−1 grad J(p)), expp(v)

)
.

∣∣∣(Hess J(p))−1 grad J(p) + v
∣∣∣

. d2(p, p∗).

Quadratic convergence of the projection-based Newton method can be proven anal-
ogously. Other proofs of quadratic convergence can be found in [3] and references
therein.

Implementing the Riemannian Newton method

To evaluate the iteration of the Riemannian Newton method we need to compute the
solution v ∈ TpM of the system Hess J(p)v = − grad J(p). The following proposition
shows how this can be done using representations g ∈ Rn and H ∈ Rn×n of grad J and
Hess J .

Proposition 1.3.10. Let M be a Riemannian submanifold of Rn, p ∈M , J a two times
differentiable functional with Hess J(p) invertible, g ∈ Rn respectively H ∈ Rn×n a
representation of grad J(p) respectively Hess J(p), S ∈ Rn×dim(M) with

{Sx | x ∈ Rdim(M)} = TpM

and x ∈ Rdim(M) the solution of the linear equation

STSym(H)Sx = −ST g, (1.11)

13
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where Sym(H) = (H+HT )/2 is the symmetrization of H. Then u := Sx is the solution
of

Hess J(p)u = − grad J(p). (1.12)

Proof. Since Hess J(p)u ∈ TpM and grad J(p) ∈ TpM it is enough to prove that

〈v,Hess J(p)u〉 = 〈v,− grad J(p)〉 for all v ∈ TpM.

Let y ∈ Rdim(M) be such that Sy = v. By Proposition 1.3.4 we have

〈v,Hess J(p)u〉 = 〈v,Sym(H)u〉 = 〈Sy,Sym(H)Sx〉 = yTSTSym(H)Sx

= −yTST g = 〈Sy,−g〉 = 〈v,− grad J(p)〉.

1.4 Averages of manifold-valued data

Assume we are given manifold-valued data (pi)mi=1 ⊂M where m ∈ N. A key operation
we want to perform with such data is to build weighted averages. We study two natural
generalizations of the weighted average

∑m
i=1wipi, the Riemannian average in Section

1.4.1 and the projection average in Section 1.4.2.

1.4.1 Riemannian average

Note that for (pi)mi=1 ⊂ Rn and (wi)mi=1 ⊂ R with
∑m
i=1wi = 1 we have

arg min
p∈Rn

m∑
i=1

wi|p− pi|2 =
m∑
i=1

wipi.

The idea of the Riemannian average, also known as the Karcher mean, is to replace
|p− pi| with dg(p, pi).

Definition 1.4.1. For manifold-valued data (pi)mi=1 ⊂ M and weights (wi)mi=1 ⊂ R with∑m
i=1wi = 1 the Riemannian average is defined by

avRiem((pi)mi=1, (wi)mi=1) := arg min
p∈M

JR(p)

where

JR(p) :=
m∑
i=1

wid
2
g(p, pi).

In [28] it is shown that:

14
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• We have
gradp d2

g(p, q) = −2logp(q). (1.13)

and hence

gradp JR(p) = −2
m∑
i=1

wilog(p, pi). (1.14)

• If M has nonpositive (sectional) curvature, or the points (pi)mi=1 are close enough
to each other, the gradient vector field (1.14) has a unique zero in a neighborhood
of the points (pi)mi=1. Hence, the Riemannian average is in these cases well-defined
and can also be characterized by the condition gradp JR(p) = 0. Furthermore,
there are some estimates which emphasize the use of gradient descent with step
size 1

2 (see Section 1.3.2) to numerically compute the Riemannian average.

Gradient descent with step size 1
2 for JR is given by the iteration

φ(p) := expp
(
−1

2 grad JR(p)
)

= expp

(
m∑
i=1

wilogp(pi)
)
. (1.15)

In the next proposition, we make a statement about the convergence rate of this itera-
tion. This statement explains why only a few iterations are necessary to compute the
Riemannian average up to high precision. A more detailed analysis has been performed
in [54].

Proposition 1.4.2. Let M be a Riemannian manifold, p ∈ M , (wi)mi=1 ⊂ R with sum 1
and h > 0 be small enough such that the Riemannian average p∗ = avRiem((pi)mi=1, (wi)mi=1)
is well-defined for any (pi)mi=1 ⊂ Bh(p) := {q ∈M | dg(p, q) < h}. Then we have

dg(φ(q), p∗) . h2dg(q, p∗)

for all q ∈ Bh(p) where the implicit constant depends only on the (sectional) curvature
of M .

Proof. By (1.5.1)-(1.5.3) of [28] we have

dg(φ(q), p∗) ≤ 1
1− C1h2 | grad J(φ(q))| ≤ C2h

2

1− C1h2 | grad J(q)| ≤ C2h
2(1 + C3h

2)
1− C1h2 dg(q, p∗),

where C1, C2, C3 are constants depending only on the (sectional) curvature of M .

1.4.2 Projection average

If M ⊂ Rn is a Riemannian submanifold we can define an average which in many cases
is easier to compute

15
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Definition 1.4.3. For (pi)mi=1 ⊂ M where M is a Riemannian submanifold of Rn and
weights (wi)mi=1 ⊂ R with

∑m
i=1wi = 1 the projection average is defined by

avP((pi)mi=1, (wi)mi=1) := P
(

m∑
i=1

wipi

)
.

The next proposition shows that the projection average could have also be defined in a
similar way as the Riemannian average in Definition 1.4.1. We only have to replace the
geodesic distance with the Euclidean distance.

Proposition 1.4.4. We have

arg min
p∈M

JP(p) = avP((pi)mi=1, (wi)mi=1),

where
JP(p) :=

m∑
i=1

wi|p− pi|2.

Proof. We have

arg min
p∈M

JP(p) = arg min
p∈M

m∑
i=1

wi|p− pi|2

= arg min
p∈M

m∑
i=1

wi|p|2 − 2〈p, wipi〉+ wi|pi|2

= arg min
p∈M

|p|2 − 2
〈
p,

m∑
i=1

wipi

〉
+

m∑
i=1

wi|pi|2

= arg min
p∈M

∣∣∣∣∣p−
m∑
i=1

wipi

∣∣∣∣∣
2

−
∣∣∣∣∣
m∑
i=1

wipi

∣∣∣∣∣
2

+
m∑
i=1

wi|pi|2

= arg min
p∈M

∣∣∣∣∣p−
m∑
i=1

wipi

∣∣∣∣∣
= P

(
m∑
i=1

wipi

)
= avP((pi)mi=1, (wi)mi=1).

1.4.3 Proximity of the Riemannian and the projection average

In this section, we show that the Riemannian and the projection average are numerically
close to each other. More precisely, we show that if the data (pi)mi=1 is contained in a ball
of radius h� 1 then the error between the Riemannian and the projection average is of
size h3. This will be important later in the proof of Proposition 3.4.4 where we estimate
the Lp-norm of the difference between the Riemannian average based approximation and
the projection-based approximation of a function.
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Proposition 1.4.5. Let M be a Riemannian submanifold of Rn, p ∈M and (wi)mi=1 ⊂ R
with

∑m
i=1wi = 1. Assume that the closest point projection P is three times differen-

tiable in a uniform neighborhood of M . Then if h > 0 is small enough we have for
(pi)mi=1 ⊂ Bh(p) ⊂ M that

dg (avRiem((pi)mi=1, (wi)mi=1), avP((pi)mi=1, (wi)mi=1)) . h3,

where the implicit constant depends only on |P|C2 and |P|C3.

Proof. Let pR := avRiem((pi)mi=1, (wi)mi=1) and pP := avP((pi)mi=1, (wi)mi=1). By (1.5.1) of
[28] and Lemma A.2 we have that

dg(pR, pP) ≤ (1+O(h2))| grad JR(pP)| = (1+O(h2))
(
| grad JP(pP)|+O(h3)

)
. h3.

An interesting open problem is if a similar estimate also holds for the derivatives of the
averages with respect to the weights (wi)mi=1. This would allow us to estimate the W l,p-
norms for l > 0 of the difference between the Riemannian average based approximation
and the projection-based approximation of a function. For the average of only two points
we can prove that the first and second derivative can also be bounded by h3.

Proposition 1.4.6. Let M be a Riemannian submanifold of Rn. Assume that the closest
point projection P is three times differentiable in a uniform neighborhood of M . Then
for p1, p2 ∈M with |p1 − p2| small enough, i ∈ {0, 1, 2} and t ∈ [0, 1] we have∣∣∣∣∣ didti (avRiem((p1, p2), (t, 1− t))− avP((p1, p2), (t, 1− t)))

∣∣∣∣∣ . |p2 − p1|3,

where the implicit constant depends only on |P|C2 and |P|C3.

Proof. Consider the curves γg, γp : [0, 1]→M defined by

γg(t) := avRiem((p1, p2), (1− t, t))

and γp(t) := avP((p1, p2), (1− t, t)) = P((1− t)p1 + tp2). Note that γg is a geodesic and
therefore satisfies the geodesic equation (see (1.3))

γ̈g(t) = P ′′(γg(t))[γ̇g(t), γ̇g(t)]. (1.16)

Differentiating γp twice yields

γ̈p(t) = P ′′((1− t)p1 + tp2)[p2 − p1, p2 − p1]. (1.17)

From Lemma 1.2.9 we have

|γ̇g(t)− (p2 − p1)| . |p2 − p1|2. (1.18)

17
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Hence we notice that both curves satisfy a similar differential equation. Let

δ(t) := γg(t) − γp(t).

Note that we need to prove that maxt∈(0,1) |δ̇(t)| . |p2 − p1|3 and maxt∈(0,1) |δ̈(t)| .
|p2 − p1|3. Taking the difference of (1.16) and (1.17) and using (1.18) yields

|δ̈(t)| ≤
∣∣P ′′(γg(t))[γ̇g(t)− (p2 − p1), γ̇g(t)]

∣∣
+
∣∣P ′′(γg(t))[p2 − p1, γ̇g(t)− (p2 − p1)]

∣∣
+
∣∣(P ′′(γg(t))− P ′′((1− t)p1 + tp2)

)
[p2 − p1, p2 − p1]

∣∣
. |p2 − p1|3 + |γg(t)− ((1− t)p1 + tp2)||p2 − p1|2.
. |p2 − p1|3.

As
∫ 1

0 δ̇(t)dt = δ(1)− δ(0) = 0− 0 = 0 we have

0 =
∫ 1

0
δ̇(t)dt = δ̇(0) +

∫ 1

0
(1− t)δ̈(t)dt,

and hence
|δ̇(0)| =

∣∣∣∣∫ 1

0
(1− t)δ̈(t)dt

∣∣∣∣ . |p2 − p1|3.

Therefore
|δ̇(t)| =

∣∣∣∣δ̇(0) +
∫ t

0
δ̈(s)ds

∣∣∣∣ . |p2 − p1|3.

1.5 Example manifolds

In this section, we consider several different manifolds M . Namely, the sphere Sn, the
special orthogonal group SO(n) and the set of positive definite matrices SPD(n). These
are the most common examples of manifolds we encounter currently in applications with
manifold-valued data. We identify the tangent space at a point p ∈ M , geodesics, the
logarithm and the exponential map, the (geodesic) distance function and the closest
point projection (if the manifold is a Riemannian submanifold of Rn) of these manifolds.
We also discuss how to compute the gradient and the Hessian of the squared distance
function. To do so there are basically two techniques. One is to use an extension of the
squared distance function and then Proposition 1.3.5. The second technique is to use an
extension of the logarithm and then Proposition 1.3.2. Depending on the manifold and
the distance function one of these techniques is usually easier to perform.

1.5.1 The sphere

Together with the standard inner product the sphere Sn−1 := {x ∈ Rn | |x| = 1} is a Rie-
mannian manifold. It acts as a model manifold since it is one of simplest computationally
tractable manifolds. However, there are also many applications with sphere-valued data,
e.g. the chromaticity part of an RGB-image or liquid crystals.
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Tangent space, geodesics, exponential and logarithm map on the sphere

The tangent space at a point p ∈ Sn−1 is TpSn = {q ∈ Rn|pT q = 0}. The geodesics
are the unit speed parametrizations of the great circles. The exponential and logarithm
map on the sphere are explicitly given by

expp(v) = cos(|v|)p+ sin(|v|)
|v|

v and logp(q) = arccos(〈p, q〉)√
1− 〈p, q〉2

(q − 〈p, q〉p) .

The closest point projection and the Taylor expansion of expp and ep on the
sphere

The closest point projection P is simply the normalization, i.e.

P(x) := x

|x|
for all x ∈ Rn\{0}.

The Taylor expansion of the exponential map and projection-based retraction on the
sphere are

expp(v) = cos(|v|)p+ sin(|v|)
|v|

v = p+ v − |v|
2

2 p+ o(|v|2) and (1.19)

ep(v) = P(p+ v) = p+ v

|p+ v|
= p+ v

|p|+ |v|2
2|p| +O(|v|4)

= p+ v − |v|
2

2 p+ o(|v|2).

It is by Proposition 1.2.8 no surprise that the Taylor expansions of exp and ep coincide.
By (1.7) we have

P ′′(p)[v, v] = −|v|2p for all v ∈ TpM.

Hessian of a functional on the sphere

For a functional J : (Sn−1)N → R and an extension J̄ : U ⊂ (Rn)N → R we have by
Proposition 1.3.5

〈v,Hess J(p)v〉 = 〈v,Hess J̄(p)v〉+
N∑
i=1
〈gradi J̄(p),P ′′(pi)[vi, vi]〉

= 〈v,Hess J̄(p)v〉 −
N∑
i=1
〈gradi J̄(p), pi〉|vi|2.

The Hessian Hess J(p) of J can therefore be represented by the symmetric matrix

Hess J̄(p)−


〈grad1 J̄(p), p1〉 0

. . .
0 〈gradN J̄(p), pN 〉

⊗ In (1.20)

where In is the n× n identity matrix and ⊗ denotes the Kronecker product.
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Gradient and Hessian of the squared distance function on the sphere

We will now compute the gradient and the Hessian of functionals J(p, q) := α(pT q)
with α ∈ C2((−1, 1]). Note that the squared geodesic respectively the squared Euclidean
distance are of this form with α(x) = arccos2(x) respectively α(x) = 2− 2x.

Let J̄ : (Rn+1)2 → R be the natural extension of J defined by J̄(p, q) := α(pT q). The
gradient of J̄ is

grad J̄(p, q) = (gradp J̄ , gradq J̄) = α′(pT q)(q, p).

The Hessian HessJ(p) can be represented by the symmetric matrix in (1.20) which boils
down to

α′′(pT q)
(
q
p

)(
qT pT

)
+
(
−β(pT q) α′(pT q)
α′(pT q) −β(pT q)

)
⊗ In+1,

where β(t) := tα′(t).

1.5.2 The special orthogonal group SO(n)

The set of n× n orthogonal matrices with determinant 1 together with the inner prod-
uct

〈A,B〉 := tr(ATB) =
n∑

i,j=1
aijbij for all A = (aij)ni,j=1, B = (bij)ni,j=1 ⊂ Rn×n, (1.21)

where tr denotes the trace, is a Riemannian manifold of dimension n (n − 1) / 2.
If we identify Rn×n with Rn2 the inner product becomes simply the standard inner
product. Hence we can see SO(n) as a Riemannian submanifold of Rn2 . Data with
values in SO(n) occur for example in Cosserat-type material models [36, 46, 40, 37].
Note that the dimension of the manifold is n(n− 1)/2 which is significantly lower than
n2, the dimension of the space it is embedded in. Luckily, the dimension of the system
of equations in optimization methods for manifold valued data (cf. (1.11)) depends only
on the dimension of the manifold and not on the dimension of the space it is embedded
in.

Tangent space, geodesics, exponential and logarithm map on SO(n)

The tangent space at A ∈ SO(n) is

TASO(n) = {AS|S ∈ Rn×n ST = −S}.

The exponential and logarithm map are given by

expA(X) = AExp(ATX) and logA(B) = ALog(ATB)
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where Exp respectively Log denotes the matrix exponential respectively matrix loga-
rithm. The geodesic distance function is given by dg(A,B) = ‖logA(B)‖F = ‖Log(ATB)‖F ,
where the subscript F denotes the Frobenius norm defined by

‖A‖F :=
√

tr(ATA) =

√√√√ n∑
i,j=1

a2
ij .

Gradient and Hessian of the squared distance function on SO(n)

We will now explain how to compute the gradient and the Hessian of the squared distance
function J : (SO(n))2 → R defined by J(A,B) := d2

g(A,B) for all A,B ∈ SO(n). By
(1.13) the gradient is given by

grad J(A,B) = (−2logA(B),−2logB(A)) = (−2ALog(ATB),−2BLog(BTA)).

By Proposition 1.3.2 we can compute the classical derivatives of this expression to get a
representation for the Hessian. To approximately compute it one can use the chain and
product rule. To compute the derivative of the matrix logarithm one can use the matrix
identities

Log(X2) = 2Log(X) and Log(X) =
∞∑
k=1

(−1)k−1

k
(X − In)k (1.22)

that holds for all X ∈ Rn×n (the sum converges whenever the spectral radius of X − In
is smaller than 1) as well as

∂(Xk)ij
∂Xmo

=
k−1∑
l=0

(X l)im(Xk−l−1)oj

that holds for all X ∈ Rn×n and i, j,m, o ∈ {1, . . . , n} for the derivative of the matrix
power. The matrix exponential (respectively matrix logarithm) can be computed by
diagonalizing the matrix and applying the exponential (respectively logarithm) to the
eigenvalues.

1.5.3 The compact Stiefel manifold

For k < n the orthogonal Stiefel manifold is defined by

St(k, n) = {A ∈ Rn×k|ATA = Ik},

where Ik denotes the k × k identity matrix. Together with the inner product (1.21)
this is a Riemannian manifold. As special cases the Stiefel manifold contains the sphere
(k = 1) and the special orthogonal group (k = n).
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The closest point projection and its second derivative on St(k, n)

The closest point projection of a matrix A ∈ Rn×k onto St(k, n) is given by dropping
the diagonal matrix Σ of the reduced singular value decomposition A = UΣV T , i.e.
P(A) = UV T . We can also write the projection in the explicit form P(A) = A(ATA)−

1
2 .

To numerically compute P(A) without computing eigenvalues and eigenvectors one can
use the iteration φ : Rn×k → Rn×k defined by

φ(X) := 1
2X

(
Ik + (XTX)−1

)
.

This iteration is based on Heron’s method for the computation of
√

1 and converges
quadratically [25] to P(A). Note that the tangent space TASt(k, n) is given by

TASt(k, n) = {X ∈ Rn×k|ATX +XTA = 0}.

For A ∈ St(k, n) and X ∈ TASt(k, n) we therefore get

P(A+X) = (A+X)
(
(A+X)T (A+X)

)− 1
2

= (A+X)
(
Ik +XTX

)− 1
2

= (A+X)(Ik −
1
2X

TX +O(|X|4))

= A+X − 1
2AX

TX +O(|X|3)

Hence we have
P ′′(A)[X,X] = −AXTX.

The Riemannian Hessian on St(k, n)

For a functional J : (St(k, n))N → R and an extension J̄ : U ⊂ (Rn×k)N → R we have
by Proposition 1.3.5 for A = (Ai)Ni=1 ∈ (St(k, n))N and X = (Xi)Ni=1 ∈ TA(St(k, n))N
that

〈X,Hess J(A)X〉 = 〈X,Hess J̄(A)X〉+
N∑
i=1
〈gradi J̄(A),P ′′(Ai)[Xi, Xi]〉

= 〈X,Hess J̄(A)X〉 −
N∑
i=1
〈gradi J̄(A), AiXT

i Xi〉

= 〈X,Hess J̄(A)X〉 −
N∑
i=1
〈ATi gradi J̄(A), XT

i Xi〉.
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The Hessian Hess J(A) of J at A ∈ (St(k, n))N can therefore be represented by the
matrix

H := Hess J̄(A)−


AT1 grad1 J̄(A) 0

. . .
0 ATN gradN J̄(A)

⊗ In, (1.23)

where ⊗ denotes the Kronecker product. Note that (1.23) is a generalization of (1.20).
The matrix H of (1.23) is in general not symmetric. As explained in Section 1.3.3 to ap-
ply the Newton method we will use the symmetrization of H. In numerical experiments
it was however observed that the symmetrization is actually not necessary. Even though
(1.12) is then no longer true, the corresponding iteration seems to converge quadratically
to the minimizer of J .

1.5.4 The space of positive definite matrices SPD(n)

The space of n×n positive definite matrices SPD(n) is a manifold. Data with values in
SPD(n) occur for example in diffusion tensor magnetic resonance imaging (DT-MRI).
For A ∈ SPD(n), the tangent space TASPD(n) at A can be identified by the space of
symmetric matrices.

Why the standard inner product is not a good choice

There are different choices for the inner product on the tangent space each resulting in
a different Riemannian manifold. One choice would be to take the same inner product
as for the special orthogonal group (1.21). Since SPD(n) is an open subset of the
Euclidean space of symmetric matrices this would lead to very simple computations.
However, for many applications this inner product is not a good choice. The determinant
of an average of matrices can then be much larger than the determinant of the original
matrices. Consider for example 0 < ε � 1 and the two SPD-matrices A = diag(1, ε)
and B = diag(ε, 1), which have determinant ε. The average with respect to the metric
induced by the inner product (1.21) would be (A + B)/2 = diag((1 + ε)/2, (1 + ε)/2)
and has a significantly higher determinant, close to 1/4. In DT-MRI the determinant is
related to the amount of diffusion and hence averaging would introduce more diffusion
which is physically unrealistic. This is also known as the swelling effect.

A better choice for the inner product, geodesics, exponential and logarithm map

Due to the problems of the preceding section a different inner product given by

〈X,Y 〉A := tr(A−1XA−1Y ), for all X,Y ∈ TASPD(n), (1.24)
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is usually considered. A detailed analysis of the geometry of the resulting space can be
found in [35]. The inner product (1.24) induces the metric dg : SPD(n)×SPD(n)→ R≥0
given by

dg(A,B) = ‖Log(A−1/2BA−1/2)‖F . (1.25)

By [35] the exponential map on the space of SPD-matrices is given by

expA(X) = A
1
2 Exp(A−

1
2XA−

1
2 )A

1
2 .

Hence, the logarithm map is given by

logA(B) = A
1
2 Log(A−

1
2BA−

1
2 )A

1
2 .

The geodesic connecting A and B is therefore given by

γ(t) = expA(tlogA(B)) = A
1
2 Exp(tLog(A−

1
2BA−

1
2 ))A

1
2 .

Because of the identity det(Exp(A)) = etr(A) we have

det(γ(t)) = det(A)1−t det(B)t.

Hence, the problem of the inner product of Section 1.5.4 does not occur for the inner
product (1.24).

Hessian of the squared distance function on SPD(n)

We will now explain how to compute the gradient and Hessian of the squared distance
function J : (SPD(n))2 → R defined by J(A,B) := d2

g(A,B) for all A,B ∈ SPD(n). By
(1.13) the gradient with respect to the inner product (1.24) is given by

grad J(A,B) = (−2logA(B),−2logB(A))
= (−2A

1
2 Log(A−

1
2BA−

1
2 )A

1
2 ,−2B

1
2 Log(B−

1
2AB−

1
2 )B

1
2 ).

For all Z ∈ TASPD(n) we have

〈logA(B), Z〉A = 〈A
1
2 Log(A−

1
2BA−

1
2 )A

1
2 , Z〉A

= 〈A−1A
1
2 Log(A−

1
2BA−

1
2 )A

1
2A−1, Z〉

= 〈A−
1
2 Log(A−

1
2BA−

1
2 )A−

1
2 , Z〉.

The classical gradient with respect to the Euclidean distance is therefore

A−
1
2 Log(A−

1
2BA−

1
2 )A−

1
2 .

To compute the classical Hessian we simply compute the classical derivative of this
expression. As explained in Section 1.5.2 one can use the chain rule, product rule as
well as the identities (1.22) to compute the derivative. To compute the derivative of the
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square root of a matrix observe that Y k,l := d
√
X/dXkl ∈ Rn×n is the solution of the

Lyapunov equation
Y k,l
√
X +

√
XY k,l = Ekl, (1.26)

where Ekl ∈ Rn×n is the matrix defined by (Ekl)mo := δkmδlo. The derivative of the
matrix inverse is given by

d(X−1)ij
dXkl

= −(X−1)ik(X−1)lj .

Since we compute the classical derivatives we will also use the classical Newton method
to optimize J . However, since (A,B)−Hess J(A,B)−1 grad J(A,B) can have non SPD-
matrices as values it is recommended to use the iteration

(A,B) 7→ exp(A,B)(−Hess J(A,B)−1 grad J(A,B))

instead. From expA(X) = A
1
2 Exp(A−

1
2XA−

1
2 )A

1
2 = A+X+O(|X|2) it follows that the

method still has quadratic convergence.

The Log-Euclidean distance

Since the inner product (1.24) and the induced metric (1.25) are rather cumbersome to
use, it can be worthwhile to use an alternative metric which in practice yields a similar
or comparable result but is easier to work with. Note that the matrix logarithm Log
defines a bijection between the set of positive definite matrices and the set of symmetric
matrices. A common idea to solve problems where positive definite matrices are involved
is to first map all data to the space of symmetric matrices by the matrix logarithm Log,
then solve the problem in the Euclidean space of symmetric matrices and finally map
the data back by the matrix exponential Exp. This procedure is equivalent with using
the Log-Euclidean distance

dLE(A,B) := ‖Log(A)− Log(B)‖F .

A crucial question is how far apart the Log-Euclidean distance is from the metric induced
by the inner product (1.24). Note that if two matrices A and B commute we have
dLE(A,B) = dg(A,B). The following proposition shows that the Log-Euclidean distance
can be bounded by the geodesic metric.

Proposition 1.5.1. For any A,B ∈ SPD(n) we have

dLE(A,B) ≤ dg(A,B).

Proof. By [52] the eigenvalues of Exp(R+ S) are majorized by the eigenvalues of

Exp(R/2)Exp(S)Exp(R/2)
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for all symmetric matrices R,S ∈ Rn×n in a logarithmic sense, i.e. if λ1 ≥ · · · ≥ λn > 0
are the eigenvalues of Exp(R + S) and µ1 ≥ µ2 · · · ≥ µn > 0 are the eigenvalues of
Exp(R/2)Exp(S)Exp(R/2) we have

k∑
i=1

log(λi) ≤
k∑
i=1

log(µi) for all 1 ≤ k ≤ n− 1

and
∑n
i=1 log(λi) =

∑n
i=1 log(µi). It follows that

‖R+ S‖2F =
n∑
i=1

(log(λi))2 ≤
n∑
i=1

(log(µi))2 = ‖Log(Exp(R/2)Exp(S)Exp(R/2))‖2F .

Choosing R = −Log(A) and S = Log(B) yields

dLE(A,B) = ‖Log(B)− Log(A)‖F ≤ ‖Log(A−1/2BA−1/2)‖F = dg(A,B).

By the following proposition the two metrics are however not strongly equivalent.

Proposition 1.5.2. For n ≥ 2 and C > 0 there exists positive definite matrices A,B ∈
SPD(n) such that

dg(A,B) > CdLE(A,B).

Proof. Consider the family of matrices

A(t) := Exp
(
t 0
0 0

)
and B(t) := Exp

(
t 1
1 0

)
.

Then we have dLE(A(t), B(t)) =
√

2 for all t ∈ R. To show our claim we prove that

dg(A(t), B(t)) gets arbitrarily large for t → ∞. The eigenvalues of
(
t 1
1 0

)
are λ1 =

t + t−1 + O(t−3) and λ2 = −t−1 + O(t−3). Corresponding eigenvectors are (λ1, 1) =
(t+ t−1, 1) +O(t−3) and (−1, t− λ2) = (−1, t+ t−1) +O(t−3). We get the approximate
diagonalization(

t 1
1 0

)
= S

(
λ1 0
0 λ2

)
S−1 +O(t−3)

=
(
t+ t−1 −1

1 t+ t−1

)(
t+ t−1 0

0 −t−1

)
1

t2 + 3 + t−2

(
t+ t−1 1
−1 t+ t−1

)
+O(t−3).

For the matrix exponential we have

B(t) = Exp
(
t 1
1 0

)
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=
(
t+ t−1 −1

1 t+ t−1

)(
et
(
1 + t−1 + 1

2 t
−2
)

0
0 1

)
1

t2 + 3 + t−2

(
t+ t−1 1
−1 t+ t−1

)
+O(t−3et)

=
(

1 t−1

t−1 t−2

)
et + et

(
O(t−1) O(t−2)
O(t−2) O(t−3)

)
.

Therefore

A(t)−1/2B(t)A(t)−1/2 =
(

1 t−1e
t
2

t−1e
t
2 t−2et

)
+
(
O(t−1) O(t−2e

t
2 )

O(t−2e
t
2 ) O(t−3et)

)
.

It follows that the entries of A(t)−1/2B(t)A(t)−1/2 get arbitrarily large and therefore also
the Frobenius norm of its logarithm.
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2 Total Variation Minimization

In this chapter, we consider the problem of restoring a noisy image un : Vk ⊂ V → M
where V is the set of pixels and Vk is a subset where our noisy image is defined. To
perform this task, we consider the total variation1 (TV) of an image u : V →M defined
by

TV (u) :=
∑

(i,j)∈E
d(ui, uj), (2.1)

where d : M×M → R≥0 is a metric on M , e.g. the geodesic or the Euclidean distance. If
V = {1, . . . , n} and E = {(i, i+1) | i ∈ {1, . . . , n−1}} our total variation (2.1) coincides
for example with the well-known discrete one-dimensional TV. A key observation is
that the TV of a typical image is relatively small, while adding noise increases the TV
significantly. To restore the image, we seek an image u ∈ MV (i.e. u : V → M) which
has relatively small TV while still being “close” to the noisy image un ∈MVk . To achieve
this, we minimize the TV functional J : MV → R defined by

J(u) := 1
2
∑
i∈Vk

d2(ui, uni ) + λTV (u) = 1
2
∑
i∈Vk

d2(ui, uni ) + λ
∑

(i,j)∈E
d(ui, uj), (2.2)

where λ > 0 is a positive constant balancing the two parts of the functional. The TV
part of J is not differentiable because the geodesic distance d : M ×M → R≥0 is not
differentiable on the diagonal. Therefore, standard methods to minimize J (e.g. Newton)
will fail. Thus, for ε > 0 we define a regularized functional J ε : MV → R by

J ε(u) := 1
2
∑
i∈Vk

d2(ui, uni ) + λ
∑

(i,j)∈E

√
d2(ui, uj) + ε2. (2.3)

Although the functional J ε is differentiable the performance of standard methods to find
its minimizer is poor.

1With minor modifications the analysis in this chapter can also be done for the TV defined by

T V (u) :=
∑
i∈V

√√√√ ∑
j∈V

(i,j)∈E

d2(ui, uj).

If, for example, V is a two-dimensional grid and E is the set of all pairs (i, j) ∈ V × V such that
j ∈ V is either to the right or to the bottom of i ∈ V the value

√∑
j∈s(i) d2(ui, uj) is the 2-norm of

a discrete gradient at i ∈ V . The corresponding functional is known as the isotropic total variation.
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Related work

Since the beginning of DT-MRI in the 1980s, the regularization of DT-MRI images has
gained interest. In DT-MRI, the values of the images are symmetric positive definite
matrices. There are several proposals how to regularize such images [16, 17, 35, 51, 47].
In [30], Lellmann et al. presented a first framework and an algorithmic solution for
TV regularization for arbitrary Riemannian manifolds. Their idea is to reformulate the
variational problem as a multi-label optimization problem which can then be solved
approximately by convex relaxation techniques. They mentioned that “Many properties
of minimizers of TV-regularized models in manifolds are still not fully understood”. In
[53], Weinmann et al. propose a proximal point algorithm to minimize the TV functional
and prove convergence for data taking values in Hadamard spaces (see Definition 2.3.3).
Convergence results for spaces which are not Hadamard is an open problem we will
address in this chapter.

Overview of chapter

In Section 2.1 we propose the iteratively reweighted minimization (IRM) algorithm. The
purpose of the later sections is to study the convergence properties of the IRM algorithm.
First, we will show a general result (Proposition 2.2.4), namely that the IRM algorithm
generates a sequence for which the value of the regularized TV functional J ε defined in
(2.3) is non-increasing. Furthermore, under the assumption that J ε has a unique critical
point we prove that the sequence generated by IRM converges to that critical point
(Theorem 4.2.2). For M being a Hadamard manifold, we show that these assumptions
are satisfied (Proposition 2.3.1) and that the minimizer of J ε converges to a minimizer
of J if ε tends to zero (Theorem 2.3.2). Using a result from differential topology, we
show that if M is a half-sphere, the functional of the optimization problem occurring in
the IRM algorithm has a unique critical point (Theorem 2.4.2). Hence, IRM can also be
applied to the case of M being a half-sphere. This result is of independent interest and
is a first step toward a theory of convergence for spaces which are not Hadamard. Next,
we will prove local linear convergence of the sequence generated by the IRM algorithm
for a simple artificial image (Propositions 2.5.1 and 2.5.2). To our knowledge, for TV
minimization there is no algorithm known with this property. Finally, we apply IRM
and the proximal point algorithm introduced in [53] to several denoising and inpainting
tasks and compare the performance in Matlab. Due to the linear convergence, we will
see that our algorithm outperforms the proximal point algorithm.

Building upon our work, a C++ template library for the minimization of the TV-
functional using IRM and proximal point was implemented in [19] and experiments
as those in Section 2.6 were conducted.
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2.1 Iteratively reweighted minimization

2.1 Iteratively reweighted minimization

In this section we propose an adaptation of the well-known iteratively reweighted least
squares (IRLS) algorithm. IRLS has been proved to be very successful for recovering
sparse signals [18] and was already applied to scalar TV minimization problems [44].
Defining

wi,j = (w(u))i,j := (d2(ui, uj) + ε2)−
1
2 for all (i, j) ∈ E, (2.4)

and
Jw(u) := 1

2
∑
i∈Vk

d2(ui, uni ) + 1
2λ

∑
(i,j)∈E

wi,jd
2(ui, uj), (2.5)

we seek to minimize J ε by alternating between reweighting and minimization steps. In
a reweighting step we update the weights wi,j as defined in (2.4). In a minimization step
we minimize the functional Jw(u) defined in (2.5) with respect to u, i.e.

unew ∈ arg min
u∈MV

Jw(u). (2.6)

In the linear case, i.e. if M = Rn and d is the Euclidean distance, the functional Jw is a
quadratic functional and can be minimized by solving a system of linear equations. This
is where the term “least squares” in IRLS comes from. In the nonlinear case we propose
the Riemannian Newton method (0.1). We observed that only a few steps are necessary
to get a reasonable approximation of the minimizer of Jw. We call the resulting procedure
the iteratively reweighted minimization (IRM) algorithm. A pseudocode description can
be found below in Algorithm 1.

2.2 A general convergence result for IRM

In this section we present first results concerning the convergence of sequences generated
by the IRM algorithm. These results are general in the sense that they are independent of
the Riemannian manifold M . They depend, however, on Assumptions 2.2.1 and 2.2.2,
which are not satisfied by every Riemannian manifold but, as we will see in Section
2.3, are satisfied by Hadamard manifolds, i.e. Riemannian manifolds with non-positive
(sectional) curvature.

Assumption 2.2.1. The functional Jw defined in (2.5) has a unique critical point for
every w ∈ RE.

Note that every minimizer of Jw is also a critical point of Jw and that Jw has at least
one minimizer. Therefore, if Assumption 2.2.1 holds the unique critical point of Jw
is also the unique minimizer of Jw. To prove convergence of a sequence generated by
the IRM algorithm we will, as in [18], first reinterpret our algorithm as an alternating
minimization algorithm. A first consequence will be that the values of J ε are non-
increasing (Proposition 2.2.4). As explained in [43], alternating minimization can fail to
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2 Total Variation Minimization

Algorithm 1 Iteratively reweighted minimization
Input: Graph (V,E), noisy image un ∈MVk where Vk ⊂ V and parameters λ, ε, tol > 0.
Output: Approximation of a minimizer u ∈MV of J ε

Choose a first guess u(0) for u (e.g. by interpolation of un)
Set k = 0
repeat
wi,j = (d2(u(k)

i , u
(k)
j ) + ε2)−

1
2 for all (i, j) ∈ E

v(0) = u(k)

Set l = 0
repeat

solve Hess Jw(v(l))x = grad Jw(v(l)) for x ∈ Tv(l)MV

v(l+1) = expv(l)(−x)
l = l + 1

until d(v(l), v(l−1)) < tol
u(k+1) = v(l)

k = k + 1
until d(u(k), u(k−1)) < tol
return u(k).

converge to a minimizer. However, using the additional Assumption 2.2.2, we will be
able to prove convergence with a compactness argument (Theorem 2.2.3).

Assumption 2.2.2. The functional J ε defined in (2.3) has a unique critical point.

The main goal of this section is to prove the following convergence result.

Theorem 2.2.3. If Assumptions 2.2.1 and 2.2.2 hold, any sequence
(
u(j)

)
j∈N

generated
by the IRM algorithm (Algorithm 1) converges to the unique minimizer of J ε.

Theorem 2.2.3 guarantees that the sequence generated by IRM converges to the unique
minimizer of J ε. However, we are interested in a minimizer of J and it is at the moment
not clear if the unique minimizer of J ε is close to a minimizer of J for ε small. Further-
more, it is not clear when Assumptions 2.2.1 and 2.2.2 hold. These problems will be
addressed later in Section 2.3.

2.2.1 Proof of the convergence result

As already mentioned, we will first reinterpret our algorithm as an alternating minimiza-
tion algorithm. Note that the reweighting (2.4) and minimization (2.6) step of IRM are
equivalent to

wnew =
(
(d2(ui, uj) + ε2)−

1
2
)

(i,j)∈E
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= arg min
w∈RE

1
2λ

∑
(i,j)∈E

wi,j(d2(ui, uj) + ε2) + w−1
i,j

= arg min
w∈RE

1
2
∑
i∈Vk

d2(ui, uni ) + 1
2λ

∑
(i,j)∈E

wi,j(d2(ui, uj) + ε2) + w−1
i,j and

unew = arg min
u∈MV

1
2
∑
i∈Vk

d2(ui, uni ) + 1
2λ

∑
(i,j)∈E

wi,jd
2(ui, uj)

= arg min
u∈MV

1
2
∑
i∈Vk

d2(ui, uni ) + 1
2λ

∑
(i,j)∈E

wi,j(d2(ui, uj) + ε2) + w−1
i,j .

Hence, IRM is equivalent to alternating minimization of the functional

J̄ ε(w, u) := 1
2
∑
i∈Vk

d2(ui, uni ) + 1
2λ

∑
(i,j)∈E

wi,j(d2(ui, uj) + ε2) + w−1
i,j . (2.7)

A first consequence is that the value of J ε is non-increasing.

Proposition 2.2.4. Let
(
u(j)

)
j∈N
⊂MV be a sequence generated by the IRM algorithm.

Then the sequence
(
J ε(u(j))

)
j∈N
⊂ R is non-increasing.

Proof. Note that J ε(u) = J̄ ε(w(u), u) where J ε, J̄ ε and w(u) are defined in (2.3), (2.7)
and (2.4), respectively . Hence

J ε(u(j)) = J̄ ε(w(u(j)), u(j)) ≥ J̄ ε(w(u(j)), u(j+1)) ≥ J̄ ε(w(u(j+1)), u(j+1)) = J ε(u(j+1)).

To prove the main result, we will need the following elementary topological lemma.

Lemma 2.2.5. Let A be a compact space, B be a topological space, f : A → B be a
continuous function, a ∈ A such that f(x) = f(a) if and only if x = a, and (x(i))i∈N ⊂ A
be a sequence with limi→∞ f(x(i)) = f(a). Then limi→∞ x

(i) = a.

Proof. Assume that there exists an open neighborhood N(a) of a such that, for infinitely
many i ∈ N we have x(i) /∈ N(a). As A\N(a) is compact, there exists a subsequence(
x(ni)

)
i∈N

which converges to some ā ∈ A\N(a). We now have f(ā) = limi→∞ f(x(ni)) =
f(a), which contradicts the assumption.

We are now able to prove our main theorem.

Proof of Theorem 2.2.3. Note that J̄ ε(w(u(j)), u(j)) is bounded from below by zero and
by Proposition 2.2.4 non-increasing with j. Therefore, J̃(w(u(j)), u(j)) converges to some
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value c ∈ R. Note that w(u(j)) ≤ ε−1 for all j ∈ N and the sequence (u(j))j∈N is bounded.
Hence, it has a subsequence (u(nj))j∈N converging to some ū ∈MV . Let

u′ := arg min
u∈MV

J̄ ε(w(ū), u).

By continuity of J̄ ε we have

c = lim
j→∞

J̄ ε(w(u(nj+1)), u(nj+1))

= J̄ ε(w(u′), u′)
≤ J̄ ε(w(ū), ū)
= lim

j→∞
J̄ ε(wε(u(nj)), u(nj))

= c.

As we have equality and the functional u 7→ J̄ ε(w(ū), u) has a unique minimizer we have
u′ = ū. It follows that (w(ū), ū) is a critical point of J̄ ε. Therefore, ū is also a critical
point of Jw, with w = w(ū). Hence, the critical point of J ε. Finally, by Proposition
2.2.4 and Lemma 2.2.5 we get that limj→∞ u

(j) = ū.

2.3 IRM on Hadamard manifolds

In Theorem 2.2.3 we assume that Assumptions 2.2.1 and 2.2.2 hold, i.e. that J ε and
Jw for every w ∈ RE have unique critical points. In this section we consider Hadamard
manifolds, i.e. Riemannian manifolds with non-positive (sectional) curvature, for which
these assumptions are satisfied.

Proposition 2.3.1. If M is a Hadamard manifold and (V,E) is a connected graph the
functional J is convex and Assumptions 2.2.1 and 2.2.2 hold.

Furthermore we can show that the unique minimizer of J ε converges to a minimizer of J
if ε tends to zero. This shows that if we choose ε small the result of the IRM algorithm
will be close to a minimizer of J . Note that if Vk is a proper subset of V , the functional
J , unlike J ε, does in general not have a unique minimizer. If, for example, i ∈ V \Vk has
only two neighbors j1, j2 ∈ V , we can replace ui with any value on a length-minimizing
curve between uj1 and uj2 without changing the value of J(u).

Theorem 2.3.2. Let M be a Hadamard manifold, (V,E) connected and uε the unique
minimizer of J ε. Then limε→0 u

ε is well-defined and a minimizer of J .

2.3.1 Generalization to Hadamard spaces

In fact we will prove Proposition 2.3.1 and Theorem 2.3.2 more generally for the wider
class of Hadamard spaces.
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2.3 IRM on Hadamard manifolds

Definition 2.3.3. A complete metric space (X, d) is called a Hadamard space if, for all
x0, x1 ∈ X, there exists y ∈ X such that, for all z ∈ X, we have

d2(z, y) ≤ 1
2d

2(z, x0) + 1
2d

2(z, x1)− 1
4d

2(x0, x1). (2.8)

It follows from the definition that y has to be the midpoint of x0 and x1 (i.e. y ∈ X has
to be such that d(x0, y) = d(y, x1) = d(x0, x1)/2). A comprehensive introduction to the
nowadays well-established theory of Hadamard spaces is [7]. Hadamard manifolds are
Hadamard spaces [14]. Note that if X is a Hadamard space then XV with the metric

d(x, y) :=
√∑
i∈V

d2(xi, yi) for all x, y ∈ XV ,

is also a Hadamard space. For any two points in a Hadamard space there exists a unique
geodesic, i.e. a curve satisfying (1.1) locally, connecting them. We also need the notion
of convexity on Hadamard spaces.

Definition 2.3.4. A function f : X → R where X is a Hadamard space is called con-
vex (respectively strictly convex) if for every nonconstant geodesic γ : [0, 1] → X (see
Definition 1.1.2) the function f ◦ γ : [0, 1]→ R is convex (respectively strictly convex).

2.3.2 Proof of Convexity of the functionals

We can now prove Proposition 2.3.1.

Proof of Proposition 2.3.1. We will first prove that the functionals J , J ε and Jw are con-
vex. The distance function (and consequently the squared distance function) is convex
(see Corollary 2.5 in [49] or Proposition 5.4. in [7]). Therefore, J and Jw are convex.
The convexity of J ε follows by additionally using Lemma 2.3.5. We now prove strict con-
vexity of J ε and Jw. For this it is enough to show that for any u1, u2 ∈MV with u1 6= u2

and the geodesic γ : [0, 1] → MV connecting u1 and u2, there is one term T : MV → R
of the corresponding functional for which T ◦ γ is strictly convex. By Corollary 2.5 in
[49] the function x 7→ d2(x, y) is strictly convex for any y ∈ X. Hence, if there exists
i ∈ Vk with u1

i 6= u2
i , we have strict convexity. If there is no i ∈ Vk with u1

i 6= u2
i , we can

find (because (V,E) is connected) an (i, j) ∈ E such that u1
i = u2

i and u1
j 6= u2

j . Then,
by the same argument as before and Lemma 2.3.5, we have strict convexity. We now
prove that if M is a Hadamard manifold the functionals have a unique critical point.
Since every minimizer is a critical point there exists at least one critical point. If there
is more than one critical point we can connect two of them by the geodesic and get a
contradiction if the values at the critical points do not coincide. Furthermore by strict
convexity the values on the geodesic are strictly smaller than at the endpoints, which is
a contradiction. It follows that there is only one critical point.
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2 Total Variation Minimization

To prove the convexity of J ε we needed the next lemma. It states that if f1, . . . , fn are
nonnegative convex functions then

√
f2

1 + · · ·+ f2
n is also convex. Note that in general

the composition of two convex functions is not convex and we can therefore not use an
argument like that.

Lemma 2.3.5. If f1, . . . , fn : [0, 1]→ R≥0 are convex functions, the function
√
f2

1 + · · ·+ f2
n

is also convex. Furthermore, if f1 is strictly convex the function
√
f2

1 + · · ·+ f2
n is also

strictly convex.

Proof. Note that by induction it suffices to prove the statements for n = 2. By convexity
of f1 and f2 we have for any t ∈ [0, 1]

f1(t) ≤ tf1(1) + (1− t)f1(0) and f2(t) ≤ tf2(1) + (1− t)f2(0).

Squaring (which can be done due to nonnegativity of f1 and f2) and adding the inequal-
ities yields

(f2
1 + f2

2 )(t) ≤ t2(f2
1 + f2

2 )(1) + (1− t)2(f2
1 + f2

2 )(0) + 2t(1− t)(f1(1)f1(0) + f2(1)f2(0)).

By Cauchy–Schwarz, we get f1(1)f1(0) + f2(1)f2(0) ≤
√
f2

1 + f2
2 (1)

√
f2

1 + f2
2 (0) and

hence

(f2
1 + f2

2 )(t) ≤ t2(f2
1 + f2

2 )(1) + (1− t)2(f2
1 + f2

2 )(0)

+2t(1− t)
√
f2

1 + f2
2 (1)

√
f2

1 + f2
2 (0)

=
(
t
√
f2

1 + f2
2 (1) + (1− t)

√
f2

1 + f2
2 (0)

)2
.

Taking the square root shows that the function
√
f2

1 + f2
2 is convex. If f1 is strictly

convex we get strict inequality and therefore strict convexity.

2.3.3 Proof of convergence of minimizer of J ε to a minimizer of J

We can now prove the main theorem of Section 2.3. As announced, we will prove the
theorem not only for manifolds M but more generally for any Hadamard space X.

Proof of Theorem 2.3.2. Let C ⊂ XV be the set of minimizers of J . Note that C is
geodesically convex, i.e. for any geodesic γ : [0, 1] → XV with γ(0), γ(1) ∈ C we have
γ(t) ∈ C for all t ∈ [0, 1]. For a geodesic γ : [0, 1]→ C we have

J(γ(t)) = 1
2
∑
i∈Vk

d2(γ(t)i, uni ) + λ
∑

(i,j)∈E
d(γ(t)i, γ(t)j)

≤ 1
2
∑
i∈Vk

td2(γ(1)i, uni ) + (1− t)d2(γ(0)i, uni )
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2.3 IRM on Hadamard manifolds

+λ
∑

(i,j)∈E
td(γ(1)i, γ(1)j) + (1− t)d(γ(0)i, γ(0)j)

= tJ(γ(1)) + (1− t)J(γ(0))
= J(γ(0))
≤ J(γ(t)).

Hence we have equality and therefore

d(γ(t)i, γ(t)j) = td(γ(1)i, γ(1)j) + (1− t)d(γ(0)i, γ(0)j) for all (i, j) ∈ E and t ∈ [0, 1].
(2.9)

We define E+ = {(i, j) ∈ E|∃u = (ui)i∈V ∈ C s.t. d(ui, uj) > 0}, E0 = E\E+ and the
function K : XV → R ∪ {∞} by

K(u) :=
∑

(i,j)∈E+

1
d(ui, uj)

.

From (2.9) it follows that the restriction of K to C is strictly convex. Furthermore, C is
compact and there exists u ∈ C with K(u) <∞. Hence there exists a unique minimizer
u0 ∈ C of K. We define Kε : XV → R by

Kε(u) :=
∑

(i,j)∈E+

1
d(ui, uj) + ε

.

Note that we have the inequalities

x+ ε2

2(x+ ε) ≤
√
x2 + ε2 ≤ x+ ε2

2x.

Hence,

J(u0) ≤ J(uε) ≤ J(uε)+λε|E0|+
λε2

2 Kε(uε) ≤ J ε(uε) ≤ J ε(u0) ≤ J(u0)+λε|E0|+
λε2

2 K(u0).

It follows that limε→0 J(uε) = J(u0) and Kε(uε) ≤ K(u0). Hence,

d(uεi , uεj) ≥ (K(u0))−1 − ε

for all (i, j) ∈ E+. Since

K(uε) ≥ K(u0) ≥ Kε(uε)

= K(uε)− ε
∑

(i,j)∈E+

1
d(uεi , uεj)(d(uεi , uεj) + ε)

≥ K(uε)− ε|E+|(K(u0))−2

we have limε→0K(uε) = K(u0). Convergence of (uε)ε>0 to u0 for ε → 0 now follows
from Lemma 2.2.5 with f : XV → R2, u 7→ (J(u),K(u)).

37



2 Total Variation Minimization

2.4 IRM on the sphere

As already mentioned in the introduction the chromaticity part of an RGB-image has
values on the two-dimensional sphere S2. The m-dimensional sphere Sm together with
the standard inner product is a Riemannian manifold, but not a Hadamard manifold.
Therefore, we cannot apply the theory of Section 2.3. In fact even if V = Vk, the TV
functional for M = S2 does in general not have a unique minimizer as the following
example shows.

Example 2.4.1. Consider the TV functional J associated to V = Vk = {1, 2}, E =
{(1, 2)}, un1 = (0, 0, 1), un2 = (0, 0,−1) and λ > 0. Note that any minimizer (u1, u2) of
J satisfies ui 6= unj for any i, j ∈ {1, 2}. By rotational symmetry of the sphere, there
cannot be a unique minimizer.

The example above is a special case where the values of the image lie opposite to each
other and this raises the question if we have uniqueness if all the points lie “close” to
each other. For RGB-images, we can restrict our space to

S2
≥0 :=

{
x = (xi)3

i=1 ∈ S2 | xi ≥ 0 for i ∈ {1, 2, 3}
}
⊂ HS2 =

{
x ∈ S2

∣∣∣ 3∑
i=1

xi > 0
}
,

where HS2 denotes the open half-sphere. We will show that for data on a half-sphere
Assumption 2.2.1 holds. In fact, we will show a more general statement where the
squared distance function d2(p, q) can be replaced with any functional of the form α(pT q)
where α ∈ C2((−1, 1]) is a convex and monotonically decreasing function. Note that
the squared geodesic respectively the squared Euclidean distance are of this form with
α(x) = arccos2(x) respectively α(x) = 2− 2x. The convexity of arccos2 follows from

(arccos2)′(x) =


−2 arccos(x)√

1−x2 x ∈ (−1, 1)
−2 x = 1

(2.10)

(arccos2)′′(x) =
{2+(arccos2)′(x)x

1−x2 x ∈ (−1, 1)
2
3 x = 1

, (2.11)

and

(arccos2)′′(cos(y)) =
2− 2y

sin(y) cos(y)
sin(y)2 = 2 cos(y) (tan(y)− y)

sin(y)3 ≥ 0

for all y ∈ (0, π). We can state now state the main theorem of this Section.

Theorem 2.4.2. Let α ∈ C2((−1, 1],R) be convex and monotonically decreasing, (V,E)
a connected graph, w ∈ RE>0, Vk a nonempty subset of V , HSm the open half-sphere and
un ∈ (HSm)Vk . Then the functional J : (HSm)V → R defined by

J(u) :=
∑
i∈Vk

α(〈ui, uni 〉) +
∑

(i,j)∈E
w(i,j)α(〈ui, uj〉)

has a unique critical point.
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2.4 IRM on the sphere

Corollary 2.4.3. If M is the half-sphere the Assumption 2.2.1 is satisfied, i.e. the func-
tional Jw defined in (2.5) has a unique critical point for every w ∈ RE.

We can therefore find the minimizer of Jw using the Riemannian Newton method (Sec-
tion 1.3.3). Hence, we can apply IRM also for S2

≥0-valued images. By Proposition 2.2.4
the functional values of J ε are non-increasing. However, there are still some open ques-
tions: It is unclear if Assumption 2.2.2 holds true, i.e. if J ε has a unique critical point.
Furthermore, it is not clear if these minimizers converge to a minimizer of J if ε tends
to zero. If we replace the squared distances with distances in the functional J defined in
(2.2), the optimization problem becomes a multifacility location problem. This problem
has been studied in [6, 21]. However, existence and uniqueness of a minimizer is still an
open problem.

Without loss of generality we may assume that wi,j = wj,i > 0 for all (i, j) ∈ E in
Theorem 2.4.2. Even though J itself is not convex, we can prove that J is locally
strictly convex at every critical point of J .

Lemma 2.4.4. If u is a critical point of J we have that Hess J(u) is positive definite.

We will prove Lemma 2.4.4 in Section 2.4.1. To prove Theorem 2.4.2 we will also need
the Poincaré–Hopf theorem, a result from differential topology.

Theorem 2.4.5 (Poincaré–Hopf [34]). Let M be a compact manifold with boundary ∂M
and U : M → TM a vector field on M such that U is pointing outward on ∂M . Assume
that U has a continuous derivative DU , all zeros of U are isolated and DU(z) is invertible
for all zeros z ∈M of U . Then U has finitely many zeros z1, . . . , zn ∈M and

n∑
i=1

sgn(det(DU(zi))) = χ(M),

where sgn denotes the sign function and χ(M) the Euler characteristic of M .

Unfortunately, the space of our interest (HSm)V , i.e. the Cartesian power of the open
half-sphere, is from a differential topology viewpoint not a manifold with boundary but
a manifold with corners. However, (HSm)V can be approximated arbitrarily close by a
manifold with boundary which allows us to still use the Poincaré–Hopf theorem.

To apply the Poincaré–Hopf theorem, we need to prove that the gradient of J at the
boundary

∂ (HSm)V = {u ∈ (Sm)V |(ui)m+1 ≥ 0 for all i ∈ V, ∃i ∈ V s.t. (ui)m+1 = 0},

of (HSm)V is pointing outward.

Lemma 2.4.6. Let u = (ui)i∈V ∈ ∂ (HSm)V . Then we have (gradui
J(u))m+1 ≤ 0 for all

i ∈ V with ui ∈ ∂HSm and there exists at least one such i with (gradui
J(u))m+1 < 0.
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Proof. For i ∈ V with ui ∈ ∂HSm we have

(gradui
J(u))m+1 = eTm+1 gradui

J(u)
= eTm+1PTuiM

gradui
J̄(u)

= eTm+1 gradui
J̄(u)

= 1Vk
(i)α′(uTi uni )eTm+1u

n
i +

∑
j∈n(i)

wi,jα
′(uTi uj)eTm+1uj

≤ 0.

Let j ∈ V be such that uj ∈ ∂HSm. Consider a path j0, j1, . . . , jl ∈ V from j0 = j to
jl ∈ Vk. Let i be the largest index of this path such that ui ∈ ∂HSm. Then we have
strict inequality above.

We are now able to prove the main result of Section 2.4.

Proof of Theorem 2.4.2. Consider the gradient vector field grad J of J . By Lemma 2.4.4
all zeros z are isolated and satisfy det(D grad J(z)) > 0. By Lemma 2.4.6, the vector
field grad J is pointing outward at the boundary ∂ (HSm)V . Hence, by Theorem 2.4.5
the number of zeros of grad J is χ

(
(HSm)V

)
= χ (HSm)|V | = 1.

2.4.1 Convexity at critical points

The purpose of this section is to prove Lemma 2.4.4. By the computations in Section
1.5.1 the (intrinsic) Taylor expansion of α(xT y) is

α((expx(r))T expy(s)) = α(xT y) + α′(xT y)(yT r + xT s)

+1
2α
′′(xT y)(yT r + xT s)2

+1
2
(
rT sT

)(−β(xT y)Im+1 α′(xT y)Im+1
α′(xT y)Im+1 −β(xT y)Im+1

)(
r
s

)
+O(|r|3 + |s|3),

where β : C1((−1, 1]) is defined by β(x) = xα′(x).

For u ∈ (HSm)V we define the matrix T (u) ∈ RV×V by

T (u)ij :=


−1Vk

(i)β((uni )Tui)−
∑
k∈n(i)wi,kβ(uTi uk), i = j

wi,jα
′(uTi uj), (i, j) ∈ E

0, otherwise,

where n(i) := {j ∈ V |(i, j) ∈ E} denotes the set of neighbors of i ∈ V and 1Vk
∈ {0, 1}V

is the indicator function of Vk.
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2.4 IRM on the sphere

Lemma 2.4.7. If the matrix T (u) is positive definite the Hessian Hess J(u) is also positive
definite.

Proof. Since α′′(t) ≥ 0 for all t ∈ (−1, 1] the term (2.12) is nonnegative. Adding up the
second part (2.12) of the Hessian for all the terms in the functional J yields the matrix
T (u)⊗ Im+1 where ⊗ denotes the Kronecker product.

We now prove an identity for the critical points.

Lemma 2.4.8. Let u ∈ (HSm)V be a critical point of J . Then we have

−1Vk
(i)α′(uTi uni )uni = (T (u)u)i :=

∑
j∈V

T (u)ijuj for all i ∈ V.

Proof. Let J̄ be the natural extension of J which is defined by

J̄ :
{
u ∈

(
Rm+1

)V ∣∣∣ uTi uni ≥ −1 for all i ∈ V and uTi uj ≥ −1 for all (i, j) ∈ E
}
→ R.

Then, for all i ∈ V there exists µi ∈ R such that

µiui = dJ̄

dui
= 1Vk

(i)α′(uTi uni )uni +
∑
j∈n(i)

wi,jα
′(uTi uj)uj . (2.12)

Multiplying equation (2.12) with ui yields

µi = 1Vk
(i)β(uTi uni ) +

∑
j∈n(i)

wi,jβ(uTi uj).

Therefore, for all i ∈ V we have1Vk
(i)β(uTi uni ) +

∑
j∈n(i)

wi,jβ(uTi uj)

ui = 1Vk
(i)α′(uTi uni )uni +

∑
j∈n(i)

wi,jα
′(uTi uj)uj ,

which can be rewritten in the desired form.

We can now prove the desired result.

Proof of Lemma 2.4.4. Since HSn is an open half-sphere there exists a vector e ∈ Sn
with eTw > 0 for all w ∈ HSn. Let r := (eTui)i∈V ∈ RV>0. By Lemma 2.4.8 and
α′(t) ≤ 0 for all t ∈ (−1, 1] we have

(T (u)r)i = eTm+1(T (u)u)i = −1Vk
(i)α′(uTi uni )(uni )m+1 ≥ 0 for all i ∈ V. (2.13)

It follows that S := diag(r)T (u)diag(r), where diag(r) is the diagonal matrix with
entries of r on the diagonal, is diagonally dominant and therefore positive semidefinite.
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We now prove that S is even positive definite. Assume that v ∈ RV is an eigenvector of
S with eigenvalue 0 and let i ∈ V such that |vi| ≥ |vj | for all j ∈ V . As (Sv)i = 0, it
follows that vj = vi for all j ∈ n(i) and recursively that vj = vi for all j ∈ V . Let j ∈ Vk
then

(Sv)j = rj(T (u)r)jvj = −rjα′(uTj unj )(unj )m+1vj 6= 0,

which is a contradiction. Hence, S is positive definite and therefore T (u) is positive
definite as well. By Lemma 2.4.7, we have that Hess J(u) is then also positive definite.

2.5 Linear convergence of IRM on a test image

To get some ideas of the local convergence speed, we will analyze the TV functional on a
very simple artificial test image consisting of only two pixels with values 0 and 1. For this
minimization problem, we can write down the exact solution and study the convergence
speed of IRM and the proximal point algorithm [53]. Even though this image is not
realistic, the convergence behavior of IRM and proximal point persists also for larger
images with values in any Riemannian manifold.

2.5.1 The TV functional of the test image

The TV functional for the image with only two pixels with values 0 and 1 is

J(u0, u1) = 1
2(u0 − 0)2 + 1

2(u1 − 1)2 + λ|u0 − u1|. (2.14)

By symmetry, the minimizer u0 = (u0
0, u

0
1) satisfies u0

0 + u0
1 = 1. For u = (u0, u1) ∈ R2

let y(u) := u1−u0. If u0 +u1 = 1, we have J(u) = 1
4(y(u)−1)2 +λ|y(u)|. The minimizer

u0 satisfies

y(u0) =
{

1− 2λ if λ < 1
2

0 if λ ≥ 1
2
,

i.e. the minimizer is

(u0
0, u

0
1) =

{
(λ, 1− λ) if λ < 1

2
(1

2 ,
1
2) if λ ≥ 1

2
.

The regularized functional is

J ε(u0, u1) = 1
2(u0 − u0

0)2 + 1
2(u1 − u0

1)2 + λ
√

(u0 − u1)2 + ε2.

For u = (u0, u1) with u0 + u1 = 1, we have J ε(u) = 1
4(y(u) − 1)2 + λ

√
(y(u))2 + ε2.

Taking the derivative by y we get the condition f(y(uε)) = 0 for the minimizer uε of J ε
where

f(y) := 1
2(y − 1) + λy√

y2 + ε2
.
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By convexity of J ε, the function f is monotone increasing. If λ ≤ 1
2 , we have f(1−2λ) < 0

and hence
y(uε) > 1− 2λ. (2.15)

If λ > 1
2 we have

f

(
ε√

4λ2 − 1

)
= ε

2
√

4λ2 − 1
> 0

and hence
y(uε) < ε√

4λ2 − 1
. (2.16)

With some additional work, one can show that

|y(uε)− y(u0)| ≤


O(ε2) λ < 1

2
O(ε

2
3 ) λ = 1

2
O(ε) λ > 1

2

. (2.17)

2.5.2 Proof of linear convergence with constant ε

We now prove that if λ 6= 0.5, the sequence generated by IRM converges linearly to uε
with a convergence rate independent of ε > 0.

Proposition 2.5.1. Let λ ∈ R>0\
{

1
2

}
, u(0) ∈ R2 and ε > 0. Then the sequence (u(k))k∈N

generated by the IRM algorithm converges linearly to uε with (asymptotic) rate of con-
vergence at most min(2λ, (2λ)−1).

Proof. Note that we have u(k)
0 +u

(k)
1 = 1 for all k ≥ 1. Hence, it is enough to prove that

y(k) := y(u(k)) converges linearly to y(uε). We have

w(u) = 1√
(u1 − u0)2 + ε2

= 1√
y(u)2 + ε2

and
y(k+1) = 1

1 + 2λw(u(k))
= 1

1 + 2λ
((
y(k))2 + ε2

)− 1
2

= Gε(y(k)),

where

Gε(y) := 1
1 + 2λ(y2 + ε2)−

1
2

= (y2 + ε2)
1
2

(y2 + ε2)
1
2 + 2λ

. (2.18)

By Theorem 2.2.3 the sequence (u(k))k∈N and therefore
(
y(k)

)
k∈N

converges to uε respec-
tively y(uε). Let yε = y(uε). The (asymptotic) convergence rate is given by the absolute
value of the derivative of Gε at yε. We have

∣∣G′ε(y)
∣∣ =

∣∣∣∣∣ 2λy
(y2 + ε2)

1
2 ((y2 + ε2)

1
2 + 2λ)2

∣∣∣∣∣
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=
∣∣∣∣∣ y

(y2 + ε2)
1
2

∣∣∣∣∣
∣∣∣∣∣ 2λ
((y2 + ε2)

1
2 + 2λ)2

∣∣∣∣∣
<

∣∣∣∣∣ 2λ
((y2 + ε2)

1
2 + 2λ)2

∣∣∣∣∣ .
Therefore we have ∣∣G′ε(y)

∣∣ < 2λ
(2λ)2 = (2λ)−1 for all y ≥ 0. (2.19)

For λ < 1
2 we have by Equation (2.15)

∣∣G′ε(yε)∣∣ < 2λ
(yε + 2λ)2 < 2λ.

2.5.3 Proof of linear convergence in the case of ε converging to zero

An interesting adaptation of our algorithm is to decrease ε > 0 during the algorithm.
Even though the analysis so far is only performed for a fixed ε > 0, we believe that the
sequence of the adapted algorithm converges linearly to a minimizer of J . For our simple
test image we can prove this statement.

Proposition 2.5.2. Let λ ∈ R>0\
{

1
2

}
, u(0) ∈ R2, u0 be the minimizer of J defined in

(2.14) and (ε(k))k∈N ⊂ R>0 be a sequence that converges linearly to 0 with convergence
rate smaller than min(

√
2λ, (2λ)−1). Then the sequence (u(k))k∈N generated by the IRM

algorithm where for the k-th reweighting step ε is replaced with ε(k) satisfies∣∣∣u(k) − u0
∣∣∣ ≤ C1C

k
2 .

for some C1 > 0 and C2 ∈ (0, 1).

Proof. Let y(k) = y(u(k)). It is enough to prove that there exists C1 > 0 and C2 ∈ (0, 1)
with ∣∣∣y(k) − y0

∣∣∣ ≤ C1C
k
2 . (2.20)

Note that
y(k+1) = Gε(k)(y(k)),

where Gε is defined in (2.18). Assume first λ > 1
2 and therefore y0 = 0. By (2.19) and

(2.16), we have

y(k+1) ≤
∣∣∣y(k+1) − yε(k)

∣∣∣+ yε
(k)

≤ 1
2λ

∣∣∣yk − yε(k)
∣∣∣+ ε(k)
√

4λ2 − 1

≤ 1
2λy

k + ε(k)
( 1

2λ + 1
) 1√

4λ2 − 1
.
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Using this inequality iteratively yields

y(k+1) ≤ 1
(2λ)k y

(1) +
(
ε(k) + 1

2λε
(k−1) + · · ·+ 1

(2λ)k−1 ε
(1)
)( 1

2λ + 1
) 1√

4λ2 − 1
.

Since (ε(k))k∈N ⊂ R>0 converges linearly to 0 with convergence rate smaller than (2λ)−1

there exists C3 > 0 and C4 < (2λ)−1 such that we have ε(k) ≤ C3C
k
4 . Hence, we have

y(k+1) ≤ 1
(2λ)k y

(1) +
(
ε(k) + 1

2λε
(k−1) + · · ·+ 1

(2λ)k−1 ε
(1)
)( 1

2λ + 1
) 1√

4λ2 − 1

≤
( 1

2λ

)k (
y(1) + C3

( 1
2λ + 1

) 1√
4λ2 − 1

C42λ
1− C42λ

)
which shows that (2.20) holds. Let now λ < 1

2 and therefore y0 = 1 − 2λ. Note that
y(1) > 0. If δ > 0 and y(k) < 1− 2λ− δ, we have

y(k+1) = Gε(k)(y(k)) > y(k)

y(k) + 2λ
>

y(k)

1− δ .

Furthermore if y(k) > 1− 2λ, it follows

y(k+1) = Gε(k)(y(k)) > y(k)

y(k) + 2λ
>

1− 2λ
(1− 2λ) + 2λ = 1− 2λ.

Hence we have y(k) > 1 − 2λ − δ for all k ∈ N large enough. For C5 ∈ (2λ, 1) and
0 < δ < min

(
1− 2λ, 1−

√
2λ
C5

)
we have for y > 1− 2λ− δ, that

∣∣G′ε(y)
∣∣ < 2λ

(y + 2λ)2 <
2λ

(1− δ)2 < C5.

Therefore, we have∣∣∣y(k+1) − yε(k)
∣∣∣ =

∣∣∣Gε(k)(y(k))−Gε(k)(yε
(k))
∣∣∣ ≤ C5

∣∣∣y(k) − yε(k)
∣∣∣ .

By (2.17), there exists C6 > 0 such that
∣∣∣yε(k) − y0

∣∣∣ < C6
(
ε(k)

)2
. Hence, we have∣∣∣y(k+1) − y0

∣∣∣ ≤ ∣∣∣y(k+1) − yε(k)
∣∣∣+ ∣∣∣yε(k) − y0

∣∣∣
≤ C5

∣∣∣y(k) − yε(k)
∣∣∣+ C6

(
ε(k)

)2

≤ C5
∣∣∣y(k) − y0

∣∣∣+ (
ε(k)

)2
C6(1 + C5).

The proof can now be finished with the same argument as in the case λ > 1
2 .

2.5.4 Comparison with convergence speed of proximal point algorithm

We will now compare the convergence speed of our method with the convergence speed
of the proximal point algorithm proposed in [53] (see Algorithm 2).
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The proximal point method

To motivate the proximal point method consider a convex differentiable functional
J : Rn → R. To compute the minimizer of J we can solve the ordinary differential
equation (ODE)

u̇ = − grad J(u).

The minimizer of J is then given by limt→∞ u(t). To numerically solve the ODE we can
perform implicit Euler steps with step sizes (µk)k∈N ⊂ R>0, i.e. we define (uk)k∈N ⊂ Rn
recursively as the solution of

uk+1 = uk − µk grad J(uk+1). (2.21)

This method can be generalized to (non-differentiable) functionals on a metric space X
by replacing the implicit Euler step (2.21) with uk+1 := proxµkJ(uk) where the proximal
map prox is defined below.

Definition 2.5.3. For (X, d) a metric space and f : X → R, the proximal map proxf : X →
X is defined by

proxf (x) := arg min
y∈X

f(y) + 1
2d

2(x, y).

The proximal point algorithm makes use of the fact that if V is a two-dimensional grid
and X a geodesic space the TV functional J defined in (2.2) can be written as a sum of
functionals for which there exists an explicit formula for the proximal map in terms of
geodesics. We now prove the negative result that for the proximal point algorithm we
do in general not have linear convergence.

Sublinear convergence for proximal point algorithm

We can now prove that a sequence generated by the proximal point algorithm, unlike a
sequence generated by the IRM algorithm, does in general not convergence linearly to
u0.

Proposition 2.5.4. Let λ <
(
0, 1

2

)
. A sequence (u(k))k∈N generated by the proximal point

algorithm does not converge linearly to u0.

Proof. Let (µk)k∈N ∈ `2\`1 be the parameter sequence and (u(k)) be the corresponding
sequence generated by the proximal point algorithm. Note that we have u(k)

0 + u
(k)
1 = 1

for all k ∈ N. Let v(k) := u
(k)
0 . For k large enough, we have v(k) +λµk ≤ 1

2 and therefore

v(k+1) = v(k) +
µkλ− µk

1+µk
vk

5 .
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2.5 Linear convergence of IRM on a test image

Algorithm 2 Proximal point algorithm
Input: Noisy image a ∈ Xm×n, λ > 0 and sequence (µk)k∈N ∈ `2\`1.
Output: Approximation for the minimizer u ∈ Xm×n of
J(a, λ)
u = a
for k = 1, . . . do

for i = 1, . . . ,m; j = 1, . . . , n do
tij = µkd(ai,j , xi,j)/(1 + µk)
z

(1)
i,j = [ui,j , ai,j ]tij

tij = min(λµk, d(ui,j , ui,j+1)/2)
z

(2)
i,j = [ui,j , ui,j+1]tij

tij = min(λµk, d(ui,j , ui,j−1)/2)
z

(3)
i,j = [ui,j , ui,j−1]tij

tij = min(λµk, d(ui,j , ui+1,j)/2)
z

(4)
i,j = [ui,j , ui+1,j ]tij

tij = min(λµk, d(ui,j , ui−1,j)/2)
z

(5)
i,j = [ui,j , ui−1,j ]tij

u′i,j = approx mean(z(1)
ij , z

(2)
ij , z

(3)
ij , z

(4)
ij , z

(5)
ij )

end for
for i = 1, . . . ,m; j = 1, . . . , n do
ui,j = u′i,j

end for
end for

Here c = [a, b]t ∈ X is the unique value on the geodesic between a and b with d(a, c) = t
and approx mean is an approximative variant of the Riemannian average.
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2 Total Variation Minimization

Hence
v(k+1) − λ =

(
1− µk

5(1 + µk)

)(
v(k) − λ

)
+ µ2

kλ

5(1 + µk)
.

Assume that there exists N0 ∈ N and C1 > 0, 0 < C2 < 1 with
∣∣∣v(k) − λ

∣∣∣ ≤ C1C
k
2 for all

k > N0. Then we have

µk ≤
√

5(1 + µk)
λ

(
1− µk

5(1 + µk)
+ C2

)
C1Ck2 ≤ C3

(√
C2
)k
,

and therefore (µk)k∈N ∈ `1, which is a contradiction.

Comparison of convergence speed in a numerical test

We compared the two algorithms for the simple test image also with a numerical exper-
iment. In Figure 2.1, we plotted the error e(u) := |u0− u0

0| for λ = 0.15 and ε(k) = 10−k
in dependence of the number of iterations for both algorithms. As we can see for the
IRM algorithm we have linear convergence, whereas for the proximal point algorithm
the convergence is much slower and asymptotically not linear. Hence, in order to com-
pute the TV minimizer of an image up to high precision IRM is more appropriate than
proximal point. However, in most applications we do not have to compute u0 up to high
precision and it is sufficient to use about 3− 5 IRM or 10− 100 proximal point steps.
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IRM-Error
(2λ)k=(0.3)k

Figure 2.1: Error in dependence of the number of iterations for λ = 0.15. For the IRM
algorithm we choose ε(k) = 10−k and for the proximal point algorithm the
sequence µk = 3k−0.95.

48



2.6 Numerical experiments

2.6 Numerical experiments

We start with a few remarks regarding the implementation of IRM (Algorithm 1). The
initial guess u(0) cannot be chosen arbitrarily. The reason is that the Newton algorithm
converges only locally. However, as observed in practice, a simple smoothing filter yields
a first guess for which the algorithm converges.

If our graph (V,E) is sparse, the Hessian of the functional Jw defined in (2.5) will
be sparse as well, which allows us to solve the linear system of a Newton iteration in
moderate time. We used a direct solver. Conjugate gradients can also be used: it is,
however, observed that the unconditioned version is slightly slower. With a suitable
preconditioner, it could be possible to improve the convergence speed.

For Euclidean spaces the functional J εw is quadratic and the minimization problem (2.6)
boils down to a linear system of equations. Hence for Euclidean data, we can restrict the
number of Newton iterations in each IRM step to one. In practice, if we have manifold-
valued data and use only one Newton iteration in each IRM step, the IRM algorithm
still converges. However, we do not have a theory which proves convergence in this
case. An option to choose the stopping criteria, for which we can guarantee convergence
while reducing the computational cost, is to do Newton iterations until the value of J ε is
smaller than before the first Newton iteration (which usually happens after one Newton
iteration).

To apply Algorithm 1 we used the computations of the gradient and the Hession of the
squared distance function on Sm, SPD(n) and SO(n) from Section 1.5. The numerical
experiments were conducted on a laptop using a single 2.9 GHz Intel Core i7 processor
and the Matlab numerical computing environment.

For larger images it is not recommended to use IRM directly since this would require a
large amount of memory and computational time. Instead, one could divide the image
into smaller subimages, apply the algorithm to each of these subimages and finally
compose the denoised subimages again to a complete denoised image.

2.6.1 Sphere-valued images

In Section 2.6.1 we explain how the second derivative of the squared spherical distance
can be computed using a result from Section 1.5.1. In the following we present two
applications with sphere-valued data.

Computations

From Section 1.5.1, we have

d2(expx(r), expy(s)) = d2(x, y) + α′(yT r + xT s)
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+1
2
(
rT sT

)(
α′′
(
yyT yxT

xyT xxT

)
+
(
−βI α′I
α′I −βI

))(
r
s

)
+O(|r|3 + |s|3),

for any x, y ∈ Sm, r ∈ TxM and s ∈ TyM , where α = α(xT y) = arccos2(xT y) and β =
β(xT y) := xT yα′(xT y). The derivatives of arccos2 are given in (2.10). The sum of the
two matrices given in (2.22) defines not only a linear map TxSm×TySm → TxS

m×TySm,
but a linear map Rm+1 × Rm+1 → Rm+1 × Rm+1. To restrict ourselves to the tangent
space at (x, y) ∈ Sm×Sm, orthogonal bases of TxSm and TySm using QR-decomposition
are constructed. By a change of basis, we compute the gradient and Hessian of d2 with
respect to the new basis. Therefore, we can compute second derivatives of squared
distance functions and hence solve the optimization problems (2.6). The IRM algorithm
for TV regularization on spheres, following the explanations above, was implemented in
[15].

Inpainting

In Figure 2.2, we see an example of color inpainting. We first detect the region to inpaint
(the blue lines). Next, we do a scattered interpolation to get a first guess of our image.
Finally, we apply our TV minimization algorithm with λ = 5 · 10−3. As we can see, the
clear straight edges occur only after we do the TV minimization.

Figure 2.2: Color inpainting. From left to right: original, damaged, first guess and
restored image.

Colorization

In Figure 2.3, we see an example of colorization applied to an image known among the
image processing community as Lena. We assumed that the brightness is known, but the
color part of every pixel is only known with probability 0.01. We first detected the edges
from the grayscale image using the Canny edge detector [12]. Next, we computed a first
approximation of the color part by a scattered interpolation. Finally, we computed the
color part by minimizing a weighted (weight 0.01 at the edges and 1 everywhere else)
TV functional with λ = 10−2.
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2.6 Numerical experiments

Figure 2.3: Colorization. From left to right: original image, image when almost all color
was removed and restored image.

2.6.2 Matrix-valued images

We will consider SPD -valued and SO(n)-valued images.

SPD -valued images

By [11] (Page 314) the space of positive definite matrices is a Hadamard manifold (i.e.
it has non-positive sectional curvature) and the theory of Section 2.3 can therefore be
applied. The IRM algorithm for TV regularization of SPD -matrices, following the
explanations above, was implemented in [38]. In Figure 2.4, we can see denoising of a
real 32× 32 DT-MRI image [8]. We choose λ = 0.7.

SO(n)-valued images

Unfortunately, SO(n) is not a Hadamard manifold and we cannot apply the theory
of Section 2.3. However, in practice it was nevertheless possible to do denoising and
inpainting of SO(n)-valued images. In Figure 2.5, we can see denoising of an artificial
10 × 10 SO(3)-valued image, where for each (i, j) ∈ {1, . . . , 10}2 the value of the pixel
(i, j) is the rotation with axis (i, j, 0) and angle 1 + (i+ j)/10. The SO(3)-matrices are
illustrated by rotated cubes. To add noise, we added a random matrix with Gaussian
distributed (standard deviation 0.3) entries and projected back to SO(3). For A ∈ Rn×n
with singular value decomposition A = UΣV T , the projection onto SO(n) is given by
PSO(n)(A) = UV T , i.e. by dropping Σ. We choose λ = 0.3.
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Figure 2.4: Denoising of a DT-MRI image.

Figure 2.5: Denoising and inpainting of an SO(3)-valued image. From left to right:
original, noisy and restored image.

2.6.3 Comparison to proximal point algorithm

We compared the IRM algorithm to the proximal point algorithm for the four images
shown in Figure 2.6. Images (a) and (b) are well known in the image processing com-
munity. In image (c), for (i, j) ∈ {1, . . . , 30}2 the value of the pixel (i, j) is given by
the rotation matrix with axis (2(i − 1), j − 1, 0) if i ≥ 16 and (0, 2(i − 1), 14.5) if
i ≤ 15 and angle (i + j − 2)/29 if i > j and π/2 + (i − j)/29 if i ≤ j. In image (d),
for i ∈ {1, . . . , 15} and j ∈ {1, . . . , 30} the value of the pixel (i, j) is RDRT where D =
diag((1.7, 0.3, 0.2)) and R is the rotation matrix with axis ((i−15.5)/5, 3(j−15.5), 29)
and angle 3π/4 + (i− 15.5)/5− 3(j − 15.5). The value of pixel (31− i, j) is constructed
similar as the value of the pixel (i, j), with the only difference that the angle of rotation
is −3π/4 + (i − 15.5)/5 + 3(j − 15.5). For each image, we added noise with standard
deviation 0.2. For the sphere- and SO(3)-valued image, we projected the result back on
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the manifold. For the SPD(3)-valued image, we computed the matrix logarithm, added
noise and then computed the matrix exponential of the result. We choose λ = 0.2 and
the sequence µk = 3k−0.95 for all four experiments. We measured the computational
time, the value of J and the the peak-to-signal noise ratio (PSNR) with respect to the
original image for both algorithms. The code implemented is far from being optimal.
There is, for example, no parallelization used. Both algorithms use however the same
subroutines, which makes a comparison feasible. In Figure 2.7, we plotted the results.

(a) (b) (c) (d)

Figure 2.6: Test images:(a) Cameraman (256 × 256, R-valued) (b) Color Part of Lena
(361×361, S2-valued) (c) Synthetic 30×30 SO(3)-valued image (d) Synthetic
30× 30 SPD(3)-valued image

For all four images, IRM computes the minimizer of J faster than proximal point. How-
ever, the PSNR is not always smaller in the IRM case. The reason is that the PSNR
is sometimes larger during the algorithm than at the end, when we are close to the TV
minimizer. This, however, depends on the choice of (µk)k∈N and the image.

In [19] a C++ template library for the minimization of the TV-functional using IRM
and proximal point was implemented and a similar experiment was conducted. The
observation was that for manifolds for which the exponential and logarithm map are
simple to compute (e.g. Euclidean data or the sphere) proximal point is faster whereas
for manifolds for which the computation of the exponential and logarithm map is more
expensive (SO(n),SPD(n) or the Grassmannian) IRM becomes faster. The explanation
is that for IRM the majority of the computational time is used to solve the linear system
of the Newton step which does not suffer from increasing complexity of exp and log,
whereas for proximal point the majority of the computational time is used to compute
exp and log.

If the IRM algorithm is applied to a very large image the amount of storage can be
a limiting factor. To avoid this issue, it is recommended to subdivide the image into
smaller subimages and apply the IRM algorithm independently to all these subimages.
If desired, this process can of course also be parallelized.
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Figure 2.7: On top the value of the functional J and at the bottom the PSNR with
dependence on the computational time (in second) is shown. From left to
right: Results for images (a), (b), (c) and (d). The blue dashed lines with
squares is IRM and the green line proximal point.

Much more experimentation would be needed to evaluate the IRM method relative to
other techniques. What is demonstrated in this chapter is simply that IRM can be used
for the tasks presented.
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In this chapter, we study approximations of manifold-valued functions defined on a
domain Ω ⊂ Rs. For our construction, we will need basis functions φi : Ω → R where i
is an element of an index set I. With the Riemannian and the projection-based average
introduced in Section 1.4, we can generate two geometric finite element spaces VR and
VP as defined in (0.7), i.e.

VR := {v : Ω→M, v(x) := avRiem ((φi(x))i∈I , (pi)i∈I)
∣∣pi ∈M for all i ∈ I},

and

VP := {v : Ω→M, v(x) := avP ((φi(x))i∈I , (pi)i∈I)
∣∣pi ∈M for all i ∈ I}.

In this chapter, we study how well a function can be approximated by a function in
VR respectively VP . To this end we will construct approximation operators into these
spaces. We will assume that for all i ∈ I the basis function φi : Ω → R is supported
locally around a point ξi ∈ Ω̄, where Ω̄ denotes the closure of Ω. Then we can define
natural approximation operators for continuous functions into VR respectively VP .

Definition 3.0.1. Let Ω ⊂ Rs, M a Riemannian manifold. The approximation operator
QR : C(Ω̄,M) → VR respectively QP : C(Ω̄,M) → VP corresponding to a set of basis
functions Φ = (φi)i∈I : Ω→ R and nodes Ξ = (ξi)i∈I ⊂ Ω̄ is defined by

QRu(x) := avRiem((u(ξi))i∈I , (φi(x))i∈I) for all x ∈ Ω, (3.1)

respectively
QPu(x) := avP((u(ξi))i∈I , (φi(x))i∈I) for all x ∈ Ω. (3.2)

Note that for u ∈ C(Ω̄,M) and functions φi with sufficiently small support the functions
QRu and QPu are well-defined. We will also consider the linear analog QRn : C(Ω̄,M)→
VRn = {

∑
i∈I φici | ci ∈ Rn} of QRu and QPu defined by

QRnu :=
∑
i∈I

φiu(ξi). (3.3)

Note that we have QP = P◦QRn where by abuse of notation P also denotes the operator
P : C(Ω̄,Rn)→ C(Ω̄,M) which applies the closest point projection P pointwise.

We briefly describe an example of QP . Assume that Ω ⊂ R2 is a polygonal domain.
Consider a triangulation of Ω and denote its vertices by (ξi)i∈I . For every i ∈ I we

55



3 Approximation Error Estimates

define φi as the piecewise (on every triangle) linear and globally continuous function
with φi(ξj) = δij . Let now u : Ω → S1 ⊂ R2 be a map into the circle S1. Consider
Figure 3.1. Since the basis functions are piecewise linear the restriction of the function
QR2u =

∑
i∈I φiu(ξi) to the triangle with vertices ξi, ξk and ξm (in red) is an affine map.

Its image is the triangle with vertices u(ξi), u(ξk) and u(ξm) (in green). Let x be in the
red triangle and QR2u(x) be its image in the green triangle. To get the value QPu(x)
we need to project QR2u(x) onto the circle.

u(ξi)

u(ξk)
u(ξm)

QR2u(x)
QPu(x)

x
ξi

ξk
ξm

Figure 3.1: Geometric finite element function into S1

The goal of this chapter is to estimate the error (measured in a Sobolev norm) between
a function u : Ω→M and its approximation QRu ∈ VR respectively QPu ∈ VP in terms
of the mesh width

h := sup
x∈Ω

max
i∈I

φi(x)6=0

|ξi − x|,

and norms of u.

A classical estimate (see e.g. [48, 9]) states that for p ∈ [1,∞], m > s
p and l ≤ m we

have under some assumptions (e.g. polynomial exactness, smoothness) on (φi)i∈I and
(ξi)i∈I that

|u−QRnu|W l,p . hm−l|u|Wm,p for all u ∈Wm,p(Ω,Rn), (3.4)
In Section 3.3, respectively 3.4, we will prove that QP respectively QR satisfy a similar
error estimate. The idea to prove an approximation error estimate for QP = PQRn is
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to first show that the operator P is locally Lipschitz continuous with respect to Sobolev
norms W l,p, i.e.

|Pv − Pw|W l,p . ‖v − w‖W l,p . (3.5)

The exact statement also including the dependence of the constant will be presented and
proven in Section 3.2. Then we combine this estimate with (3.4) in Section 3.3 to get

|u−QPu|W l,p = |Pu− PQRnu|W l,p . hm−l|u|Wm,p .

More precisely, we can show that asymptotically (i.e. for h small enough) QP satisfies
the same error estimate as QRn does (3.4).

In Section 3.4, we will prove a similar error estimate for QR. However, we will not be
able to prove the exact same estimate as for QP . Instead, we estimate the error by hm−l
times a factor depending only on the derivatives of u. In Section 3.5, we will consider the
case where Ω = R and (φi)i∈I are B-splines. Here the standard approximation operator
QRn does not yield optimal approximation order and another type of operator needs to
be generalized.

3.1 Properties of projection-based finite element spaces

In this section we study some simple properties of projection-based finite elements. By
definition every function v ∈ VP is of the form

v(x) = P
(∑
i∈I

ciφi(x)
)

for all x ∈ Ω and (ci)i∈I ⊂M. (3.6)

Hence each function v ∈ VP is characterized by the values (ci)i∈I ⊂M . In Section 3.1.1,
we show that projection-based finite elements are conforming. In Section 3.1.2, we show
that projection-based finite elements are equivariant under certain isometries of M .

3.1.1 Conformity of projection-based finite element spaces

By the chain rule we have

∂

∂xj

v(x) = P ′
(∑
i∈I

ciφi(x)
)[∑

i∈I
ci
∂

∂xj

φi(x)
]

(3.7)

for every x ∈ Ω such that P is differentiable at
∑
i∈I ciφi(x) ∈ Rn and φi is differentiable

at x ∈ Ω for all i ∈ I. We can now prove that VP is W 1,p conforming.

Proposition 3.1.1. Assume that the closest point projection P : U ⊂ Rn → M is differ-
entiable with bounded derivative and Φ = (φi)i∈I ⊂ W 1,p for some p ∈ [1,∞]. Then we
have VP ⊂ W 1,p.
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Remark 3.1.2. In [1] it was shown that if M is a closed C2-manifold with radius of
curvature bounded from below the closest point projection defined in Definition 1.2.2 is
well-defined and differentiable with bounded derivative in a uniform neighborhood of M .
Hence the first assumption of Lemma 3.1.1 is satisfied in this case.

Proof. Let v ∈ VP and (ci)i∈I ⊂ M such that (3.6) holds. As functions in W 1,p are
differentiable a.e. the function v ∈ VP is also differentiable a.e. and the weak derivative
coincides with the classical derivative (given in (3.7)) a.e. (see for example Corollary
8.11 of [10]). Because I is finite we have for j ∈ {1, . . . , d} and p <∞∥∥∥∥∥ ∂

∂xj

v

∥∥∥∥∥
p

Lp

=
∫
x∈Ω

∣∣∣∣∣P(1)
(∑
i∈I

ciφi(x)
)[∑

i∈I
ci
∂

∂xj

φi(x)
]∣∣∣∣∣
p

dx . |P|pC1

∑
i∈I
|ci|p

∥∥∥∥∥ ∂

∂xj

φi

∥∥∥∥∥
p

Lp

<∞,

For the case p =∞ we get for j ∈ {1, . . . , d}∥∥∥∥∥ ∂

∂xj

v

∥∥∥∥∥
L∞

= sup
x∈Ω

∣∣∣∣∣P(1)
(∑
i∈I

ciφi(x)
)[∑

i∈I
ci
∂

∂xj

φi(x)
]∣∣∣∣∣ . |P|pC1

∑
i∈I
|ci| sup

x∈Ω

∥∥∥∥∥ ∂

∂xj

φi

∥∥∥∥∥
L∞

<∞.

We now study higher derivatives of v. The l-th derivative P(l)(x) of P at x ∈ Rn is a
multilinearform which we denote by P(l)[·, . . . , ·]. A derivative D~av(x) at x ∈ Ω is a sum
of terms of the form

P(l)(QRnv(x))[D ~a1QRnv(x), . . . , D ~alQRnv(x)]

where l ≤ |~a|1, ~ai ∈ Nd\{(0, . . . , 0)} with ~a1 + · · · + ~al = ~a. Estimating the Lp-norm of
these expressions is not as simple as before. It is not even true that for smooth function
G : Rn1 → Rn2 , n1, n2 ∈ N and v ∈ W l,p(Ω,Rn1) we have Gv ∈ W l,p(Ω,Rn2) as the
following example shows.

Example 3.1.3. Let s = 3, n1 = n2 = 1, Ω = B1(0) := {x ∈ Rs | |x| < 1}, v(x) := |x|−0.5

and G(x) := sin(x). We have∫
B1(0)

∣∣∣∣∣ d2

dxidxj
v(x)

∣∣∣∣∣ dx =
∫
B1(0)

∣∣∣∣54 |x|− 9
2xixj −

1
2 |x|

− 5
2 δij

∣∣∣∣ dx .
∫
B1(0)

|x|−
5
2dx .

∫ 1

0
r−

1
2dr . 1.

Hence v ∈W 2,1. However∫
B1(0)

|∆G(v(x))|dx =
∫
B1(0)

∣∣∣∣(5
4 −

3
2

)
cos(|x|−0.5)|x|−

5
2 − 1

4 sin(|x|−0.5)|x|−3
∣∣∣∣ dx

∼
∫ 1

0

∣∣∣cos(r−0.5)r−
5
2 + sin(r−0.5)r−3

∣∣∣ r2dr

∼
∫ ∞

1

∣∣∣cos(t)t−2 + sin(t)t−1
∣∣∣ dt

≥
∫ ∞

1

∣∣∣∣sin(t)
t

∣∣∣∣ dt− ∫ ∞
1

t−2dt

= ∞.

Hence Gv /∈W 2,1.
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3.1 Properties of projection-based finite element spaces

However, if we assume that our basis functions (φi)i∈I are bounded (i.e. in L∞) we can
show that VP ⊂W l,p.

Proposition 3.1.4. Assume that the closest point projection P is l times differentiable
with bounded derivatives and Φ = (φi)i∈I ⊂W l,p ∩L∞. Then we have VP ⊂W 1,p ∩L∞.

Proof. Let v ∈ VP and (ci)i∈I ⊂M such that (3.6) holds. Then there exists w ∈ C(Ω,M)
with v = QMw = PQRnw. We have QRnw =

∑
i∈I ciφi ∈ W l,p ∩ L∞. By the Corollary

of the first Theorem in Section 5.2.5 of [45] we have that v = PQRnw ∈W l,p ∩ L∞.

3.1.2 Preservation of isometries

In this section, we study under which circumstances an isometry T : M →M commutes
with the projection-based interpolation operator QM . The projection-based finite el-
ement space VP defined in (0.7) is then called equivariant under the isometry T . In
mechanics, this leads to the desirable property that discretizations of objective problems
are again objective.

We will need our isometries to be extendable as defined below.

Definition 3.1.5. An isometry T : M → M (with respect to the geodesic distance) is
called extendable if there exists an isometry T̃ : Rn → Rn (with respect to the Euclidean
distance) with T̃ (p) = T (p) for all x ∈M .

Examples for extendable isometries T are orthogonal transformations for the sphere and
multiplication with special orthogonal matrices for SO(n). We can now prove our main
theorem of this section

Theorem 3.1.6. Let M ⊂ Rn be a Riemannian submanifold, P the closest-point projec-
tion defined in Definition 1.2.2, T : M → M an extendable isometry and Φ = (φi)i∈I a
partition of unity. Then T commutes with QM .

Proof. As an isometry maps closest distances to closest distances, T̃ commutes with P.
Therefore T̃ commutes with P. By the Mazur–Ulam theorem [33] there exists a linear
map A : Rn → Rn with T̃ (q) = A(q) + T̃ (0) for all q ∈ Rn. We now have for any
v ∈ C(Ω,M) and x ∈ Ω

T̃QRnv(x) = T̃
∑
i∈I

v(ξi)φi(x) = A
∑
i∈I

v(ξi)φi(x) + T̃ (0) =
∑
i∈I

Av(ξi)φi(x) + T̃ (0)
∑
i∈I

φi(x)

=
∑
i∈I

(Av(ξi) + T̃ (0))φi(x) =
∑
i∈I

T̃ v(ξi)φi(x) = QRn T̃ v(x).

Hence T̃ commutes with QRn . We now have

T ◦QM = T̃ ◦QM = T̃ ◦ P ◦QRn = P ◦ T̃ ◦QRn = P ◦QRn ◦ T̃ = QM ◦ T̃ = QM ◦ T.
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3 Approximation Error Estimates

v(0)

v(1)

QMv(0.5)
Tv(0)

Tv(1)
QMTv(0.5)

Figure 3.2: An isometry not preserved by QM

However, in general QM does not commute with ST as can be seen by the example
illustrated in Figure 3.2. In this example M is an ellipse in R2, P the closest point
projection and T the isometry which moves every point clockwise a quarter of the total
length of the ellipse. Suppose that QR2 (and therefore also QM ) is exact at 0 and 1 and
QR2v(0.5) = (v(0) + v(1))/2. Then we can see that QMv(0.5) = P((v(0) + v(1))/2) is
close to v(0). However, QM (T (v(0.5))) is roughly in the middle of Tv(0) and Tv(1) and
therefore not equal to T (QM (v(0.5))).

3.2 Lipschitz continuity of Composition Operators

In this section, our goal is to show local Lipschitz continuity of P i.e. (3.5). In fact, we
will show more generally that (3.5) also holds if we replace the closest point projection
P by any sufficiently regular function G : U ⊂ Rn1 → Rn2 . The bound of the error will
also include the Lipschitz constants of the derivatives of G.

Definition 3.2.1. Let n1, n2, l ∈ N, G : U ⊂ Rn1 → Rn2 be l-times differentiable with
bounded Lipschitz continuous derivatives. We define

Lip
(
G(l)

)
:= sup

q,r∈U
q 6=r

∥∥∥G(l)(q)−G(l)(r)
∥∥∥

|q − r|
.

The following lemma treats the special case l = 0. It shows that G is globally Lipschitz
continuous with respect to the Lp-norm and the Lipschitz constant can be chosen equal
to Lip(G).

Lemma 3.2.2. Let Ω ⊂ Rs be an open and bounded Lipschitz domain, G : U ⊂ Rn1 → Rn2

be Lipschitz continuous and p ∈ [1,∞]. Then we have

‖Gv −Gw‖Lp ≤ Lip(G)‖v − w‖Lp

for all v, w ∈ Lp(Ω, U).

Proof. By the Definition of Lip(G) we have

‖Gv −Gw‖Lp = ‖|Gv −Gw|2‖Lp ≤ ‖Lip(G)|v − w|2‖Lp = Lip(G)‖|v − w|2‖Lp

= Lip(G)‖v − w‖Lp .
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3.2 Lipschitz continuity of Composition Operators

Next we treat the case l = 1. The idea is to rewrite the derivatives at x ∈ Ω as a
telescopic sum, i.e.

∂

∂xj

(Gv(x)−Gw(x)) = G(1)(v(x))
[
∂

∂xj

v(x)
]
−G(1)(w(x))

[
∂

∂xj

w(x)
]

=
(
G(1)(v(x))−G(1)(w(x))

) [ ∂

∂xj

v(x)
]

+G(1)(w(x))
[
∂

∂xj

(v(x)− w(x))
]
.

Taking the Lp-norm we can estimate the first term using the Hölder inequality and the
Sobolev embedding theorem by Lip(G(1))‖v − w‖Lr‖v‖Wm,p . The second term can be
estimated by the term |G|C1‖v − w‖W 1,p . Furthermore, r ∈ [1,∞] can be chosen such
that W 1,p ⊂ Lr.

Lemma 3.2.3. Let Ω ⊂ Rs be an open and bounded Lipschitz domain, G : U ⊂ Rn1 → Rn2

a differentiable function with bounded and Lipschitz continous derivative, p ∈ [1,∞] and
m > s

p . Then there exists r ∈ [p,∞] with 1
r >

1
p −

1
s such that we have

|Gv −Gw|W 1,p ≤ |G|C1 |v − w|W 1,p + C Lip(G(1))‖v − w‖Lr‖v‖Wm,p

for all v ∈ Wm,p(Ω, U) and w ∈ W 1,p(Ω, U) where C > 0 is a constant depending only
on m, s, p and Ω.

Proof. By the triangle inequality it is enough to prove that∥∥∥∥∥ ∂

∂xj

(Gv −Gw)
∥∥∥∥∥
Lp

≤ |G|C1

∥∥∥∥∥ ∂

∂xj

(v − w)
∥∥∥∥∥
Lp

+ C Lip(G(1))‖v − w‖Ls

∥∥∥∥∥ ∂

∂xj

v

∥∥∥∥∥
Wm−1,p

for all j ∈ {1, . . . , s}. Choose

0 < ε ≤ 1
s

min
(

1,m− s

p

)
,

1
r

:= max
(

0, 1
p
− 1
s

+ ε

)
, and 1

t
:= max

(
0, 1
p
− m− 1

s

)
.

In order to be able to apply Hölder we prove the inequality

1
r

+ 1
t
≤ 1
p
, (3.8)

which follows from
1
r

+ 1
t
∈
{

0, 1
p
− 1
s

+ ε,
1
p
− m− 1

s
,

2
p
− m

s
+ ε

}
,

0 ≤ 1
p ,

1
p −

1
s + ε ≤ 1

p ,
1
p −

m−1
s ≤ 1

p and 2
p −

m
s + ε = 1

p −
1
s

(
m− s

p

)
+ ε ≤ 1

p . For
f : Ω→ U and g : Ω→ Rn1 we define G(1)(f)[g] : Ω→ Rn2 by

G(1)(f)[g](x) := G(1)(f(x))[g(x)].
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3 Approximation Error Estimates

Then we have by the chain rule, the triangle inequality, Hölder’s inequality and the
Sobolev embedding theorem that∥∥∥∥∥ ∂

∂xj

(Gv −Gw)
∥∥∥∥∥
Lp

=
∥∥∥∥∥G(1)(v)

[
∂

∂xj

v

]
−G(1)(w)

[
∂

∂xj

w

]∥∥∥∥∥
Lp

=
∥∥∥∥∥(G(1)(v)−G(1)(w)

) [ ∂

∂xj

v

]
+G(1)(w)

[
∂

∂xj

(v − w)
]∥∥∥∥∥

Lp

≤ Lip(G(1))
∥∥∥∥∥|v − w| ·

∣∣∣∣∣ ∂∂xj

v

∣∣∣∣∣
∥∥∥∥∥
Lp

+ |G|C1

∥∥∥∥∥ ∂

∂xj

(v − w)
∥∥∥∥∥
Lp

. C Lip(G(1))‖v − w‖Lr

∥∥∥∥∥ ∂

∂xj

v

∥∥∥∥∥
Lt

+ |G|C1

∥∥∥∥∥ ∂

∂xj

(v − w)
∥∥∥∥∥
Lp

. |G|C1

∥∥∥∥∥ ∂

∂xj

(v − w)
∥∥∥∥∥
Lp

+ C Lip(G(1))‖v − w‖Lr‖v‖Wm,p .

Another proof for Lemma 3.2.3 can be found in [32]. Estimating |Gv−Gw|W l,p for l ≥ 2
is more difficult. The problem when trying to prove it in a similar fashion as we did in
Lemma 3.2.3 is that products with partial derivatives of w will occur for which we do
not want to assume the same smoothness as for v since in Section 3.3 we will apply this
Lemma with w = QRnv. However, if we assume a slightly higher smoothness than W l,p

of w we can prove a similar statement as Lemma 3.2.3 also for l ≥ 2. It will seem like a
very lucky coincidence that the following estimates work in way that for the second term
on the right hand side we can use a weaker norm of v − w than W l,p. It is likely that
there exists a deeper reason for the statement to hold true which however still needs to
be found.

Lemma 3.2.4. Let Ω ⊂ Rs be an open and bounded Lipschitz domain, m > s
p , 2 ≤ l ≤ m,

G : U ⊂ Rn1 → Rn2 be l times differentiable with bounded and Lipschitz continuous
derivatives, p ∈ [1,∞] and q ∈ [p,∞] with q > s

l . Then there exists r ∈ [p,∞] with
1
r >

1
p −

1
s such that we have

|Gv −Gw|W l,p ≤ |G|C1 |v − w|W l,p + CL(G)B (‖v‖Wm,p , ‖w‖W l,q ) ‖v − w‖W l−1,r

for all v ∈ Wm,p(Ω, U) and w ∈ W l,q(Ω, U) where C is a constant depending only on
m, p, q, r and Ω,

L(G) := max
k∈{1,...,l}

Lip
(
G(k)

)
and B(x, y) := (1 + x)l + (1 + x+ y)l−1. (3.9)

Proof. Again by the triangle inequality it is enough to prove that∥∥∥D~a(Gv −Gw)
∥∥∥
Lp
≤ |G|C1

∥∥∥D~a(v − w)
∥∥∥
Lp

+CL(G)B (‖v‖Wm,p , ‖w‖W l,q ) ‖v−w‖W l−1,r

(3.10)
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3.2 Lipschitz continuity of Composition Operators

for all ~a ∈ Ns with |~a|1 = l where D~a was defined in (0.9). The derivative

D~a(G(v(x))−G(w(x)))

can be written as a sum of terms of the form

G(k)(v(x))
[
D ~a1v(x), ..., D ~akv(x)

]
−G(k)(w(x))

[
D ~a1w(x), ..., D ~akw(x)

]
(3.11)

where k ≤ l, ~a1, . . . , ~ak ∈ Ns\{(0, . . . , 0)} and ~a1 + · · ·+ ~ak = ~a. For k = 1 the Lp-norm
of (3.11) can be estimated by the first term on the right hand side of (3.10). Assume
now k > 1. Expression (3.11) can be written as a sum of terms of the form

(G(k)(v(x))−G(k)(w(x)))
[
D ~a1v(x), ..., D ~akv(x)

]
(3.12)

and

G(k)(w(x))
[
D ~a1v(x), ..., D ~ai−1v(x), D ~ai(v(x)− w(x)), D ~ai+1w(x), ..., D ~akw(x)

]
, (3.13)

The norm of the term (3.12) respectively (3.13) can be estimated by

Lip
(
G(k)

)
|v(x)− w(x)|

k∏
j=1

∣∣∣D ~ajv(x)
∣∣∣ (3.14)

respectively

Lip
(
G(k−1)

) i−1∏
j=1

∣∣∣D ~ajv(x)
∣∣∣ ∣∣∣D ~ai(v(x)− w(x))

∣∣∣ k∏
j=i+1

∣∣∣D ~ajw(x)
∣∣∣ , (3.15)

where we used |G|Ck ≤ Lip
(
G(k−1)

)
. By Lemma 3.2.5 there exists r ∈ [p,∞] with

1
r >

1
p −

1
s such that the Lp-norm of Expression (3.14) respectively (3.15) (without the

Lipschitz constant) can be estimated by

‖v − w‖W l−1,r

k∏
i=1
‖v‖Wm,p . ‖v − w‖W l−1,r (1 + ‖v‖Wm,p)l

respectively

‖v − w‖W l−1,r

i−1∏
j=1
‖v‖Wm,p

k∏
j=i+1

‖w‖W l,q . ‖v − w‖W l−1,r (1 + ‖v‖Wm,p + ‖w‖W l,q )l−1 .

In Lemma 3.2.4 we needed to bound the norm of a product of derivatives of v, w and
v − w. The basic idea is to use Hölder’s inequality and then the Sobolev embedding
theorem. While we can assume v ∈ Wm,p the function w is in general only l-times
weakly differentiable. Furthermore, we want only the W l,p-norm of the difference v −w
to appear on the right hand side. It turns out that for such an estimate to hold we need
to assume that w ∈W l,q for some q > s

l and q ≥ p. Note that by the Sobolev embedding
theorem this implies that w is continuous.
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3 Approximation Error Estimates

Lemma 3.2.5. Let k > 0 and for all i ∈ {0, . . . , k} let ai,mi, pi ∈ [1,∞]. Assume that
mi >

s
pi

, pi ≥ p0, l :=
∑k
j=0 aj ≤ mi for all i ∈ {0, . . . , k} and a0 < l. Then there exists

r ∈ [p0,∞] with 1
r >

1
p0
− 1

s such that∥∥∥∥∥
k∏
i=0

vi

∥∥∥∥∥
Lp0

. ‖v0‖W l−1−a0,r

k∏
i=1
‖vi‖Wmi−ai,pi

for all vi ∈Wmi−ai,pi, i ∈ {0, . . . , k}.

Proof. Let

0 < ε ≤ 1
s

min
(

1, min
i∈{0,...,k}

mi −
s

pi

)
,

1
r

:= max
( 1
p0
− 1
s

+ ε, 0
)
,

1
t0

:= max
(1
r
− l − 1− a0

s
, 0
)
,

1
ti

:= max
( 1
pi
− mi − ai

s
, 0
)

for all i ∈ {1, . . . , k} and

A := {i ∈ {1, . . . , k} | ti <∞}.

In order to be able to apply Hölder’s inequality we prove that
k∑
i=0

1
ti
≤ 1
p0
.

If 1
t0
> 0 and |A| = 0 we have

k∑
i=0

1
ti

= 1
t0

= 1
s
− l − 1− a0

s
≤ 1
r
≤ 1
p0
.

If 1
t0
> 0 and |A| ≥ 1 we have 1

r > 0 and hence 1
r = 1

p0
− 1

s + ε. Therefore, 1
t0

=
1
r −

l−1−a0
s = 1

p0
− l−a0

s + ε and

k∑
i=0

1
ti
≤ 1

t0
+
∑
i∈A

1
ti

= 1
p0

+ ε− l − a0 −
∑
i∈A ai

s
− 1
s

∑
i∈A

(
mi −

s

pi

)
≤ 1

p0
.

If 1
t0

= 0 and |A| = 0 we get
k∑
i=0

1
ti

= 0 ≤ 1
p0
.
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3.3 Error estimates for the approximation operator QP

If 1
t0

= 0 and |A| ≥ 1 we choose j ∈ A and obtain

k∑
i=0

1
ti

= 1
pj
− mj −

∑
i∈A ai

s
− 1
s

∑
i∈A\{j}

(
mi −

s

pi

)
≤ 1
pj
≤ 1
p0
.

Hence, by Hölder’s inequality and the Sobolev embedding theorem we get in any case∥∥∥∥∥
k∏
i=0

vi

∥∥∥∥∥
Lp0

≤
k∏
i=0
‖vi‖Lti . ‖v0‖W l−1−a0,r

k∏
i=1
‖vi‖Wmi−ai,pi .

3.3 Error estimates for the approximation operator QP

In this section, we estimate the approximation error u−QPu. By Lemma 3.2.2 we can
estimate the Lp-norm as stated in the following theorem.

Theorem 3.3.1. Assume that (3.4) holds with l = 0. Let n ∈ N, M ⊂ Rn be an embedded
submanifold and P : U ⊂ Rn → M be a Lipschitz continuous projection onto M . Then
we have

‖u−QPu‖Lp . hm Lip(P)|u|Wm,p for all u ∈Wm,p(Ω,M),

with the implicit constant of Inequality (3.4).

For l ≥ 1 we will need a generalized version of Inequality (3.4) given by

|u−QRnu|W l,q . h
m−l−s

(
1
p
− 1

q

)
|u|Wm,p for all u ∈Wm,p(Ω,Rn). (3.16)

This follows from (3.4) using the Gagliardo-Nirenberg inequality [41]. The approxima-
tion error estimate for l ≥ 1 is stated below.

Theorem 3.3.2. Let l ∈ N>0. If l = 1 assume that (3.4) holds. If l ≥ 2 holds assume that
for some q ∈ [p,∞] with q > s

l we have Φ = (φi)i∈I ⊂ W l,q and Inequality (3.16). Let
n ∈ N, M ⊂ Rn an embedded submanifold, U ⊂ Rn a neighborhood of M and P : U →M
a projection onto M . Assume that P is l-times differentiable with bounded and Lipschitz
continuous derivatives. Then there exists a constant α > 0 such that

|u−QPu|W l,p . hm−l|u|Wm,p

(
|P|C1 + CL(P)hα(1 + ‖u‖Wm,p)l

)
,

for all u ∈Wm,p(Ω,M) with the implicit constant of Inequality (3.4), L(P) as defined in
(3.9), and C a constant depending only on m, p,Ω and the implicit constant of (3.16).

Remark 3.3.3. For l ≥ 2 the assumption on the basis functions Φ = (φi)i∈I in Theorem
3.3.2 is stronger than the assumptions required to get (3.4). However, the assumption
Φ = (φi)i∈I ⊂ W l,p would not be strong enough to guarantee that QPu ∈ W l,p. The
assumption implies that the basis functions Φ = (φi)i∈I are continuous.
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3 Approximation Error Estimates

Proof of Theorem 3.3.2. If l ≥ 2 we can assume without loss of generality that l − s
q ≤

m− s
p so that we have the embedding Wm,p ⊆W l,q. Then by (3.4) we have

‖QRnu‖W l,q . ‖u‖W l,q . ‖u‖Wm,p .

Hence, by Lemma 3.2.4 (respectively Lemma 3.2.3) there exists r ∈ [p,∞] with 1
r >

1
p−

1
s

such that

|u−QMu|W l,p = |Pu− PQRnu|W l,p

. |P|C1 |u−QRnu|W l,p + L(P)(1 + ‖u‖Wm,p)l ‖u−QRnu‖W l−1,r .

By Theorem 3.5.5 and Corollary 3.16 we get

|P|C1 |u−QRnu|W l,p + L(P)(1 + ‖u‖Wm,p)l ‖u−QRnu‖W l−1,r

. |P|C1hm−l|u|Wm,p + L(P)(1 + ‖u‖Wm,p)lhm−(l−1)−s
(

1
p
− 1

r

)
|u|Wm,p

. hm−l|u|Wm,p

(
|P|C1 + L(P)hs

(
1
r
−
(

1
p
− 1

s

))
(1 + ‖u‖Wm,p)l

)
.

Note that the implicit constants of our estimates are all independent of M . The only
dependence of the inequalities on M are the factors |P|C1 and L(P). However, since
L(P) is multiplied with hα it becomes irrelevant for h → 0. By Proposition 1.2.4 we
have

|P|C1 = sup
p∈U

∥∥∥P(1)(p)
∥∥∥

≤ sup
p∈U

∥∥∥P(1)(P(p))
∥∥∥+ Lip

(
P(1)

)
|p− P(p)|

= 1 + Lip
(
P(1)

)
sup
p∈U
|p− P(p)|.

This shows that |P|C1 is approximately one in a neighborhood of M . Together with
Theorem 3.3.2 this yields that asymptotically the interpolation operator corresponding
to the closest point projection satisfies the same error estimate as its linear analog.

Theorem 3.3.4. Consider the same setting as in Theorem 3.3.2 with P being the closest
point projection from Definition 1.2.2. Let C > 0 be larger than the implicit constant of
Inequality (3.4) and u ∈Wm,p(Ω,M). Then for h small enough we have

|u−QPu|W l,p ≤ Chm−l|u|Wm,p .

Proof. This follows from Theorem 3.3.2 and (3.17).
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3.4 Error estimates for the approximation operator QR

In this section, we estimate the error between QRu and u. By (1.14) we have∑
i∈I

φi(x)log(QRu(x), u(ξi)) = 0 (3.17)

The key idea to bound the approximation error of QR is to notice that the left hand
side of the balance law (3.17) can be interpreted as the approximation of the function
y 7→ log(QRu(x), u(y)) at y = x. There is also the alternate approach by directly
estimating the approximation error of QR using Taylor expansion [24, 23].

In order to be able to work with classical derivatives we use that by Nash’s isometric
embedding theorem [39] we can assume that M is a Riemannian submanifold of Rn.
Furthermore we extend the logarithm log: M ×M → TM to a function log: U × U ⊂
Rn × Rn → Rn by

log(q, r) = log(P(q),P(r)) + r − P(r)− q + P(q).

By Lemma 1.2.9 we have

log(q, r) = P(r)−P(q)+O(d2
g(P(r),P(q)))+r−P(r)−q+P(q) = r−q+O(d2

g(P(r),P(q)))

and therefore
Dqlog(q, r)|q=r = −id, (3.18)

where Dq denotes the derivative with respect to q for all q ∈ M . In the following we
assume that log is smooth (i.e. C∞) which is equivalent of M being smooth. Additionally
we will only use (3.18) and the fact that QR is defined by (3.17). The statements
would therefore also be true for any smooth function L : U ⊂ U × U → Rn satisfying
Dql(q, r)|q=r = −id and corresponding operator Q defined by (3.17) with log replaced
by L.

Proposition 3.4.1. Let m ∈ N and u ∈Wm,∞(Ω,M). Assume that

‖u−QRnu‖L∞ . hm|u|Wm,∞ for all u ∈Wm,∞(Ω,Rn). (3.19)

Then we have
‖u−QRu‖L∞ . hm for all u ∈Wm,∞(Ω,M), (3.20)

where the implicit constant depends only on the norm of the derivatives of u and log.

Proof. For q ∈M and U ⊂ Ω such that log(q, u(x)) is well defined for all x ∈ U consider
the function Rq : U → TqM defined by Rq(x) := log(q, u(x)) for all x ∈ U . By (3.19) we
have

|QRnRq −Rq|L∞(U) . hm|Rq|Wm,∞(Ω). (3.21)
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In particular |QRnRq|L∞ can be bounded by a constant independent of h and QRnRq con-
verges to Rq for h→ 0. Note that by the balance law (3.17) we have QRnRQRu(x)(x) = 0
for all x ∈ Ω. Putting q = QRu(x) in (3.21) yields that |log(QRu(x), u(x))| . hm for
all x ∈ Ω and therefore |u(x)−QRu(x)| ≤ |log(QRu(x), u(x))| . hm for all x ∈ Ω from
which (3.20) follows.

To prove error estimates for the derivatives we first prove that the derivatives of QRu
are bounded.

Lemma 3.4.2. Let m, l ∈ N with l ≤ m and u ∈Wm,∞(Ω,M). Assume that for all l′ ≤ l
there exists Cl′ > 0 with

|u−QRnu|W l′,∞ ≤ Cl′hm−l
′ |u|W l′,∞ , for all u ∈W l′,∞(Ω,Rn). (3.22)

Then |QRu|W l,∞ can be bounded by the norm of the derivatives of u and log.

Proof. Similar as in Proposition 3.4.1 we have by (3.22) for any s ∈ N and l′ ≤ l that∣∣∣QRnDs
qRq −Ds

qRq
∣∣∣
W l′,∞(U)

. hm−l
′ |Ds

qRq|Wm,∞(Ω), (3.23)

where Ds
q denotes the s-th derivative by q. In particular QRnDs

qRq can be bounded by
a constant independent of h and converges to Ds

qRq for h→ 0. We prove the statement
by induction on l ∈ N. The case l = 0 follows from Proposition 3.4.1. By the balance
law (3.17) we have QRnRQRu(x)(x) = 0 and therefore also ∂~vQRnRQRu(x)(x) = 0 where
~v ∈ Ns with |~v|1 = l. On the other hand, ∂~vQRnRQRu(x)(x) can be written as a sum of
terms of the form

Ds
q∂
~a
yQRnRp(y)|q=QRu(x),y=x

[
∂
~b1QRu(x), . . . , ∂ ~bsQRu(x)

]
, (3.24)

where ~a +
∑s
i=1

~bi = ~v. The term Ds
q∂
~a
yQRnRp(y)|q=QRu(x),y=x converges by (3.23) to

Ds
q∂
~a
yRp(y)|q=QRu(x),y=x which can be bounded by the derivatives of u and log. For

l > 1 and s > 1 the norm of (3.24) can by the induction hypothesis be bounded by the
derivatives of u and log. It follows that the norm of the remaining term can also be
bounded by the derivatives of u and log, i.e.∣∣∣DqQRnRq(x)|q=QRu(x)

[
∂~vQRu(x)

]∣∣∣ . 1.

By (3.23), Proposition 3.4.1 and (3.18) we have∥∥∥DqQRnRq(x)|q=QRu(x) + id
∥∥∥ =

∥∥∥DqQRnRq(x)|q=QRu(x) −DqRq(x)|q=QRu(x)

∥∥∥
+
∥∥∥DqRq(x)|q=QRu(x) −DqRq(x)|q=u(x)

∥∥∥
+
∥∥∥DqRq(x)|q=u(x) + id

∥∥∥
. hm.
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Hence,

|∂~vQRu(x)| ≤
∣∣∣(DqQRnRq(x)|q=QRu(x) + id)

[
∂~vQRu(x)

]∣∣∣
+
∣∣∣DqQRnRq(x)|q=QRu(x)

[
∂~vQRu(x)

]∣∣∣
. hm|∂~vQRu(x)|+ 1,

which yields the desired result.

We can now prove an error estimate for the derivatives. We assume that |φi|W l,∞ . h−l,
which is true if the basis functions scale quasi-uniformly with the mesh width h.

Theorem 3.4.3. Consider the same setting as in Lemma 3.4.2. Assume further that
|φi|W l,∞ . h−l. Then we have

|u−QRu|W l,∞ . hm−l,

where the implicit constant depends only on the derivatives of u and log.

Proof. The case l = 0 is Proposition 3.4.1. For l ≥ 1 consider the function v = u−QRu.
Its derivatives can by Lemma 3.4.2 be bounded by the derivatives of u and log. Hence,
we have by (3.22), the assumption |φi|W l,∞ . h−l and Proposition 3.4.1 that

|u−QRu|W l,∞ = |v|W l,∞

≤ |v −QRnv|W l,∞ + |QRnv|W l,∞

. hm−l +
∣∣∣∣∣∑
i∈I

φi(u(ξi)−QRu(ξi))
∣∣∣∣∣
W l,∞

. hm−l + max
i∈I
|φi|W l,∞ |u(ξi)−QRu(ξi)|

. hm−l.

So far, we did not specify the dependence of our estimate of ‖u−QRu‖W l,p in terms of
the derivatives of u. It is for example still unclear if Theorem 3.3.4 with QP replaced
by QR holds. If log is replaced by L defined by L(p, q) = PTpM (q − p) one can prove
the corresponding statement. In the next proposition, we show that for some specific
cases we have the same error bound as in the linear theory. To get this result, we
compare the projection average based approximation with the Riemannian average based
approximation.

Proposition 3.4.4. Consider the same setting as in Theorem 3.3.4 and assume further
that m ≤ 2 and u ∈W 1,∞. Then for h sufficiently small we have

‖u−QRu‖Lp . hm|u|Wm,p .
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Proof. Using the triangle inequality, Theorem 3.3.4 and Proposition 1.4.5 we have

‖u−QRu‖Lp ≤ ‖u−QPu‖Lp + ‖QPu−QRu‖Lp . hm|u|Wm,p + h3|u|3W 1,∞ .

As m ≤ 2 < 3 we can bound the first term by the second term for sufficiently small
h.

3.5 Error estimates for approximation operators with
B-splines

In the previous sections, the underlying assumption was that the approximation operator
QRf =

∑
i∈I φf(ξ) is exact for polynomials up to a certain degree. This property is

crucial to get the corresponding error bounds. In this section, we consider a case where
QR is only exact for polynomials of degree 1 but where it is possible to reproduce
polynomials of higher degree using linear combinations. Our task will be to generalize a
corresponding approximation operator to the case of manifold-valued functions.

We consider the case where Ω = R and (φi)i∈I are B-splines. In Section 3.5.1, we
introduce uniform B-splines and present approximation operators with optimal approx-
imation order for the linear case (i.e. when M = Rn). A natural generalization of such
an approximation operator is presented in Section 3.5.2. In Section 3.5.3, we present an
approximation operator into the projection average based function space which has the
same approximation order as its linear analog. Finally, in Section 3.5.4, we introduce
B-splines for arbitrary knots and show how to compute the L2 best approximation onto
VP . We will see that for nonuniform B-splines we can in general not have the same
convergence order as in the linear case.

3.5.1 Linear theory

We first define uniform B-splines.

Definition 3.5.1. The uniform B-splines are recursively defined by

B0(x) :=
{

1 −0.5 ≤ x < 0.5
0 otherwise.

and Bk(x) :=
∫ x+0.5

x−0.5
Bk−1(y)dy for all x ∈ R, k ∈ N>0.

The following basic properties of uniform B-splines are important for us

i) Bk ≥ 0.

ii) suppBk =
[
−k+1

2 , k+1
2

]
.

iii)
∫
RBk(x)dx = 1.
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iv)
∑
i∈ZBk(i) = 1.

v) for all i ∈ {0, . . . , k} we have that the restriction ofBk to the interval
[
−k+1

2 + i,−k+1
2 + i+ 1

]
is a nontrivial polynomial of degree k.

vi) Bk ∈ Ck−1.

To compute uniform B-splines, one can use the three point recursion formula

Bk(x) =
k+1

2 + x

k
Bk−1(x+ 0.5) +

k+1
2 − x
k

Bk−1(x− 0.5).

For h > 0 and k ∈ N the set of basis functions we use is

Φ := (φi)i∈Z where φi(x) := Bk(h−1x− i), for all x ∈ R, and i ∈ Z.

Unfortunately, the operator QRn : C(R,Rn) → VRn , i.e. QRnu =
∑
i∈Z φiu(hi) is only

exact for polynomials of degree 1 which is not optimal.

An interpolation operator

In this section, we construct an interpolation operator IRn : C(R,Rn) → VRn , i.e. an
operator which satisfies IRnu(ih) = u(hi) for all u ∈ C(R,Rn) and i ∈ Z. Before we start
we need to introduce some notation. We consider the sampling operator S : C(R,Rn)→
(Rn)Z defined by

(Su)i := u(hi) for all u ∈ C(R,Rn) and i ∈ Z.

We indicate sequences with fraktur letters. For sequences a ∈ RZ and b ∈ (Rn)Z we
define the convolution a ∗ b ∈ (Rn)Z by

(a ∗ b)i :=
∑
j∈Z

ajbi−j for all i ∈ Z.

To construct an interpolation operator we choose the nodes p = (pi)i∈Z ⊂ Rn in such a
way that b ∗ p = Su, where b ∈ RZ is defined by bi := Bk(i) for all i ∈ Z. In Lemma
3.5.2 we show that b has an inverse b−1 ∈ RZ with respect to the convolution ”*”. Then
we can simply set p := b−1 ∗ Su and define

IRn := QRn ◦ b−1 ◦ S,

where by abuse of notation b−1 denotes the operator x 7→ b−1∗x and QRn is the operator
p 7→

∑
i∈Z piφi. Then we have

SIRnu = b ∗ b−1 ∗ Su = Su.

Hence, IRn is an interpolation operator. Let us now prove that b has an inverse.
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Lemma 3.5.2. The sequence b has an inverse, i.e. there exists a sequence b−1 ∈ RZ with

(b−1 ∗ b)i =
{

1 i = 0
0 i 6= 0.

(3.25)

Proof. We consider the Eulerian polynomial divided by the monomial z
k+1

2 , i.e.

A(z) := k!
∑
j∈Z

bjz
j .

If A is positive on the unit circle, i.e. if A(z) > 0 for all z ∈ C with |z| = 1, there exists
by the lemma of Wiener [55] a sequence b−1 ∈ RZ such that ‖b−1‖`1 < ∞ and∑

j∈Z
b−1
j zj = 1

A(z) for all z ∈ C with |z| = 1. (3.26)

Then we have

1 = A(z) 1
A(z) =

 S∑
j=−S

bjz
j

∑
j∈Z

b−1
j zj

 =
∑
i∈Z

 S∑
j=−S

bjb
−1
i−j

 zi =
∑
i∈Z

(b ∗ b−1)izi

from which (3.25) follows. It is left to prove that A is positive on the unit circle. As
bi = b−i for all i ∈ Z we have that A is real-valued on the unit circle. Furthermore
by continuity of A and A(1) = 1 it suffices to prove that A(z) 6= 0 for all z ∈ C with
|z| = 1. By [22] all roots of A are real-valued, hence it suffices to prove that A(−1) 6= 0.
From [13] we have for k > 0 that Ak(−1) = (4k − 2k)ζ(−(k − 1)) 6= 0 where ζ is the
Riemann–Zeta function.

The sequence b−1 has, as opposed to the sequence b, infinitely many nonzero entries. As a
result, IRn is not a local operator, i.e. IRnu(x) depends not only on u in a neighborhood
of x ∈ R. However, we can show that the entries of b−1 decay exponentially. The
consequence is that the dependence of IRnu(x) on u(y) decays exponentially with the
distance |x− y|.

Lemma 3.5.3. There exists c ∈ (0, 1) such that we have

|b−1
j | . c|j| for all j ∈ Z.

Proof. By continuity of A there exists a constant c ∈ (0, 1) such that A does not have
any zeros in the annulus {z ∈ C | c < |z| < c−1}. By standard complex analysis we have

b−1
j =

∫
B0(1)

z−j

A(z)dz =
∫
B0(r)

z−j

A(z)dz

for any r ∈ [c, c−1] where B0(r) = {z ∈ C | |z| = r}. Hence

|b−1
j | =

∫
B0(c−1)

z−j

A(z)dz ≤ cj
∫
B0(c−1)

1
|A(z)|dz . c|j| for j ≥ 0 and

|b−1
j | =

∫
B0(c)

z−j

A(z)dz ≤ c−j
∫
B0(c)

1
|A(z)|dz . c|j| for j < 0.
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We have the following error estimate for IRn .

Theorem 3.5.4. Let m ∈ N>0 and l ≤ min(k,m). Then we have

|u− IRnu|W l,∞ . hmin(m,k+1)−l|u|Wmin(m,k+1),∞ (3.27)

for all u ∈Wm,∞(R,R) and h > 0.

Proof. We first prove exactness of IR for polynomials of degree smaller or equal to k.
For u ∈ (Rn)Z we define the discrete derivative ∇u ∈ (Rn)Z by (∇u)i := ui+1 − ui for
all i ∈ Z. By the definition of uniform B-splines (Definition 3.5.1) we have

B′k(x) = Bk−1

(
x+ 1

2

)
−Bk−1

(
x− 1

2

)
.

Hence,

s

dx
IRu(x) =

∑
i∈Z

(b−1Su)iB′k(x− i)

=
∑
i∈Z

(b−1Su)i
(
Bk−1

(
x− i+ 1

2

)
−Bk−1

(
x− i− 1

2

))

=
∑
i∈Z

((b−1Su)i+1 − (b−1Su)i)Bk−1

(
x− 1

2 − i
)

=
∑
i∈Z

(b−1∇Su)iBk−1

(
x− 1

2 − i
)
.

Inductively it follows that

dl

dxl
IRu(x) =

∑
i∈Z

(b−1∇lSu)iBk−l
(
x− l

2 − i
)
.

Let now p be a polynomial of degree smaller or equal to k ∈ N. Note that ∇kSp is then
constant. Hence it follows that dk

dxk IRp is constant. Therefore, IRp is a polynomial of
degree at most k and since p and IRp coincide on more than k points we have IRp = p.
Hence, IR is exact for polynomials of degree smaller or equal to k.

Consider now x ∈ R and let p be the Taylor expansion of u at x of degree m− 1, i.e.

p(y) :=
m−1∑
j=0

dj

dxj
u(x)(y − x)j

j! .

Note that we have∣∣∣∣∣ dldxl (u− p)(y)
∣∣∣∣∣ . |u|Wmin(m,k+1),∞ |y − x|min(m,k+1)−l,
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and hence∣∣∣(∇l(S(u− p)))i
∣∣∣ . hmin(m,k+1)−l|i− h−1x|min(m,k+1)−l|u|Wmin(m,k+1),∞ .

We now have∣∣∣∣∣ dldxl (u− IRu)(x)
∣∣∣∣∣ =

∣∣∣∣∣ dldxl (u− p− IR(u− p)(x)
∣∣∣∣∣

=
∣∣∣∣∣ dldxl IR(u− p)(x)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈Z

(b−1∇lS(u− p))iBk−l
(
x− l

2 − i
)∣∣∣∣∣∣

.
∑
i∈Z

hmin(m,k+1)−lBk−l

(
x− l

2 − i
)
|u|Wmin(m,k+1),∞

. hmin(m,k+1)−l|u|Wmin(m,k+1),∞ .

Quasi-interpolation operators

We consider also local approximation operators of the form

QIRn := QRn ◦ c ◦ S

where c ∈ RZ has only finitely many nonzero entries. It can be shown that for all k ∈ N
there exists c = (ci)i∈Z ∈ RZ with finite support such that QIRn is exact for polynomials
of degree less or equal to k. For example for k = 3 and k = 5 one can choose

(c−1, c0, c1) = 1
6(−1, 8,−1) and (c−2, . . . , c2) = 1

240 (13,−112, 438,−112, 13) .

Due to the polynomial exactness of QIRn the following approximation error estimate can
be shown.

Theorem 3.5.5. Assume that c ∈ RZ has finite support, QIR is exact for polynomials of
degree less or equal to r ∈ N, m ∈ N>0 and l ≤ min(k,m, r + 1). Then we have

|u−QIRnu|W l,∞ . hmin(m,r+1)−l|u|Wmin(m,r+1),∞ (3.28)

for all u ∈Wm,∞(Rn) and h > 0.

3.5.2 The naive generalization of the quasi-interpolation operator

Let now M be a Riemannian submanifold of Rn and u : R→M ⊂ Rn. Since in general
(c ∗ Su)i is not in M we have in general that QPcSu is not in VP . In this section, we
introduce a natural approximation operator into VP by replacing c∗Su with P(c∗Su).
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Definition 3.5.6. Let QIP : C(R,M)→ V be defined by

QIP := QPPcS.

Unfortunately, this operator does not have the optimal convergence order for k > 4 as
can be seen in numerical experiments. In this section, we show that the operator has
a convergence order of at least min(m, 2) − l. Numerical experiments suggest that the
actual convergence order is min(m, 4)− l.

The exactness of QIP also depend on the polynomial exactness of c.

Definition 3.5.7. We say that c ∈ RZ is exact for polynomials of degree less or equal to
r ∈ N if c ∗ Sq = Sq for all polynomials q of degree less or equal to r.

The next theorem shows that we can not have simultaneously polynomial exactness of c
and QIRn of high order.

Theorem 3.5.8. For h > 0 there is no sequence c ∈ RZ and k ∈ N such that both c ∈ RZ

and QIRn are exact for polynomials of degree less or equal to 2.

Proof. Suppose that c ∈ RZ and QIRn are exact for polynomials of degree less or equal
to 2. Let a ∈ R\{hi|i ∈ Z} and qa(x) = (x − a)2 for all x ∈ R. Note that we can
assume k > 0 and therefore also Bk(x) > 0 for all x ∈ (0, 1). By polynomial exactness
of QIRn and the non negativity of B-splines we have

0 = q(a) = QIRnq(a)
=

∑
i∈Z

(c ∗ Sq)iBk(h−1a− i)

=
∑
i∈Z

(Sq)iBk(h−1a− i)

≥ (Sq)dh−1aeBk(h−1a− dh−1ae)
> 0,

which is a contradiction.

For q ∈ [1,∞] we define the `q-norm of u = (ui)i∈Z ∈ (Rn)Z by

‖u‖`q :=

(
∑
i∈Z |ui|q)

1
q if q ∈ [1,∞)

supi∈Z |ui| if q =∞.

Lemma 3.5.9. Assume that m > 0 and that c ∈ RZ has finite support, i.e. ci 6= 0 only
for finitely many i ∈ Z, and is exact for polynomials of degree 1. Then we have

‖P(c ∗ Su)− c ∗ Su‖`∞ . hmin(m,2)|u|Wmin(m,2),∞ ,

for all u ∈Wm,∞(R,M) and h small enough.
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Proof. Let K > 0 be such that the support of c is in {−K, . . . ,K}. By polynomial
exactness of c of order 1, and the Bramble-Hilbert lemma, we have for any i ∈ Z

|(c ∗ Su)i − (Su)i| = inf
q∈P1
|(c ∗ Su)i − (c ∗ Sq)i + (Sq)i − (Su)i|

≤ inf
q∈P1
|(c ∗ S(u− q))i|+ |(S(u− q))i|

≤ ‖c‖`1 inf
q∈P1
‖u− q‖L∞([h(i−K) h(i+K)])

. hmin(m,2)|u|Wmin(m,2),∞

By the triangle inequality, P(Su) = Su and |P(x)−P(y)| ≤ Lip(P)|x−y| where Lip(P)
denotes the Lipschitz constant of P we have

|P((c ∗ Su)i)− (c ∗ Su)i| = |P((c ∗ Su)i)− P((Su)i) + (Su)i − (c ∗ Su)i|
≤ |P((c ∗ Su)i)− P((Su)i)|+ |(Su)i − (c ∗ Su)i|
. |(c ∗ Su)i − (Su)i|
≤ hmin(m,2)|f |Wmin(m,2),∞ .

We can now prove an approximation result for QIP .

Theorem 3.5.10. Let l ≤ min(m, 2) and assume that c ∈ RZ has finite support and
is exact for polynomials of degree 1. Furthermore, assume that QR is also exact for
polynomials of degree less or equal to 1. Then for u ∈Wm,∞(R,M) and h small enough
we have

|u−QIPu|W l,∞ . hmin(m,2)−l|u|Wmin(m,2),∞ .

Proof. Using the definition of QIP we have

|u−QIPu|W l,∞ =

∣∣∣∣∣∣u− P
∑
i∈Z
P((c ∗ Su)i)φi

∣∣∣∣∣∣
W l,∞

.

By Lipschitz continuity of P by Section 3.2 it is enough to prove that∣∣∣∣∣∣u−
∑
i∈Z
P((c ∗ Su)i)φi

∣∣∣∣∣∣
W l,∞

. hmin(m,2)−l.

Note that for x ∈ R the number of i ∈ Z such that x is in the support of φi is bounded
by a constant depending only on k. Furthermore we have for any i ∈ Z that |φi|W l,∞ =
|φ0|W l,∞ . h−l. Using Lemma 3.5.9 we get∣∣∣∣∣∣u−

∑
i∈Z
P((c ∗ Su)i)φi

∣∣∣∣∣∣
W l,∞

.

∣∣∣∣∣∣u−QRnu+
∑
i∈Z

((c ∗ Su)i − P((c ∗ Su)i))φi

∣∣∣∣∣∣
W l,∞

. |u−QRnu|W l,∞ + ‖c ∗ Su− P(c ∗ Su)‖`∞ |φ0|W l,∞

. hmin(m,2)−l|u|Wmin(m,2),∞ + hmin(m,2)h−l|u|Wmin(m,2),∞

. hmin(m,2)−l|u|Wmin(m,2),∞ .
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3.5.3 Generalization of the interpolation operator

As we have seen in Section 3.5.2, the naive approximation operator is not optimal and the
question remains if there exists an optimal approximation operator into VP respectively
VR. In this section we consider the generalization IP : C(R,M)→ VP defined by

IP := QP ◦ (S ◦QP)−1 ◦ S = P ◦QRn ◦ (P ◦ b)−1 ◦ S, (3.29)

where (P◦b)−1 : MZ →MZ is the inverse (which as we will show in Lemma 3.5.12 exists)
of the operator Pb := P ◦ b : MZ → MZ. We show that the interpolation operator IP
has the optimal approximation order.

Theorem 3.5.11. Let m ∈ N>0, l ≤ min(k,m), u ∈ Wm,∞ and C > 0 larger than the
implicit constant of Theorem 3.5.4. Then for h small enough we have

|u− IPu|W l,∞ ≤ Chmin(m,k+1)−l|u|Wmin(m,k+1),∞ . (3.30)

Let us first prove the existence of (Pb)−1. The idea is to define for u ∈MZ a retraction
R : MZ → MZ where the solution v of Pbv = u is the fixpoint of R. Then we can use
Banach’s fixpoint theorem to prove existence and uniqueness.

Lemma 3.5.12. Let u : R → M be a Lipschitz continuous function and u := Su. For h
small enough there exists a unique v ∈MZ such that

Pbv = u, and ‖v− u‖`∞ . h. (3.31)

Proof. We define a retraction R : MZ →MZ by

R(v) := P
(
v− b−1Pbv + b−1u

)
.

Note that every solution of (3.31) is a fixpoint of R. For v0, v1 ∈MZ with ‖u−v0‖`∞ . h
and ‖u− v1‖`∞ . h we have

‖R(v1)−R(v0)‖`∞ =
∥∥∥P (v1 − b−1Pbv1 + b−1u

)
− P

(
v0 − b−1Pbv0 + b−1u

)∥∥∥
`∞

≤ Lip(P)
∥∥∥(v1 − b−1Pbv1 + b−1u

)
−
(
v0 − b−1Pbv0 + b−1u

)∥∥∥
`∞

≤ Lip(P)
∥∥∥b−1

∥∥∥
`∞

∥∥∥bv1 − bv0 −
(
Pbv1 − Pbv0

)∥∥∥
`∞
.

For t ∈ [0, 1] define v(t) := (1− t)v0 + tv1. Then we have

Pbv1 − Pbv0 =
∫ 1

0
P ′(bv(t))b(v1 − v0)dt =

∫ 1

0
P ′(bv(t))dtb(v1 − v0).

By the smoothness of P and Lemma B.2 there exists a ∈ RZ with∥∥∥∥∥
∫ 1

0
P ′(bv(t))dt− P

′(v0) + P ′(v1)
2

∥∥∥∥∥
`∞

.

∥∥∥∥∥
∫ 1

0
bv(t)dt− v0 + v1

2

∥∥∥∥∥
`∞

+
∥∥∥v0 − v1

∥∥∥2

`∞
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= 1
2

∥∥∥ba∇(v0 + v1)
∥∥∥
`∞

+
∥∥∥v0 − v1

∥∥∥2

`∞

. h+
∥∥∥v0 − v1

∥∥∥2

`∞
.

Lemma A.1 yields∥∥∥∥∥v1 − v0 −
(
P ′(v0) + P ′(v1)

2

)
(v1 − v0)

∥∥∥∥∥
`∞

. ‖v1 − v0‖2`∞

By Lemma B.2 we have

‖(v1 − v0)− b(v1 − v0)‖`∞ .
∥∥∥∇ (v1 − v0

)∥∥∥
`∞

. ‖v1 − v0‖2`∞

The triangle inequality and the previous estimates yield

‖R(v1)−R(v0)‖`∞ .
∥∥∥bv1 − bv0 −

(
Pbv1 − Pbv0

)∥∥∥
`∞

=
∥∥∥∥bv1 − bv0 −

∫ 1

0
P ′(bv(t))dtb(bv1 − bv0)

∥∥∥∥
`∞

.
∥∥∥(bv1 − bv0)− (v1 − v0)

∥∥∥
`∞

+
∥∥∥∥∥(v1 − v0)−

(
P ′(v0) + P ′(v1)

2

)
(v1 − v0)

∥∥∥∥∥
`∞

+
∥∥∥∥∥
(
P ′(v0) + P ′(v1)

2

)
(v1 − v0)−

∫ 1

0
P ′(bv(t))dt(v1 − v0)

∥∥∥∥∥
`∞

+
∥∥∥∥∫ 1

0
P ′(bv(t))dt

(
(v1 − v0)− b(v1 − v0)

)∥∥∥∥
`∞

.
(
h+ ‖v1 − v0‖`∞ + ‖v1 − v0‖2`∞

)
‖v1 − v0‖`∞

. h‖v1 − v0‖`∞ .

It follows that R is a retraction for h small enough and by Banach’s fixpoint theorem that
there exists a unique fixpoint. We now prove that this unique fixpoint v of R satisfies
Pbv = u. Note that we have

Pbv− u = PbP
(
v− b−1Pbv + b−1u

)
− u.

Using the triangle inequality we have

‖Pbv− u‖`∞ ≤
∥∥∥PbP (v− b−1Pbv + b−1u

)
− Pb

(
v− b−1Pbv + b−1u

)∥∥∥
`∞

+
∥∥∥Pb (v− b−1Pbv + b−1u

)
− u

∥∥∥
`∞

The first term can by Lemma B.3 be estimated by

‖Pbv− u‖`∞ (‖Pbv− u‖`∞ + ‖∇v‖`∞) .
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Using Taylor expansion and Lemma A.1 we get for the second term∥∥∥Pb (v− bPbv + b−1u
)
− u

∥∥∥
`∞

= ‖P (bv− Pbv + u)− u‖`∞

. ‖Pbv + PTPbvM (−Pbv + u)− u‖`∞ + ‖u− Pbv‖2`∞

= ‖Pbv− u− PTPbvM (Pbv− u)‖`∞ +
∥∥∥u− Pa−1v

∥∥∥2

`∞

. ‖Pbv− u‖2`∞ .

Hence, we have

‖Pbv− u‖`∞ . ‖Pbv− u‖`∞ (‖Pbv− u‖`∞ + ‖∇v‖`∞) . (3.32)

As ‖∇v‖`∞ . h and

‖Pbv− u‖`∞ ≤ ‖Pbv− Pv‖`∞ + ‖v− u‖`∞ . ‖bv− v‖`∞ + h . ‖∇v‖+ h . h,

we have
‖Pbv− u‖`∞ . h ‖Pbv− u‖`∞ .

Hence, ‖Pbv− u‖`∞ = 0 and Pbv = u.

Next we show that the discrete derivatives of bv− u can be bounded by powers of h.

Lemma 3.5.13. Let u ∈ Cm(R,M) with bounded derivatives, u := Su and v ∈ MZ the
unique solution of (3.31). Then, we have

‖∇k(bv− u)‖`∞ . hk+1 for all k ≤ m+ 1.

Proof. We prove the inequality by induction on k. By Lemma B.2 we have

‖bv− u‖`∞ ≤ ‖bv− bu‖`∞ + ‖bu− u‖`∞ ≤ ‖v− u‖`∞ + ‖∇u‖`∞ . h.

Hence the inequality is true for k = 0. Assume now k > 0. We have

0 = ∇k(Pbv− u) = ∇k(Pbv− Pu). (3.33)

Let i ∈ Z. Taylor expansion of P at q ∈ Rn up to order k yields

P((bv)i)− P((u)i)

=
k∑
l=0

1
l!P

(l)(q) [(bv)i − q, . . . , (bv)i − q]−
1
l!P

(l)(q) [(u)i − q, . . . , (u)i − q]

+O
(
|(bv)i − q|k+1 + |(u)i − q|k+1

)
=

k∑
l=0

1
l!

l∑
l′=1
P(l)(q)

(bv)i − q, . . . , (bv)i − q︸ ︷︷ ︸
l′−1

, (bv− u)i, (u)i − q, . . . , (u)i − q︸ ︷︷ ︸
l−l′


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+O
(
|(bv)i − q|k+1 + |(u)i − q|k+1

)
.

Applying ∇k and using Lemma B.1 yields that

0 =
∣∣∣∇k (P((bv)i)− P((u)i))

∣∣∣ (3.34)

.
k∑
l=0

l−1∑
l′=0

∑
m1+...ml=k

|P|Cl

l′−1∏
j=1

i+k∑
r=i
|(∇mj (bv− q))r|

 (3.35)

i+k∑
r=i
|(∇ml′ (bv− u))r|

 l∏
j=l′+1

i+k∑
r=i
|(∇mj (u− q))r|

 (3.36)

+
i+k∑
r=i
|(bv− q)r|k+1 +

i+k∑
r=i
|(u− q)r|k+1 . (3.37)

Choosing q := (u)i the last term can be estimated by hk+1. By Lemma B.2 we have

|(bv− q)r| . |(b(v− u))r|+ |(bu)r − (u)r|+ |(u)r − q|
. ‖v− u‖`∞ + ‖∇u‖`∞ + |(u)r − q|
. h.

Hence, the first term of (3.37) can also be estimated by hk+1. Furthermore, if mj = 0 we
can estimate the corresponding factor by h. By f ∈ Cm and the induction hypothesis
we can estimate the factor corresponding to j 6= l′ by hmj . The first factors in the sum
of (3.36) can be estimated by hml′−1 if ml′ < k and by hk if ml′ = k. It follows that
the terms (3.35), (3.36) and (3.37) except the one with l = 1 can be estimated by hk+1.
However, since by (3.33) the sum of all terms is zero also the term with l = 1 can be
estimated by hk+1. Hence,∣∣∣P ′(q) (∇k (bv− u)

)
i

∣∣∣ =
∣∣∣(b∇kPTqMv−∇kPTqMu

)
i

∣∣∣ . hk+1,

where PTqM = P ′(q) is the orthogonal projection onto the tangent space. Let ũ := PTqMu

and ṽ := PTqMv. It follows that ‖∇kbṽ − ∇kũ‖`∞ . hk+1. Let P−1
TqM

: U ⊂ TqM → M

be the inverse of PTqM . Note that (P−1
TqM

)′(q) = (P ′TqM
)−1(q) = ITqM . Taylor expansion

of u at q yields

(v)i = q + (ṽ)i − q +
k∑
l=2

(P−1
TqM

)(l)(q) [(ṽ)i − q, . . . , (ṽ)i − q] +O
(
|(ṽ)i − q|k+1

)
By similar arguments as above one can show that

‖∇k(v− ṽ)‖`∞ . hk+1 and ‖∇k(u− ũ)‖`∞ . hk+1.

Hence

‖∇kbv−∇ku‖`∞ ≤ ‖∇kbṽ−∇kũ‖`∞+‖b‖`1‖∇k(v− ṽ)‖`∞+‖∇k(u− ũ)‖`∞ . hk+1.

80



3.5 Error estimates for approximation operators with B-splines

We can now prove the main result.

Proof of Theorem 3.5.11. Using the definition of IP (3.29), the triangle inequality, Lemma
3.5.13 and Theorem 3.5.4 we have

|u− IPu|W l,∞ = |Pu− PQRn(Pb)−1Su|W l,∞

≤ |u−QRn(Pb)−1Su|W l,∞

≤ |u− IRnu|W l,∞ + |IRnu−QRn(Pb)−1Su|W l,∞

. hmin(m,k+1)|u|Wmin(m,k+1),∞ +
∣∣∣∇l ((Pb)−1 − b−1

)
Su
∣∣∣

. hmin(m,k+1)|u|Wmin(m,k+1),∞ +
∣∣∣∇l (b(Pb)−1Su− Su

)∣∣∣
. hmin(m,k+1)|u|Wmin(m,k+1),∞ + hmin(m,k+1)+1

. hmin(m,k+1)|u|Wmin(m,k+1),∞ .

3.5.4 Approximation order of the L2 projection for nonuniform B-splines

The theory of the previous section is based on uniform B-splines. In this section we
consider more generally B-splines with arbitrary knots. Then we show how to compute
the L2 projection onto the resulting space VP . We close this section by presenting
some unexpected observations regarding the convergence order of the L2 projection with
nonuniform B-splines.

General B-splines

B-splines with knots t0 ≤ · · · ≤ tN are recursively defined by

Bi,0(x) :=
{

1 ti ≤ x < ti+1

0 otherwise
, for all 0 ≤ i ≤ N − 1 and

Bi,k(x) := x− ti
ti+k − ti

Bi,k−1 + ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1, (3.38)

for all i, k ∈ N with k + i ≤ N − 1 and k > 0. Note that for uniformly distributed
knots, i.e. ti = hi with h > 0 we recover, up to a translation, the uniform B-splines of
Section 3.5.1. If we have repeated knots, i.e. ti = ti+1 for some i ∈ {0, . . . , N − 1} the
denominator in the recursion formula (3.38) might be zero. In that case the term is just
ignored, i.e. set to zero. For k ∈ N our finite element space is

Φ := (φi)i∈{0,...,N−k−1} where φi := Bi,k for all i ∈ {0, . . . , N − k − 1}.
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The L2 projection onto VP

The L2 projection QL2u of a function u ∈ C([0, 1],M) onto VP is defined by

QL2u := arg min
v∈VP

‖v − u‖L2 .

To approximately compute it we approximate the integral with the composite midpoint
rule with R � N intervals and solve the resulting nonlinear least square problem, i.e.
we have

QL2u ≈ arg min
c=(cj)N−k−1

j=0 ∈MN−k−1

R∑
i=1

∣∣∣∣∣∣P
N−k−1∑

j=0
cjφi

(2i− 1
2R

)− u(2i− 1
2R

)∣∣∣∣∣∣
2

.

We find the minimizer by an adaptation of the Gauss-Newton method (Algorithm 3).
Convergence of this algorithm is an open problem. A somewhat open problem is how
large the number of quadrature nodes R has to be chosen. It was observed that R = 3N
is already enough to observe the convergence orders stated below.

Algorithm 3 Gauss-Newton for computation of the L2 projection onto VP
Input: u : [0, 1]→M , N ∈ N, t0 ≤ · · · ≤ tN , R ∈ N and tol > 0.
Output: Approximation of the nodes c = (ci)N−k−1

i=0 ∈MN−k of the L2 projection of u
onto VP

Choose a first guess c(0) = (c(0)
i )N−k−1

i=0 ∈MN−k for c, e.g. c(0)
i = u(ti).

Define the matrix A ∈ RR×N−k by A(i, j) = φj
(

2i−1
2R

)
and the vector b ∈ RnR by

b(i) = u
(

2i−1
2R

)
.

Set l = 0
repeat

Find S ∈ Rn(N−k)×dim(M)(N−k) such that {Sx|x ∈ Rdim(M)(N−k)} = Tc(l)MN−k.
solve the linear least square problem

arg min
x∈Rdim(M)(N−k)

∣∣∣P ′ ((A⊗ In)c(l)
)

(A⊗ In)Sx− logP((A⊗In)c(l))(b)
∣∣∣

Update c(l+1) = expc(l)(Sx) or c(l+1) = ec(l)(Sx).
l = l + 1

until maxi d(c(l)
i , c

(l−1)
i ) < tol

return c(l).
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3.5 Error estimates for approximation operators with B-splines

Figure 3.3: Convergence order for a sphere-valued function
k 1 2 3 4 5
Uniform knots 2.0000 2.9986 3.9968 4.9764 6.0011
Open knots 2.0000 2.9984 3.4968 3.4964 3.4860
Alternating lengths 1.9999 2.9960 3.9986 2.9904 3.9893

Experiment to measure convergence rate

To numerically determine the convergence order we compute the L2 projection using
algorithm 3 for the sphere-valued function

u(x) = P


 1

x
sin(x)


 .

Convergence rate for uniform knot vector

By Section 3.5.4 there exists an approximation operator Q : C([0, 1],M) → VP for uni-
form B-splines such that for u ∈ Hm([0, 1],M) we have ‖u−Qu‖L2 . hmin(k+1,m)‖u‖Hm

for all h sufficiently small, i.e. Q has convergence order min(k+ 1,m). By the definition
of QL2 it follows that QL2 has convergence order at least min(k + 1,m). Figure 3.5.4
suggests that the convergence order is equal to min(k + 1,m).

Convergence rate for open uniform knot vectors

A problem with using uniform B-splines to solve partial differential equations is that
imposing boundary conditions can be quite difficult because there are several basis func-
tions that are nonzero at the interval ends. Hence not only coefficients ci (as for Lagrange
type basis functions) but averages of coefficients ci have to be fixed. A solution of this
problem is to use open uniform knot vectors instead, i.e. by starting with a uniform knot
vector with first and last knot equal to the interval ends and then repeating the first and
last knot k times. Then for both interval ends there is only one basis function which is
nonzero there and imposing boundary conditions becomes easier. However, Figure 3.5.4
suggest that the convergence order is bounded by min(3.5, k+ 1). This is different from
the linear case where we still have the optimal convergence order.
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Convergence rate for knot vectors with alternating interval lenghts

For α ∈ (0, 1)\
{

1
2

}
we consider the knot vector with t0 = 0 and

ti+1 − ti =
{
αh if i is odd
(1− α)h if i is even.

From Figure 3.5.4 we can see that the convergence order seems to be bounded by
min(4, k + 1) for k odd and by min(3, k + 1) for k even.
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4 Variational Problems

In this chapter, we study the two numerical methods we mentioned in the introduction
to minimize the harmonic energy J (u) := |u|2H1 (See (0.5)). Under the assumption that
the boundary data are concentrated on a small enough ball it can be shown that J has
a unique minimizer.

Theorem 4.0.1 (Jäger–Kaul [26]). Let Ω ⊂ Rs, M a Riemannian manifold with sectional
curvature bounded from above by κ > 0, p ∈M , r < π

2
√
k

, Br(p) := {q ∈M | dg(p, q) < r}
and ϕ : ∂Ω → Br(a). Assume that for any two points in Br(p) there exists a unique
geodesic connecting them. Then there exists a unique u ∈ C(Ω, Br(p)) with u|∂Ω = ϕ
and

J (v) ≥ J (u) for all v ∈ C(Ω,M) with v|∂Ω = ϕ.

In Section 4.1 we prove that J behaves quadratically around this minimizer u with
respect to the H1-seminorm, i.e. we have J(v)−J(u) ∼ |v−u|2H1 . This will be important
for proving error estimates. Then, in Section 4.2 resp. 4.3, we discuss the finite distance
resp. the geometric finite element method.

4.1 Ellipticity

We use the following definition of ellipticity of functionals on functions with values in a
Riemannian submanifolds of Rn. A definition which also works for a manifold not given
as an embedding and a corresponding theory can be found in [24].

Definition 4.1.1. Let M ⊂ Rn be an embedded submanifold and Ω ⊂ Rs. A functional
J : H ⊂ H1(Ω,M) → R is called elliptic around u ∈ H if there exists λ,Λ, ε > 0 such
that for all v ∈ L∞(Ω,M) ∩H with ‖v − u‖L∞ < ε we have

λ|v − u|2H1 ≤ J (v)− J (u) ≤ Λ|v − u|2H1 .

We now prove that the harmonic energy functional is elliptic around the unique mini-
mizer. First we show an optimality condition for the minimizer. It is a generalization of
Proposition 1.2.5.
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Proposition 4.1.2. Let M be a Riemannian submanifold of Rn such that the closest point
projection P : U ⊂ Rn →M is two times differentiable with bounded derivatives, Ω ⊂ Rs,
ϕ : ∂Ω → M , H1

ϕ(Ω,M) := {w ∈ H1(Ω,M)|w = ϕ on ∂Ω}, J : H1
ϕ(Ω,M) → R the

harmonic energy defined by J (u) = |u|2H1, and u ∈ H2(Ω,M) a critical point of J .
Then we have ∆u(x) ∈ Tu(x)M

⊥ almost everywhere.

Proof. Let w ∈ H1(Ω, TM) be a vector field with w(x) ∈ Tu(x)M for all x ∈ Ω and
w(x) = 0 for all x ∈ ∂Ω. Define uε ∈ H1(Ω,M) by uε(x) = P(u(x) + εw(x)) where P
is the closest point projection. As u is a critical point of J we have 0 = d

dεJ (uε)|ε=0.
Using Lemma 1.2.4 and integration by parts we have

0 = d

dε
J (uε)|ε=0

= d

dε
〈∇uε,∇uε〉L2 |ε=0

= 2
〈
d

dε
∇uε|ε=0,∇u

〉
L2

= 2〈∇w,∇u〉L2

= −2〈w,∆u〉L2 .

As this equation holds for all vector fields w ∈ H1(Ω, TM) with w(x) ∈ Tu(x)M we have
∆u(x) ∈ Tu(x)M

⊥ almost everywhere.

Our ellipticity estimate also includes the classical Poincaré constant.

Definition 4.1.3. The Poincaré constant of a domain Ω ⊂ Rs is the smallest positive
number CP such that ‖u‖L2 ≤ CP |u|H1 for all

u ∈ H1
0 := {u ∈ H1(Ω,Rn) | u = 0 on ∂Ω}.

We can now state and prove ellipticity of the harmonic energy.

Proposition 4.1.4. Let M be a Riemannian submanifold of Rn such that the closest point
projection P : U ⊂ Rn →M is two times differentiable with bounded derivatives, Ω ⊂ Rs,
ϕ : ∂Ω → M , H1

ϕ(Ω,M) := {w ∈ H1(Ω,M)|w = ϕ on ∂Ω}, J : H1
ϕ(Ω,M) → R the

harmonic energy J (u) = |u|2H1 and u ∈ W 2,∞(Ω,M) a critical point of J . Then if
‖∆u‖L∞ < C−2

P |P|
−1
C2 where CP is the Poincaré constant from Definition 4.1.3, the

function J is elliptic around u.

Proof. For v ∈ H1
ϕ(Ω,M) we have

J (v)− J (u) = 〈∇v −∇u,∇v +∇u〉L2

= 〈∇v −∇u,∇v −∇u〉L2 + 2〈∇v −∇u,∇u〉L2

= |v − u|2H1 − 2〈v − u,∆u〉L2 .
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We define the function z ∈ H1(Ω, TM) by z(x) := PTu(x)M [v(x) − u(x)] for all x ∈ Ω.
Since z(x) ∈ Tu(x)M and ∆u(x) ∈ Tu(x)M

⊥ (Proposition 4.1.2) we have 〈z,∆u〉L2 = 0.
For ‖v−u‖L∞ small enough we can define the function γ(x, t) := P(tv(x) + (1− t)u(x)).
By Lemma 1.2.4 we have P ′(u(x)) = PTu(x)M and hence

|v(x)− u(x)− z(x)| = |γ(x, 1)− γ(x, 0)− γ̇(x, 0)|

=
∣∣∣∣∫ 1

0
(1− t)γ̈(x, t)dt

∣∣∣∣
≤ 1

2 |P|C2 |v(x)− u(x)|2.

By the Poincaré inequality we get

|〈v − u,∆u〉L2 | = |〈z,∆u〉L2 − 〈v − u− z,∆u〉L2 |
= |〈v − u− z,∆u〉L2 |
≤ ‖v − u− z‖L1‖∆u‖L∞

≤ 1
2 |P|C2‖v − u‖2L2‖∆u‖L∞

≤ 1
2 |P|C2C2

P |v − u|2H1‖∆u‖L∞ .

It follows that

(1− |P|C2C2
P ‖∆u‖L∞)|v − u|2H1 ≤ J (v)− J (u) ≤ (1 + |P|C2C2

P ‖∆u‖L∞)|v − u|2H1 .

For ‖∆u‖L∞ < C−2
P |P|

−1
C2 we get the desired estimate.

For a half-sphere HSn we can estimate |P|C2 by Lemma A.3 and get the following
Corollary

Corollary 4.1.5. Let ϕ : Ω → HSn, H1
ϕ(Ω, HSn) and J as in Proposition 4.1.4 and

u ∈W 2,∞([0, 1]s, HSn) a critical point of J . Then if

‖∆u‖L∞ <

√
3

2C2
P

,

the functional J is elliptic around u.

4.2 The finite distance method

In this section we construct a simple method to minimize the harmonic energy on
the hypercube Ω = [0, 1]s with given boundary data g : ∂Ω → M . Consider first the
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hypercube [0, h]s for h > 0. We approximate the harmonic energy J of a function
u ∈ H1([0, h]s,Rn) by

J̃ (u) := hs−2

2s−1

∑
(i,j)∈E([0,h]s)

d2(u(i), u(j)), (4.1)

where E([0, h]s) denotes the set of all edges of the hypercube [0, h]s and d : M×M → R≥0
is a distance with d(u, v) = |v− u|+O(|v− u|3). By Lemma C.1 and the classical error
estimates of the trapezoidal rule there exists C > 0 such that we have∣∣∣J (u)− J̃ (u)

∣∣∣ ≤ Chs+2‖u‖2C3 for all u ∈ C3([0, h]s,Rn). (4.2)

Let us now for N ∈ N subdivide our cube [0, 1]s into N s smaller cubes, each of side length
N−1. Consider also the corresponding vertices V :=

{
0, N−1, 2N−1, . . . , (N − 1)N−1, 1

}s,
and the edge set E := {(i, j) ∈ V × V | |i − j| = N−1}. Using the discretization (4.1)
and adding up the results yields the approximation

JN (u) := N2−s ∑
(i,j)∈E

w(i,j)d
2(u(i), u(j)),

where the weight w(i,j) is the number of small cubes which have (i, j) ∈ E as an edge
divided by 2s−1. For an interior edge this weight is 1 while for an edge lying on the
boundary the weight is smaller than 1. Summing up all error estimates (4.2) from the
small cubes yields that there exists C > 0 such that we have

|J (u)− JN (u)| ≤ CN−2‖u‖2C3 for all u ∈ C3([0, 1]s,Rn). (4.3)

Note that JN (u) depends only on the values of u on V . Furthermore the values of u at
the boundary vertices VB ⊂ V are given by ϕ|VB

: VB → Rn. Let JN : (HSn)VI → R
be the functional JN restricted to the values at the interior vertices VI := V \VB, i.e.

JN (u) := N2−s


∑

(i,j)∈E,
i∈VB ,
j∈VB

w(i,j)d
2 (ϕ(i), ϕ(j)) +

∑
(i,j)∈E,
i∈VB ,
j∈VI

d2 (ϕ(i), u(j)) +
∑

(i,j)∈E,
i∈VI ,
j∈VI

d2 (u(i), u(j))

 .
(4.4)

By Proposition 2.3.1 and Theorem 2.4.2 this functional has a unique minimizer if M is
a Hadamard manifold or the open half-sphere.

Note that if u ∈ MV is a minimizer of JN (u) we have for all i ∈ V that ui is the
Riemannian (resp. projection) average of the value of its neighbors, i.e. we have a
discrete mean-value property.

In the derivation of the finite distance method we first discretized and then optimized.
Let us try to reverse the order, i.e. to first optimize and then discretize. By Proposition
4.1.2 the optimality condition in the case where M is a Riemannian submanifold of Rn
is ∆u(x) ∈ Tu(x)M

⊥ almost everywhere. Discretization of this condition on a regular
grid in a natural way would yield again that the value at some point on the grid is the
average of the values of its neighbors.
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4.2 The finite distance method

4.2.1 Algorithms to minimize the discrete harmonic energy

In this section we study some algorithms to minimize JN . The mean-value property
mentioned in the previous section motivates Algorithm 4 where we iteratively replace
the values by the Riemannian or projection-based average of its neighbors.

Algorithm 4 Iterative averaging for minimization of the discrete harmonic energy
Input: Boundary data g : ∂Ω2 → M where Ω = [0, 1]2 and parameters N ∈ N and
tol > 0.
Output: Approximation of a minimizer of the harmonic energy on the regular (N +
1)× (N +1) grid of the unit square.

Choose a first guess (u(0))Ni,j=0 for u (e.g. by interpolation of g)
Set k = 0
repeat

for i = 1 : N − 1 do
for j = 1 : N − 1 do
u

(k+1)
i,j = av

(
(u(k)
i−1,j , u

(k)
i+1,j , u

(k)
i,j−1, u

(k)
i,j+1),

(
1
4 ,

1
4 ,

1
4 ,

1
4

))
end for

end for
k = k + 1

until maxi,j d(u(k)
i,j , u

(k−1)
i,j ) < tol

return u(k).

To get a second order method one can use Algorithm 5 which makes use of the Rieman-
nian Newton method introduced in Section 1.3.3.

4.2.2 Convergence analysis

Given the discrete minimizer of JN we construct in this section an approximation for
the minimizer of J . Then we prove that this approximation converges to the minimizer
of J for N →∞.

Interpolation of the values on a grid

To construct an approximation we define finite element functions and then use the ap-
proximation operator QP from Section 3.3. For i = (i1, . . . , id) ∈ {0, 1, . . . , N}s and
x = (x1, . . . , xd) ∈ [0, 1]s we define the tensor product basis function φi : [0, 1]s → R
by

φi(x) :=
s∏
j=1

tij (xj) ∈ R,

where for k ∈ {0, 1, . . . , N} the function tk : [0, 1] → R is the piecewise linear function
with tk(lN−1) = δkl.
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Algorithm 5 Minimization of the discrete harmonic energy with the Newton method
Input: Boundary data g : ∂Ω2 → M where Ω = [0, 1]2 and parameters N ∈ N and
tol > 0.
Output: Approximation of a minimizer of the harmonic energy on the regular (N +
1)× (N +1) grid of the unit square.

Choose a first guess (u(0))Ni,j=0 for u (e.g. by interpolation of g)
Set k = 0
repeat

Compute gradient and Hessian of

J(u) =
N∑
i=0

N−1∑
j=0

d2(ui,j , ui,j+1) +
N−1∑
i=0

N∑
j=0

d2(ui,j , ui+1,j)

at u(k)

Restrict Hess and gradient grad to the interior points.
Solve HessJ(u(k))x = grad J(u(k)) for x ∈ Tu(k)M (N−1)×(N−1)

Update u(k+1) = expu(k)(−x) or u(k+1) = eu(k)(−x)
k = k + 1

until maxi,j d(u(k)
i,j , u

(k−1)
i,j ) < tol

return u(k).

Convergence for the half-sphere case

We now show that if M is the half-sphere HSn the constructed approximation converges
towards the unique minimizer of J . However, we need to assume that the distance
d : M × M → R≥0 is of the form d2(p, q) = α(〈p, q〉) with α convex, monotonically
decreasing and α(x) ≥ 4(1 − x)(1 + x)−1. The reason is that under this condition, we
can show that the harmonic energy of the interpolation can be bounded by the discrete
harmonic energy.

Lemma 4.2.1. Assume that d2(p, q) = α(〈p, q〉) with α convex monotonically decreasing
and α(x) ≥ 4(1− x)(1 + x)−1. Then we have

J (QPu) ≤ JN (u)

for all u ∈ (HSn)V .

Proof. Note that it is enough to prove the estimate for N = 1. For q ∈ Rn+1\{0} and
r ∈ Rn+1 we have

P ′(q)[r] = r

|q|
− 〈r, q〉q
|q|3

.

Hence, ∣∣P ′(q)[r]∣∣2 = |r|
2

|q|2
− 〈r, q〉

2

|q|4
≤ |r|

2

|q|2
.
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4.2 The finite distance method

By Lemma C.2, the Cauchy–Schwarz and Jensen’s inequality we have for x ∈ [0, 1]s with
φi+j = φi + φj

s∑
k=1

∣∣∣∣∣∂kP
(∑
i∈V

φi(x)ui

)∣∣∣∣∣
2

=
s∑

k=1

∣∣∣∣∣P ′
(∑
i∈V

φi(x)ui

)[∑
i∈V

∂kφi(x)ui

]∣∣∣∣∣
2

≤
∑

(i,j)∈E φi,j(x)|ui − uj |2

1− 1
4
∑

(i,j)∈E φi,j |ui − uj |2

≤
∑

(i,j)∈E
φi,j(x) |ui − uj |2

1− 1
4 |ui − uj |2

=
∑

(i,j)∈E
φi,j(x)4(1− 〈ui, uj〉)(1 + 〈ui, uj〉)−1

≤
∑

(i,j)∈E
φi,j(x)α(〈ui, uj〉)

=
∑

(i,j)∈E
φi,j(x)d2(ui, uj).

Hence, we have

J (QPu) =
∫

[0,1]s

s∑
k=1

∣∣∣∣∣∂kP
(∑
i∈V

φi(x)ui

)∣∣∣∣∣
2

dx

≤
∫

[0,1]s

∑
(i,j)∈E

φi,j(x)d2(ui, uj)dx = 1
2s−1

∑
(i,j)∈E

d2(ui, uj) = JN (u).

We first show convergence in the L∞-norm.

Theorem 4.2.2. Let ϕ ∈ C(∂[0, 1]s, HSn), for every N ∈ N, JN the functional defined
in (4.4) with α as in Lemma 4.2.1, uN ∈ (HSn)VI the unique minimizer of JN and
u ∈ H1([0, 1]s, Sn) the minimizer of J . Assume that u ∈ C3. Then we have

lim
N→∞

‖QPuN − u‖L∞ = 0

Proof. Assume that the statement is not true. Then there exists ε > 0 and a subsequence
(Ni)i∈N ⊂ N with

‖QPuNi − u‖L∞ ≥ ε for all i ∈ N.

As uN is the minimizer of JN we have

JN (uN )− JN (u) ≤ 0. (4.5)

By Lemma 4.2.1, (4.5) and Inequality (4.3) there exists C > 0 such that we have

J (QPuN ) ≤ JN (uN ) ≤ JN (u) ≤ J (u) + CN−2.
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Hence, J (QPuNi) = |QPuNi |H1 is bounded. It follows that (QPuNi)i∈N has a sub-
sequence which convergences weakly to a function v ∈ H1([0, 1]s,Rn+1). Since Dirac
measures are linear functionals on L∞ it follows that v ∈ H1([0, 1]s, Sn). By weakly
lower semicontinuity of the H1-norm we have |v|H1 ≤ |u|H1 , which is a contradiction to
the uniqueness of the minimizer of J by Theorem 4.0.1.

The restriction of the function PIuN to the boundary is PIϕN and in general not equal
to the boundary data ϕ of the function u. We denote by ũN the unique minimizer with
respect to the boundary data PIϕN . We will need to estimate ‖u− ũN‖H1(Ω,Rn). In the
linear case this can be done by linearity and [27]. In the manifold-valued case this is an
open problem.

Conjecture 4.2.3. Let M be a Riemannian manifold, Ω ⊂ Rs open and bounded with
smooth boundary, ϕ ∈ C(∂Ω, HSn), ũN the unique minimizer with respect to the bound-
ary data PIϕN . Then we have

‖u− ũN‖H1(Ω,Rn) . ‖ϕ− PIϕN‖H 1
2 (∂Ω,Rn)

. (4.6)

Assuming Conjecture 4.2.3 holds, we can estimate the H1-error between the exact and
the approximate solution.

Theorem 4.2.4. Let Ω = [0, 1]s, ϕ ∈ C(∂Ω, HSn), H1
ϕ(Ω, HSn) as in Theorem 4.2.2,

u := arg min
v∈H1

ϕ(Ω,HSn)
J (v),

JN the discrete harmonic energy and uN ∈ (HSn)VInt the unique minimizer of JN .
Assume that u ∈ C3 and ‖∆u‖L∞ <

√
3sπ2

2 . Then if Conjectures 4.2.3 holds we have

|PIuN − u|H1 . N−1.

Proof. By Theorem 4.2.2 we have convergence in L∞. As uN is the minimizer of JN we
have

JN (uN )− JN (u) ≤ 0. (4.7)

Let ũN ∈ H1(Ω, HSn) be the unique minimizer with respect to the (interpolated) bound-
ary data ϕN = PIuN |∂Ω. Using the triangle inequality we have

|PIuN − u|H1(Ω,Rn) ≤ |PIuN − ũ|H1(Ω,Rn) + |ũ− u|H1(Ω,Rn).

By (4.7), Lemma 4.1.4 and Inequality (4.3) we have that

|PIuN − ũ|2H1(Ω,Rn) . J (PIuN )− J (u)
= (J (PIuN )− JN (uN )) + (JN (uN )− JN (u)) + (JN (u)− J (u))
≤ |JN (u)− J (u)|
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4.3 The geometric finite element method

. N−2.

Using Conjecture 4.2.3, the Gagliardo Nirenberg inequality for fractional Sobolev spaces
[10] and Theorem 3.3.4 we get

|ũ− u|H1(Ω,Rn) . ‖ϕ− PIϕN‖
H

1
2 (∂Ω,Rn)

. ‖ϕ− PIϕN‖
1
2
H1(∂Ω,Rn)‖ϕ− PIϕN‖

1
2
L2(∂Ω,Rn)

. N−1.

Combining the inequalities yields the desired result.

An interesting open problem is to estimate the L2-error. A possible approach would be
to generalize the Aubin–Nitsche-duality argument [42].

4.3 The geometric finite element method

In this section, we study the geometric finite element method. In Section 4.3.2, we give
a convergence theory for geometric finite elements. Finally, in Section 4.3.2, we discuss
some issues which occur when implementing the geometric finite element method.

4.3.1 Convergence analysis for the geometric finite element method

Having ellipticity it is straight forward to prove convergence for geometric finite elements.
We first show a nonlinear Céa lemma.

Lemma 4.3.1. Let M ⊂ Rn be a Riemannian submanifold of Rn, Ω ⊂ Rs, J : H ⊂
H1(Ω,M) → R a functional with a unique minimizer u ∈ H. Assume that J is elliptic
around u. Let V ⊂ H be an nonempty subset and

v := arg min
w∈V

J (w).

Then we have
|v − u|H1 . inf

w∈V
|w − u|H1 .

Proof. By the ellipticity we have for any w ∈ V

|v − u|2H1 ≤ J (v)− J (u) ≤ J (w)− J (u) . |w − u|2H1 .

Taking the square root yields the desired result.

We can now prove the convergence estimate for geometric finite elements.
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Theorem 4.3.2. Let M ⊂ Rn be an embedded submanifold, Ω ⊂ Rs, J : H ⊂ H1(Ω,M)→
R a functional with a unique minimizer u ∈ H ∩Hm. Assume that J is elliptic around
u. Let φ = (φi)i∈I ⊂ W 1,q(Ω,R) for some q > max(d, 2), QRn, VR, QR, VP and QP
as in Chapter 3 and

vR := arg min
w∈VR∩H

J (w) and vP := arg min
w∈VP∩H

J (w).

Assume that QRn satisfies (3.4) with l = 1 and p = 2. Then there exist a constant CR
depending only on u, M and the implicit constant of Lemma 4.3.1 and a constant CP
depending only on the implicit constant of Lemma 4.3.1 and Inequality (3.4) such that
for h small enough we have

|vR − u|H1 ≤ hm−1CR, and |vP − u|H1 ≤ CPhm−1|u|Hm .

Proof. By Lemma 4.3.1 and Theorem 3.4.3 we have

|vR − u|2H1 . |QRu− u|H1 . hm−lCR.

The proof for the projection-based solution uses Theorem 3.3.4 and is analogous.

4.3.2 Implementing the geometric finite element method

The geometric finite element method was implemented in Matlab. However as the code
is in general not very efficient we omit a detailed description and concentrate ourselves
to a few important tricks necessary to implement the geometric finite element method.
For the projection average based finite element method we need to compute

arg min
(ci)i∈I⊂M

∫
Ω

n∑
j=1

∣∣∣∣∣ ∂∂xjP
(∑
i∈I

φi(x)ci

)∣∣∣∣∣
2

dx.

In a first step the integral is approximated by a quadrature rule. The resulting expression
can be minimized using the Riemannian Newton method. To compute the derivatives
one can first compute the derivatives of the linear combination

∑
i∈I φici and the closest

point projection P at
∑
i∈I φici and then use the chain rule to get the derivatives of the

composition. When M is a compact Stiefel manifold we have for example

P
(∑
i∈I

φi(x)ci

)
=
(∑
i∈I

φi(x)ci

)∑
i,j∈I

φi(x)φj(x)cicTj

− 1
2

.

To compute derivatives of this expression one can first compute derivatives of the indi-
vidual functions and then combine them using the product and the chain rule.
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Higher order Lagrange basis on triangles

We briefly point out the construction of an order p ∈ N Lagrange basis on a tri-
angular element using barycentric coordinates (λi)3

i=1. Consider the index set I ={
(i, j, k)

∣∣i, j, k ∈ N, i+ j + k = p
}
. For x ∈ R and n ∈ N we define the polynomial(
x

n

)
:= 1

n!

n−1∏
i=0

(x− i).

Note that for v = (a, b, c) ∈ I the function

φv(λ1, λ2, λ3) :=
(
pλ1
a

)(
pλ2
b

)(
pλ3
c

)
,

is the unique polynomial of (total) degree at most p with φv(w/p) = δv,w for all w ∈ I.

Harmonic energy of a geometric finite element function on a triangular element

In the previous section we expressed the basis function in terms of barycentric coordi-
nates. These expression also make sense for λ1, λ2, λ3 whose sum is not equal to 1. There
is also a natural way to define the projection (Definition 1.4.1) resp. Riemannian (Defini-
tion 1.4.3) average also for weights with sum not equal to 1. Hence a derivative du/dλi of
a geometric finite element function u : T →M ⊂ Rn on a triangle T ⊂ R2 makes sense.
In this section we explain how to express

∣∣∣∂u(x)
∂xj

∣∣∣2 in terms of the derivatives with respect
to the barycentric coordinates (λi)3

i=1. Note that the coordinates x = (x1, x2) ∈ R2 of a
point inside the triangle with vertices P1, P2, P3 ∈ R2 can be expressed in the variables
(λi)3

i=1 by
x = P1λ1 + P2λ2 + P3λ3. (4.8)

It follows that (
P1 P2 P3
1 1 1

)λ1
λ2
λ3

 =
(
x
1

)
. (4.9)

Let A = [aij ] be the inverse of the 3× 3 matrix(
P1 P2 P3
1 1 1

)
.

We can now find an expression of the norm of the gradient of u = (u1, . . . , un) in terms
of the derivatives in the barycentric coordinates. By the chain rule we have

|∇u|2 =
n∑
i=1

2∑
j=1

(
dui
dxj

)2

=
n∑
i=1

2∑
j=1

( 3∑
k=1

akj
dui
dλk

)2

=
n∑
i=1

3∑
k=1

3∑
l=1

2∑
j=1

ak,jal,j
dui
dλk

dui
dλl

.
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5 Discussion

Let us take a look back to the results of this thesis and discuss some possible direction
for future research in this area.

In Chapter 1, we presented a theory for the minimization of functionals and the compu-
tation of averages on Riemannian manifolds which requires only elementary knowledge
of differential geometry. An important tool was the closest point projection P. We pre-
sented a simple relation between the classical gradient and Hessian and the Riemannian
gradient and Hessian (Proposition 1.3.1). We showed how this formula can for example
be applied to the compact Stiefel manifold (Equation (1.23)) which includes the sphere
and the special orthogonal group.

In Chapter 2, we proposed the IRM algorithm to minimize the TV functional. We
presented various theories concerning the existence of unique minimizers of functionals
related to the TV-functional and the convergence and convergence speed of IRM.

In Chapter 3, we showed that the projection based approximation operator QP satisfies
the same error estimate as its linear analog QRn . Furthermore we showed that with
uniform B-splines we have the same approximation order whereas for nonuniform B-
splines we observed that the convergence order breaks down.

In Chapter 4, we presented two techniques to solve variational problems. We gave a
convergence theory showing that for elliptic functionals we have optimal convergence
order.

The thesis can be summarized by saying that we generalized methods and theories from
the real-valued case to the manifold-valued case.

There are still many open problems (e.g. why the symmetrization in Section 1.5.3 is not
necessary, uniqueness of minimizer of TV-functional with sphere-valued data (Section
2.4), convergence of Algorithm 3 and explanation of the convergence orders in Section
3.5.4). In principle any statement in the linear theory can be generalized to a more
general statement for the manifold-valued case. A few examples of statements which
could be generalized are Jensen’s inequality, saturation theorems or error estimates for
the p-method. However, the generalization is not always true (see e.g. Section 3.5.4).
Furthermore, the proof from the linear theory can not always be transferred into a proof
for the manifold-valued case. Sometimes new ideas are required to generalize to the
manifold-valued case.
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Appendices

A Estimates related to the closest point projection

The following lemma estimates the difference between p and q and its projection onto
the tangent space at p.

Lemma A.1. For p, q ∈M with |q − p| small enough we have

|q − p− PTpM (q − p)| ≤ 1
2 |P|C2 |q − p|2,

where PTpM denotes the orthogonal projection onto TpM .

Proof. By Lemma 1.2.4 we have PTpM = P ′(p). Let γ(t) := P(tq + (1− t)p). Note that
γ̈(t) = P ′′[q − p, q − p]. Hence we have

|(q − p)− P ′(p)[q − p]| = |γ(1)− γ(0)− γ̇(0)| =
∣∣∣∣∫ 1

0
(1− t)γ̈(t)

∣∣∣∣ ≤ 1
2 |P|C2 |q − p|2.

The next lemma makes a similar statement but with q − p replaced by logp(q).

Lemma A.2. For p, q ∈M with |q − p| small enough we have

|logp(q)− P ′(p)(q − p)| . |q − p|3,

with implicit constant depending only on |P|C2 and |P|C3.

Proof. Let γ ∈ C1([0, 1],M) be the geodesic with γ(0) = p and γ(1) = q. By Lemma
1.2.4 we have that P ′(p) is the orthogonal projection onto TpM . Furthermore we know
that γ̈(0) ∈ TpM⊥. Hence we have P ′(p)[γ̈(0)] = 0. From Proposition 1.2.6 it follows
that |

...
γ (t)| . |q − p|3. Therefore we have

|logp(q)− P ′(p)[q − p]| = |γ̇(0)− P ′(p)[γ(1)− γ(0)]|

= |γ̇(0)− P ′(p)[γ̇(0) + 1
2 γ̈(0) +O( max

t∈[0,1]
|
...
γ (t)|2)]|

= |P ′(p)[O(|q − p|3)]
. |q − p|3.
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For Proposition 4.1.5 we need an explicit bound on the second derivative of the closest
point projection onto the sphere. The next lemma gives the exact value of the norm.

Lemma A.3. Let P be the closest point projection onto the sphere Sn, i.e. P(u) = u/|u|
for all u ∈ Rn+1\{0}. For u ∈ Rn+1\{0} we have∥∥P ′′(u)

∥∥ = 2√
3|u|2

,

where ‖ · ‖ denotes the operator norm.

Proof. Some calculus yields

d2P(u)i
dujduk

= −δijuk + δikuj + δjkui
|u|3

+ 3uiujuk
|u|5

.

Hence for v, w ∈ Rn+1 we have

∣∣P ′′(u)[v, w]
∣∣2 =

∣∣∣∣−v〈u,w〉 − w〈u, v〉 − u〈v, w〉|u|3
+ 3〈u, v〉〈u,w〉u

|u|5

∣∣∣∣2
= |u|−6

(
|v|2〈u,w〉2 + |w|2〈u, v〉2 + |u|2〈v, w〉2 − 3〈u, v〉

2〈u,w〉2

|u|2

)
= |u|−4|v|2|w|2

(
cos2(α) + cos2(β) + cos2(γ)− 3 cos2(α) cos2(β)

)
,

where α, β resp. γ denote the angle between u and w, u and v resp. v and w. Without
loss of generality we can choose α, β, γ ∈ [0, π). By the triangle inequality we have
γ ≥ |α− β| and therefore

cos2(γ) ≤ cos2(α− β)
= (cos(α) cos(β) + sin(α) sin(β))2

= 2 cos2(α) cos2(β) + 1− cos2(α)− cos2(β) + 2 sin(α) cos(α) sin(β) cos(β).

Hence, we get

|P ′′(u)[v, w]|2

|v|2|w|2
≤ |u|−4

(
1 + 2 sin(α) cos(α) sin(β) cos(β)− cos2(α) cos2(β)

)
= |u|−4

(
1 + sin2(α) sin2(β)− cos2(α+ β)

)
≤ |u|−4

(
1 + sin4

(
α+ β

2

)
− cos2(α+ β)

)
= |u|−4

(
4
3 − 3

(
cos2

(
α+ β

2

)
− 1

3

)2)

≤ 4
3 |u|

−4.

Taking the square root yields the desired result. Equality holds for α = β = arccos
(
3−1/2

)
and γ = 0.
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B Identities and estimates on sequences

Assume we are given an expression where a variable occurs k times and we want to
compute finite differences of it. The goal is to rewrite it as a telescopic sum with finite
differences only taken with respect to one occurence of the variable. The following lemma
shows that this can be done.

Lemma B.1. Let u : Zk → X, where X is a vector space and v : Z→ X be the diagonal,
i.e. vi := ui,...,i for all i ∈ Z. Let ∇j be the difference operator only applied to the j-th
coordinate, i.e.

∇jui1,...,ik := ui1,...,ij+1,...,ik − ui1,...,ij ,...,ik .

Then we have for i ∈ Z

(∇lv)i =
∑

i=a0≤a1···≤ak=i+l

l!∏k
m=1(am − am−1)!

∇a1−a0
1 . . .∇ak−ak−1

k ua0,...,ak−1 .

Proof. The right hand side of the expression above is a sum of terms of the form ui1,...,ik
with i = i0 ≤ i1 ≤ i2 · · · ≤ ik ≤ ik+1 = i + l. Note that it is enough to prove that the
coefficients are {

(−1)l−j
(l
j

)
if i1 = · · · = ik = i+ j

0 otherwise
.

We have
i2∑

a1=i1
· · ·

ik∑
ak−1=ik−1

l!∏k
m=1(am − am−1)!

k∏
m=1

(−1)am−im (am − am−1)!
(im − am−1)!(am − im)!

= l!(−1)ak−ik

(ak − ik)!(i1 − a0)!
∏k−1
m=1(im+1 − im)!

k−1∏
m=1

im+1∑
am=im

(−1)am−im

(
im+1 − im
am − im

)

= l!(−1)ak−ik∏k
m=0(im+1 − im)!

k−1∏
m=1

(1− 1)im+1−im

=
{

(−1)l−j
(l
j

)
if i1 = · · · = ik = i+ j

0 otherwise
.

In Section 3.5 we work with a sequence b with
∑
i∈Z bi = 1 and we want to estimate the

expression ‖b ∗ u− u‖`∞ . The following lemma shows that b ∗ u− u can be rewritten in
terms of ∇u. This will allow us to estimate ‖b ∗ u− u‖`∞ .

Lemma B.2. Let b ∈ RZ be an invertible sequence with finite support and
∑
i∈Z bi = 1.

Then there exist a sequence a ∈ RZ with finite support such that

b ∗ u = u + a ∗ ∇u

Furthermore, if b−1 is an inverse of b we have

b−1 ∗ u = u− b−1 ∗ a ∗ ∇u.
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Proof. Let the support of b be in {−S, . . . , S}. We define

ai :=


−
∑S
j=i bj 1 ≤ i ≤ S∑i−1

j=−S bj −S + 1 ≤ i ≤ 0
0 otherwise

and get by the assumption

(∇a)i =
{
bi i 6= 0
−
∑
i 6=0 bi = b0 − 1 i = 0

.

Note that we have ∇(b ∗ u) = b ∗ ∇u = ∇b ∗ u. Hence,

u + a ∗ ∇u = u +∇a ∗ u = u + b ∗ u− u = b ∗ u.

The second statement follows by multiplying with b−1 from the left on both sides.

To simplify the notation we will omit the convolution sign ”*” in the following lemma.

Lemma B.3. Let u ∈MZ and v ∈
(
RK

)Z
. We have

‖PbP(u + v)− Pb(u + v)‖`∞ . ‖v‖`∞ (‖v‖`∞ + ‖∇u‖`∞) .

Proof. Let i ∈ Z and x := P(bu)i. Using the Taylor expansion of P at (bu)i we get

|P(b(u + v))i − (P(bu)i + PTxM (bv)i)| . |(bv)i|2 .

where PTxM denotes the orthogonal projection onto the tangent space TxM . Hence

‖Pb(u + v)− (P(bu) + PTPbuMbv)‖`∞ . ‖v‖2`∞ .

Similarly
‖PbP(u + v)− (P(bu) + PTPbuMPTuMbv)‖`∞ . ‖v‖2`∞ .

Using P 2
TxM

= PTxM for all x ∈M and the triangle inequality we get

‖PbP(u + v)− Pb(u + v)‖`∞ . ‖PTPbuM (PTPbuM − PTuM )bv‖`∞ + ‖v‖2`∞
. ‖PTPbuM − PTuM‖`∞ ‖v‖`∞ + ‖v‖2`∞

Using the smoothness of P we get

‖PTPbuM − PTuM‖`∞ . ‖Pbu− u‖`∞ .

Using |Px− Py| . |x− y| and Lemma B.2 we get

‖Pbu− u‖`∞ . ‖bu− u‖`∞ = ‖c∇u‖`∞ . ‖∇u‖`∞ .

Combining these inequalities we get the desired estimate.
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C Estimates on the discrete harmonic energy

The approximation error of the harmonic energy in dimension 1 is given by the following
Lemma.

Lemma C.1. Let M be a Riemannian submanifold of Rn and d a metric on M with
d(u, v) = |v − u|+O(|v − u|3). Then for u ∈ C3([0, h],M) we have∫ h

0
|u′(x)|2dx− h−1d2(u(h), u(0)) = O

(
h3‖u‖2C3

)
.

Proof. Note that it is enough to prove the statement for d(u, v) = |v − u|. Taylor
expansion of u′ yields

u′(x) = u′(0) + u′′(0)x+O
(
|x|2|u|C3

)
.

Hence we have∫ h

0
|u′(x)|2dx =

∫ h

0
|u′(0)|2 + 2x〈u′(0), u′′(0)〉+O(|x|2‖u‖2C3)dx

= |u′(0)|2h+ h2〈u′(0), u′′(0)〉+O(h3‖u‖2C3).

Taylor expansion of u yields

u(x) = u(0) + u′(0)x+ 1
2u
′′(0)x2 +O

(
|x|3|u|C3

)
.

Hence, we have

h−1|u(h)− u(0)| = h−1|u′(0)h+ 1
2u
′′(0)h2|2 +O(h3‖u‖2C3)

= |u′(0)|2h+ h2〈u′(0), u′′(0)〉+O(h3‖u‖2C3).

Taking the difference of both approximations yields the desired result.

To estimate the harmonic energy by the discrete harmonic energy of sphere-valued func-
tions we will need the following lemma.

Lemma C.2. Let V = {0, 1}s be the s-dimensional hypercube, E ⊂ V × V the edges of
the hypercube, x ∈ [0, 1]s and for i ∈ {0, 1}s the function φi as defined in Section 4.2.2
and a = (ai)i∈V ∈ (Sn)V . Then we have∣∣∣∣∣∑

i∈V
φi(x)ai

∣∣∣∣∣
2

≥ 1− 1
4
∑

(i,j)∈E
φi,j(x)|ai − aj |2,

where φi,j := φi + φj.

103



Appendices

Proof. We prove the statement by induction on s. The case s = 1 follows from

|ta1+(1−t)a2|2 = t2|a1|2+(1−t)2|a2|2−2t(1−t)〈a1, a2〉 = 1−t(1−t)|a1−a2|2 ≥ 1−1
4 |a1−a2|2,

where we used that t(1 − t) ≤ 1
4 . To prove the induction step s → s + 1 we show that

for all t ∈ [0, 1] and a, b ∈ V we have∣∣∣∣∣∑
i∈V

φi(x)(tai + (1− t)bi)
∣∣∣∣∣
2

≥ 1−1
4
∑

(i,j)∈E
φi,j(x)(t|ai−aj |2+(1−t)|bi−bj |2)−1

4
∑
i∈V

φi(x)|ai−bi|2.

By the triangle and the Cauchy–Schwarz inequality we have with u :=
∑
i∈V φi(x)ai and

v :=
∑
i∈V φi(x)bi that

|v − u|2 =
∣∣∣∣∣∑
i∈V

φi(x)(bi − ai)
∣∣∣∣∣
2

≤
(∑
i∈V

φi(x)
)(∑

i∈V
φi(x)|bi − ai|2

)
=
∑
i∈V

φi(x)|bi − ai|2.

Hence we have using the induction hypothesis and t(1− t) ≤ 1
4 that∣∣∣∣∣∑

i∈V
φi(x)(tai + (1− t)bi)

∣∣∣∣∣
2

= t2|u|2 + (1− t)2|v|2 + 2t(1− t)〈u, v〉
= t|u|2 + (1− t)|v|2 − t(1− t)|u− v|2

≥ 1− 1
4
∑

(i,j)∈E
φi,j(x)(t|ai − aj |2 + (1− t)|bi − bj |2)− 1

4
∑
i∈V

φi(x)|ai − bi|2.
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