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Abstract

We present the on-the-fly model-checker OFMC, a tool that combines two ideas for analyzing
security protocols based on lazy, demand-driven search. The first is the use of lazy data-
types as a simple way of building efficient on-the-fly model-checkers for protocols with very
large, or even infinite, state-spaces. The second is the integration of symbolic techniques
and optimizations for modeling a lazy Dolev-Yao intruder, whose actions are generated in
a demand-driven way. We present both techniques, along with optimizations and proofs of
correctness and completeness.
Our tool is state-of-the-art both in terms of coverage and performance. For example,

it finds all known attacks and discovers a new one in a test-suite of 38 protocols from the
Clark/Jacob library in a few seconds of CPU time for the entire suite. We also give examples
demonstrating how our tool scales to, and finds errors in, large industrial-strength protocols.

1 Introduction

Model-checking, in its broadest sense, concerns developing efficient algorithms to automatically
analyze properties of systems modeled as transition systems. A wide variety of model-checking
approaches have been developed for analyzing security protocols, e.g. [1, 12, 28, 41, 43, 48, 49].
The key challenge they face is that the general security problem is undecidable [29], and even semi-
algorithms, focused on falsification, must come to terms with the enormous branching factor in
the search space resulting from using the standard Dolev-Yao intruder model, where the intruder
can say infinitely many different things at any time point.

In this paper, we show how to combine and extend different methods to build a highly effective
security protocol model-checker. Our starting point is the approach of [7, 8] of using lazy data-types
to model the infinite state-space associated with a protocol. A lazy data-type is one where data-
constructors (e.g. cons for building lists, or node for building trees) build data without evaluating
their arguments; this allows one to represent and compute with infinite data (e.g. streams or
infinite trees), generating arbitrary prefixes of the data on demand. In [7, 8], lazy data-types are
used to build, and compute with, models of security protocols: a protocol and a description of the

∗This work was partially supported by the FET Open Project IST-2001-39252 and the BBW Project 02.0431,
“AVISPA: Automated Validation of Internet Security Protocols and Applications”. A preliminary version of this
paper appeared in the proceedings of ESORICS 2003 [9]; this paper will appear in IJIS.
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powers of an intruder are formalized as an infinite tree. Lazy evaluation is used to decouple the
model from search and heuristics, building the infinite tree on-the-fly, in a demand-driven fashion.

This approach is conceptually and practically attractive as it cleanly separates model construc-
tion, search, and search reduction techniques. Unfortunately, it does not address the problem of
the prolific Dolev-Yao intruder and hence scales poorly. We show how to incorporate the use of
symbolic techniques to substantially reduce this problem. We formalize a technique that signif-
icantly reduces the search space without excluding any attacks. This technique, which we call
the lazy intruder, represents terms symbolically to avoid explicitly enumerating the possible mes-
sages the Dolev-Yao intruder can generate. This is achieved by representing intruder messages
using terms with variables, and storing and manipulating constraints about what terms must be
generated and which terms may be used to generate them.

The lazy intruder is a general, technology-independent technique that can be effectively in-
corporated in different approaches to protocol analysis. Here, we combine it with the lazy
infinite-state approach to build a tool that scales well and has state-of-the-art coverage and per-
formance. In doing so, we see our contributions as follows. First, we extend previous approaches,
e.g. [1, 11, 12, 19, 25, 31, 32, 41], to symbolically representing the intruder and thereby extend the
applicability of the lazy intruder technique to a larger class of protocols and properties. Second,
despite the extensions, we simplify the technique, leading to a simpler proof of its correctness
and completeness. Third, the lazy intruder introduces the need for constraint reduction and this
introduces its own search space. We formalize the integration of the technique into the search
procedure induced by the rewriting approach of our underlying protocol model (this model pro-
vides an infinite-state transition system). Fourth, we also describe how to efficiently implement
the lazy intruder, i.e. how to organize state exploration and constraint reduction. Finally, we
present new ideas for organizing and controlling search based on searching different protocol sce-
narios, corresponding to different “sessions” where different agents assume different roles in the
interleaved protocol executions. Our contribution here is to show how a technique that we call
symbolic session generation can be used to exploit the symbolic representation of the lazy intruder
and thereby avoid enumerating all possible session instances associated with a bounded number
of sessions.

The result is OFMC, an on-the-fly model-checker for security protocol analysis. We have carried
out a large number of experiments to validate our approach. For example, the OFMC tool finds all
known attacks and discovers a new one (on the Yahalom protocol) in a test-suite of 38 protocols
from the Clark/Jacob library [21] in a few seconds of CPU time for the entire suite. Moreover,
we have successfully applied OFMC to a number of large-scale protocols including (subprotocols
of) IKE, SET, and various other industrial protocols currently being standardized by the Internet
Engineering Task Force (IETF). As an example of industrial-scale problem, we describe in this
paper our analysis of the H.530 protocol [33], a protocol developed by Siemens and proposed as
an Internet standard for multimedia communications. We have modeled the protocol in its full
complexity and have detected a replay attack in 1.6 seconds. The weakness is serious enough that
Siemens has revised the protocol [34].

Organization.

The remainder of this paper is organized as follows. In §2 we give the formal model that we use for
protocol analysis. In §3 we briefly review the lazy protocol analysis approach. In §4 we formalize
the lazy intruder and constraint reduction. We discuss the organization of state exploration and
constraint reduction in §5 and present symbolic sessions in §6. We present experimental results
in §7, and we discuss related and future work in §8. The appendix contains the proofs of the
theorems and lemmata given in the body of the paper.
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2 Protocol Specification Languages and Model

The formal model we use for protocol analysis is based on two specification languages: a high-level
language (HLPSL) and a low-level one (IF). These languages have been developed in the context
of the AVISPA project [5].

2.1 The High-Level Protocol Specification Language

The High-Level Protocol Specification Language HLPSL allows users to specify protocols in an
Alice&Bob-style notation. As most of the ideas behind the HLPSL are standard, e.g. [26, 35], we
explain its main features on an example. Fig. 1 shows the HLPSL-specification of the Yahalom
protocol, which aims at distributing a session key KAB to two agents playing in the roles A and B;
to do this, it uses a trusted server playing in the role S. The figure also contains the trace of a new
attack that our tool OFMC has found, which we discuss in §7.2.

The core of the specification is the list of messages exchanged between the agents acting in the
protocol roles. In the ASCII syntax of HLPSL, we denote the encryption of a message M with a
symmetric key K by writing {|M|}K (and we write {M}K for the encryption of a message M with
an asymmetric key K). HLPSL also allows one to specify information that is often left implicit
(or that is explained informally) in protocol declarations. In the identifiers section, for instance,
we declare the types of the identifiers used, which determines their properties. In the example,
we declare a function k (representing a key-table), the new symmetric key KAB, and nonces NA

and NB that are generated during protocol execution. Although not displayed in this example,
HLPSL also supports asymmetric encryption, cryptographic hash-functions, non-atomic keys, and
exponentiation.

In the knowledge section, one specifies which atomic messages an agent playing in a role of the
protocol must initially have in order to execute the protocol in that role. For instance, an agent
playing in the role A must initially know the names of the agents playing in the roles B and S,
as well as the key k(A,S) he shares with S. All atomic messages that are not part of this initial
knowledge, e.g. the nonces NA and NB in the Yahalom example, are fresh, i.e. they are created
during the protocol execution by the agent that first uses them.

So far, the protocol description is generic, i.e. it specifies how an agent playing in a role of the
protocol should behave. Every honest agent is a process that can participate in an unbounded
number of parallel sessions (or session instances), i.e. executions of the protocol, playing in any of
the roles. To constrain search, we can bound this infinite set of possible protocol instantiations by
specifying scenarios, which are finite sets of sessions, i.e. instantiations of roles with agent names,
where session numbers (IDs) are used to distinguish parallel sessions between the same agents.

For instance, the Session instances section of the Yahalom example specifies two sessions:
one where the agents named a, b and s execute the protocol playing in the roles A, B and S

respectively, and one where the three roles are played by i, b and s, where i is the HLPSL
keyword for the intruder. Note that the intruder can not only pose as any other agent, but he
can also participate in a session as a normal agent under his real name. As we will see in §7.2,
the particular scenario given in Fig. 1 is the one that gives rise to the new type-flaw attack on
the Yahalom protocol found by OFMC. Note that the specification of such scenarios by the user
is generally not desirable and, as we will show in §6, symbolic session generation exploits the
symbolic representation of the lazy intruder to avoid enumerating session instances.

Finally, we specify the initial knowledge of the intruder and the security goal(s) that should be
achieved by the protocol, which determines what constitutes an attack. Currently, HLPSL sup-
ports different forms of authentication and secrecy goals. Secrecy of an atomic message, e.g. the
nonce NA or NB in the Yahalom protocol, means that the intruder should not get hold of that mes-
sage (unless he is explicitly allowed to). Authentication is more complex: B authenticates A on M

means that if an agent b playing in the role B has executed his part of a session, then the agent
he believes to play in the role A has really sent to him the value that he has accepted for M, and
this value is not replayed, i.e. b has never accepted the same value before.
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HLPSL-specification:

Protocol Yahalom;

Identifiers

A,B,S: role;

k: function;

KAB: symmetric_key;

NA,NB: nonce;

Knowledge

A: B,S,k(A,S);

B: A,S,k(B,S);

S: A,B,k;

Messages

1. A -> B: A,NA

2. B -> S: B,{|A,NA,NB|}k(B,S)

3. S -> A: {|B,KAB,NA,NB|}k(A,S),{|A,KAB|}k(B,S)

4. A -> B: {|A,KAB|}k(B,S),{|NB|}KAB

Session_instances

[A:a; B:b; S:s]

[A:i; B:b; S:s];

Intruder_knowledge A,B,S;

Goal B authenticates S on KAB

Output of OFMC:

Protocol Yahalom;

Time: 0.02 sec

Violated_goal: B authenticates S on KAB

Attack_trace

1. i -> b : i,NA

2. b -> i(s) : b,{|i,NA,fresh(idNB,sess2)|}k(b,s)

2. i(b) -> s : b,{|i,NA,fresh(idNB,sess2)|}k(b,s)

3. s -> i : {|b,fresh(idKAB,sess2),NA,

fresh(idNB,sess2)|}k(i,s),

{|i,fresh(idKAB,sess2)|}k(b,s)

4. i -> b : {|i,NA,fresh(idNB,sess2)|}kbs,

{|fresh(idNB,sess2)|}(NA,fresh(idNB,sess2))

Figure 1: A HLPSL-specification of the Yahalom protocol and OFMC’s output.
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A translator called HLPSL2IF (which has also been developed in the context of the AVISPA
project) automatically translates a high-level HLPSL-specification into a low-level Intermediate
Format IF based on first-order set rewriting. The IF is a simple but expressive formalism that
is well-suited for the automated analysis of security protocols. OFMC takes IF specifications as
input and we hence base our presentation on IF for concreteness, but the approach and methods
we present in this paper can be applied to other kinds of protocol models like strand spaces or
process calculi [30, 38, 48].

2.2 The Syntax of the Intermediate Format

Definition 1. Let C and V be disjoint countable sets of constants (denoted by lower-case letters)
and variables (denoted by upper-case letters). The syntax of the IF is defined by the following
context-free grammar:

ProtocolDescr ::= (State,Rule∗,AttackRule∗)
Rule ::= LHS⇒RHS

AttackRule ::= LHS
LHS ::= State NegFact Condition
RHS ::= State
State ::= PosFact ( . PosFact)∗

NegFact ::= ( . not(PosFact) )∗

PosFact ::= state(Msg) | msg(Msg) | i knows(Msg) | secret(Msg ,Msg)
Condition ::= ( ∧∧∧ Msg 6= Msg )∗

Msg ::= AtomicMsg | ComposedMsg

ComposedMsg ::= 〈Msg ,Msg〉 | {Msg}Msg | {|Msg |}Msg | Msg(Msg) | Msg−1

AtomicMsg ::= C | V | N | fresh(C,N)

We write L(n) for the context-free language associated to the non-terminal n. We write vars(t) to
denote the set of variables occurring in a (message, fact, or state) term t, and when vars(t) = ∅
we say that t is ground and write ground(t). We straightforwardly extend the functions vars and
ground to the more complex terms and structures defined below.

Notation 1. We employ the following notation: we denote IF constants with lower-case sans-serif,
IF variables with upper-case sans-serif, meta-variables (i.e. variables ranging over message terms)
with lower-case italics, and sets with upper-case italics. 2

An atomic message is a constant, a variable, a natural number, or a fresh constant. The fresh
constants are used to model the creation of random data, e.g. nonces, during a protocol session.
We model each fresh data item by a unique term fresh(c,n), where c is an identifier in the HLPSL
specification and the number n denotes the particular protocol session that c is intended for. For
instance, returning to the example in Fig. 1, the constant sess2 in the fresh terms fresh(idNB,sess2)
and fresh(idKAB,sess2) indicates that the honest agents who created them are those declared in
the second session instance (cf. also §7.2).

Messages in the IF are atomic messages or are composed using pairing 〈m1,m2〉, or the cryp-
tographic operators {m2}m1

and {|m2|}m1
(for asymmetric and symmetric encryption of m2 with

m1), or f(m) (for application of the function f to the message m, representing a hash-function
or key-table), or m−1 (the asymmetric inverse of m).1 Note that by default the IF is untyped
(and the complexity of messages is not bounded), but it can also be generated in a typed variant.
The typed variant leads to smaller search spaces at the cost of abstracting away possible type-flaw
attacks on protocols.

1Some approaches, e.g. [44], denote by k−1 the inverse of a symmetric key k, with k−1 = k. We cannot do this
since in our model messages are untyped and hence the inverse key cannot be determined from the (type of the)
key. In our model, every message has an asymmetric inverse. As we will define, cf. Definition 3, the intruder (as
well as the honest agents) can compose a message from its submessages but cannot generate m−1 from m. The
only ways to obtain the inverse of a key is to know it initially, to receive it in a message, or when it is the private
key of a self-generated asymmetric key-pair.
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Note also that we follow the standard perfect cryptography assumption that the only way to
decrypt an encrypted message is to have the appropriate key. Moreover, like most other ap-
proaches, we employ the free algebra assumption and assume that syntactically different terms
represent different messages, facts, or states. In other words, we do not assume that algebraic
equations hold on terms, e.g. that pairing is associative.2 OFMC provides preliminary support for
algebraic properties of operators like exponentiation, used for instance to model Diffie-Hellman
key-exchange. Principled techniques exist for incorporating equational operator specifications into
search, e.g. [13, 16, 17, 24, 42]; the description of the integration of such techniques is, however,
outside the scope of this paper.

Note too that unlike other models, e.g. [27, 41], we are not bound to a fixed public key
infrastructure where every agent initially has a key-pair and knows the public key of every other
agent. Rather, we can specify protocols where keys are generated, distributed, and revoked.
Moreover, function application provides us with a simple and powerful mechanism to model, for
instance, cryptographic hash-functions and key-tables.

To illustrate how this mechanism works, let f and k range over constants (in the typed model
of type function). As we will see shortly, under the Dolev-Yao model of the intruder that we define,
when the intruder knows the constant f , then he can build the hash-value f(m) for any message
m he knows. However, just knowing f(m) is not enough to recover m. A similar remark applies
for a key-table k of public keys, where every agent a uses k(a) as a public key (so knowing k means

knowing the public key of every known agent) and k(a)
−1

as a private key; this private key is a
message initially known by the corresponding agent, but no agent can construct this term.

Observe that there is no syntactic restriction for the message terms that can be used as the
first argument of the ·(·) operator. Thus, function terms are not treated differently from other
message terms and can, for instance, be transmitted as parts of messages.

The IF contains both positive and negative facts. A (positive) fact represents either the lo-
cal state of an honest agent, a message in transit through the network (i.e. one sent but not
yet received), a message known by the intruder, or a secret message, where secret(m, a) means
that m is a secret and that agent a is allowed to know it. Negative facts allow for the modeling
of a wider range of protocols than with languages based on standard rewrite rules that manip-
ulate only positive facts. For instance, negative facts allow us to express goals that explicitly
require negation, e.g. to state that the intruder does not find out some secret. As a concrete
example, to formalize the violation of the secrecy of a message, we could specify the attack-rule
secret(M,A).i knows(M).not(secret(M, i)), which expresses that the intruder i knows some message
M that is a secret that some agent A is allowed to know but not the intruder. (Attack-rules are
formally defined below.)

A state is a finite set of positive (ground) facts, which we denote as a sequence of positive
facts separated by dots. Note that in our approach we employ set rewriting instead of multiset
rewriting, which is adopted for instance in [19, 20, 26]. Note also that the sets of positive facts
and composed messages (i.e. the context-free languages L(PosFact) and L(ComposedMsg)) can
be easily extended, without affecting the theoretical results that we present below.

To illustrate the benefits of adding negative facts (as well as other fact symbols such as set
membership), consider the Needham-Schroeder public key protocol with a key-server [21]. In a
realistic model of this protocol, an agent should (i) maintain a database of known public keys,
which is shared over all protocol executions that he participates in, and (ii) ask the key-server for
the public key of another agent only if this key is not contained in his database. This situation
can be directly modeled using negation and an additional fact symbol knows pk.

Before we explain the remaining parts of the grammar, let us define some standard notions
(see, e.g., [6]) and their extensions.

Definition 2. A substitution σ is a mapping from V to L(Msg). The domain of σ, denoted
by dom(σ), is the set of variables V ⊆ V such that σ(v) 6= v iff v ∈ V . As we only consider

2In our model, (m−1)
−1

= m is respected while the free algebra assumption is preserved: as no agent, not even

the intruder, can generate m−1 from m, we ensure that (m−1)
−1

is never produced by having two rules for the
analysis of asymmetric encryptions, one for public keys and one for private ones.
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substitutions with finite domains, we represent a substitution σ with dom(σ) = {v1, . . . , vn} by
[v1 7→ σ(v1), . . . , vn 7→ σ(vn)]. The identity substitution id is the substitution with dom(id) = ∅.
We say that a substitution σ is ground, and write ground(σ), if σ(v) is a ground term for all
v ∈ dom(σ). We extend σ to a homomorphism on message terms, facts, and states in the standard
way, and we also write tσ for σ(t).

We say two substitutions σ1 and σ2 are compatible, written σ1 ≈ σ2, if vσ1 = vσ2 for every
v ∈ dom(σ1)∩dom(σ2). The composition of σ1 and σ2 is denoted as σ1σ2. Note that σ1σ2 = σ2σ1

for compatible ground substitutions. For two sets of ground substitutions Σ1 and Σ2, we define
their intersection modulo the different domains as

Σ1 u Σ2 = {σ1σ2 | σ1 ∈ Σ1 ∧ σ2 ∈ Σ2 ∧ σ1 ≈ σ2}.

Since the composition of compatible ground substitutions is associative and commutative, so is the
u operator.

Two terms unify when there exists a substitution, called their unifier, under which they are
equal. Matching is the special case where one of the terms is ground. Since we are working under
the free algebra assumption, two unifiable terms always have a most general unifier (mgu).

Finally, for φ a propositional combination of equalities and for σ a substitution for the free
variables of φ, we define the relation σ |= φ to represent that φ is satisfied by σ in the structure
given by the freely generated term algebra (in our case with the carrier set L(Msg)).

A condition is a conjunction of inequalities of messages. Rules describe state transitions. The
left-hand side (LHS) of a Rule consists of a set of positive facts P , a set of negative facts N ,
and a condition Cond , where vars(P ) ⊇ vars(N) ∪ vars(Cond). As we will formally define below
(Definition 4), a rule is applicable to a state if (i) the positive facts are contained in the state for
some substitution σ of the rule’s variables, (ii) the negative facts under σ are not contained, and
(iii) the condition Cond is satisfied under σ. The right-hand side (RHS) of a rule LHS ⇒ RHS
is just a set of positive facts, where we require that vars(LHS) ⊇ vars(RHS). We will define the
successors of a state S as the states generated by replacing in S the facts that match the positive
facts of the LHS of some applicable rule with the RHS of that rule.

In this paper, we consider only IF rules of the form

msg(m1).state(m2).P1.N1 ∧∧∧ Cond ⇒ state(m3).msg(m4).P2 , (1)

where N1 is a set of negative facts that do not contain i knows or msg facts, P1 and P2 are sets of
positive facts that do not contain state or msg facts, and Cond is a condition, i.e. a conjunction of
inequalities of messages. Moreover, we require that if i knows(m) ∈ P1 then i knows(m) ∈ P2; this
ensures that the intruder knowledge is monotonic, i.e. that the intruder never forgets messages
during transitions.

More specifically, every rule describes a transition of an honest agent, since a state fact appears
in both the LHS and the RHS of the rule. Also, in both sides we have a msg fact representing the
incoming message that the agent expects to receive in order to make the transition (in the LHS)
and the agent’s answer message (in the RHS). The rule corresponding to the initial (respectively,
final) protocol step contains no incoming (respectively, outgoing) message. However, the rule form
(1) is not a restriction here, as one may always insert a dummy message that can be generated
by the intruder. In fact, rules of the form (1) are adequate to describe a large class of protocols,
including all those discussed in §7.

An attack-rule of a protocol description describes the condition under which an attack takes
place. We formalize an attack-rule syntactically and semantically like the LHS of a rule of the
form (1), with the same restriction on the variables described above. That is, an attack-rule
characterizes those states for which a rule with the same LHS is applicable, which we henceforth
call attack-states. Note that we can always introduce dummy message and state facts so that an
attack-rule has the required form (but will refrain from considering dummies in our examples for
simplicity).
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We now conclude our discussion of the syntax of the IF. A protocol description ProtocolDescr
is a triple (I,R,AR), consisting of an initial state I, a set R of rules, and a set AR of attack-rules.
A protocol description constitutes a protocol when the initial state is ground.

Example 1. As an example, when given the description of the Yahalom protocol of Fig. 1, the
HLPSL2IF translator produces an IF file with the following initial state (according to the session
instances and the initial knowledge associated to each role):

state(roleA, step0, sess1, a, b, s, k(a, s)).state(roleB, step0, sess1, a, b, s, k(b, s)).
state(roleS, step0, sess1, a, b, s, k).
state(roleB, step0, sess2, i, b, s, k(b, s)).state(roleS, step0, sess2, i, b, s, k).
i knows(a).i knows(b).i knows(s).i knows(i).i knows(k(i, s)) .

Note that in the state facts we write, for example, roleA to denote the role A of the protocol,
and that, here and in the following, we omit the pairing operator to simplify the notation when
no confusion arises. The first three state facts represent the first declared session between the
agents a, b, and s, followed by two state facts that represent the second declared session between
the intruder i, and the honest agents b and s. Note too that there are only state facts for the
honest agents b and s in this session, as the intruder model we give below subsumes the correct
execution of the protocol steps by the intruder. The fact i knows(k(i, s)) represents that the intruder
has a shared key with the server, which he needs to play in the second session of the protocol.
More generally, when a session instance declares the intruder to play a certain role, then all the
initial knowledge declared for that role is, under the instantiation, added to the initial intruder
knowledge. The second argument of the state facts here indicates the current step number in the
protocol execution (which is initially step0), the third argument is a session identifier which is
inserted by the HLPSL2IF translator to simplify the generation of fresh values.

To illustrate the transition rules of the honest agents, let us consider only those rules that
describe the behavior of an agent in role roleB. In the agent’s first transition, he receives the
initial message from some agent A containing a nonce NA, he generates a fresh value for the nonce
NB, and he sends the appropriate message to the server:

state(roleB, step0,SID,A,B,S,KBS).
msg(A,NA)
⇒
state(roleB, step1,SID,A,B,S,KBS,NA, fresh(idNB,SID)).
msg(B, {|A,NA, fresh(idNB,SID)|}KBS) .

In his second transition, the agent playing in roleB receives the third message of the protocol
from the agent A and checks that the key contained in the first encrypted part, which seemingly
comes from the server, is used to encrypt the nonce NB generated (and stored) by B earlier:

state(roleB, step1,SID,A,B,S,KBS,NA,NB).
msg({|A,KAB|}KBS, {|NB|}KAB)

.not(seen(B,KAB))

⇒
state(roleB, step4,SID,A,B,S,KBS,NA,NB,KAB)

.seen(B,KAB) . (2)

To make the example also cover negation, we have underlined a possible extension of the rule,
which expresses that the honest agent playing in roleB additionally performs a replay check: we
introduce a binary fact symbol seen and we express with the underlined fact in the RHS that an
agent stores all keys he has seen so far (in any session), while with the underlined fact in the LHS
we ensure that he never accepts a key that he has already seen.3

3One might argue that the nonce NB freshly created by the agent playing in roleB already ensures (without such
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Finally, the attack-rule for the specified goal of the Yahalom protocol characterizes the set of
states in which the agent playing in the role roleB has finished the protocol, accepting a certain
key KAB as generated from the server S for communication between A and B, while the server
never issued that key for that purpose:

state(roleB, step4,SID,A,B,S,KBS,NA,NB,KAB).
not(state(roleS, step3,SID′,A,B,S,K,KAB))

This is exactly the attack-rule that fires in the state reached by the attack-trace given in Fig. 1: an
honest agent accepts the pair NA, fresh(idNB,sess2) as the key from the server for communication
with the intruder, although the server never issued this key. Note that this attack-rule is automat-
ically generated by the HLPSL2IF translator for the goal B weakly_authenticates S on KAB,
while the strong authentication goal of Fig. 1 generates an attack-rule that additionally considers
replays. A detailed discussion of various kinds of authentication goals can be found in [37]. 2

2.3 The Dolev-Yao Intruder

We follow Dolev and Yao [27] and consider the standard model of an active intruder who controls
the network but cannot break cryptography. In particular, the intruder can intercept messages and
analyze them if he possesses the corresponding keys for decryption, and he can generate messages
from his knowledge and send them under any agent name.

Definition 3. For a set M of messages, let DY(M) (for Dolev-Yao) be the smallest set closed
under the following generation (G) and analysis (A) rules:

m ∈M
m ∈ DY(M)

Gaxiom ,
m1 ∈ DY(M) m2 ∈ DY(M)

〈m1,m2〉 ∈ DY(M)
Gpair ,

m1 ∈ DY(M) m2 ∈ DY(M)

{m2}m1
∈ DY(M)

Gcrypt ,

m1 ∈ DY(M) m2 ∈ DY(M)

{|m2|}m1
∈ DY(M)

Gscrypt ,

m1 ∈ DY(M) m2 ∈ DY(M)

m1(m2) ∈ DY(M)
Gapply ,

〈m1,m2〉 ∈ DY(M)

mi ∈ DY(M)
Apairi

,
{|m2|}m1

∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
Ascrypt ,

{m2}m1
∈ DY(M) m1

−1 ∈ DY(M)

m2 ∈ DY(M)
Acrypt ,

{m2}m1
−1 ∈ DY(M) m1 ∈ DY(M)

m2 ∈ DY(M)
A−1

crypt .

The generation rules express that the intruder can compose messages from known messages
using pairing, asymmetric and symmetric encryption, and function application. The analy-
sis rules describe how the intruder can decompose messages. Note that no rules are given
that allow the intruder to analyze function applications, for example to recover m from f(m).

a replay-check) the freshness of the session key KAB, as in the final message NB must be encrypted with KAB.
However the replay attack first mentioned in [46] shows that this argumentation is not valid since the message from
the agent playing in roleS for the agent playing in roleB in which KAB is issued does not contain NB. Note that the
attack of [46] is prevented by this replay-check, while the attack given in Fig. 1 still works.
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Moreover, note that this formalization correctly handles non-atomic keys, for instance m ∈
DY({ {|m|}f(k1,k2)

, k1, k2, f }). This is in contrast to other models such as [1, 38, 44, 49] that
only handle atomic keys.

2.4 The Semantics of the Intermediate Format

Using DY, we now define a protocol model for the IF in terms of an infinite-state transition system.
In this definition, we incorporate an optimization that we call step-compression, which is based
on the idea [1, 11, 20, 25, 41] that we can identify the intruder and the network: every message
sent by an honest agent is received by the intruder and every message received by an honest agent
comes from the intruder. More specifically, we compose (or “compress”) several steps: when the
intruder sends a message, an agent reacts to it according to the agent’s rules, and the intruder
intercepts the agent’s answer.

Definition 4. Let r = lhs⇒rhs be a rule of the form (1), i.e.

msg(m1).state(m2).P1.N1 ∧∧∧ Cond ⇒ state(m3).msg(m4).P2 ,

and let P1 be obtained from P1 by removing all i knows facts, i.e.

P1 = P1 \ {f | ∃m. f = i knows(m)} . (3)

We define the applicability of such a rule r by the function applicable that maps a state S and the
left-hand side lhs of r to the set of ground substitutions under which the rule can be applied to the
state:

applicable lhs(S) = {σ |

ground(σ) ∧ dom(σ) = vars(m1) ∪ vars(m2) ∪ vars(P1) ∧ (4)

{m1σ} ∪ {mσ | i knows(m) ∈ P1} ⊆ DY({ m | i knows(m) ∈ S}) ∧ (5)

state(m2σ) ∈ S ∧ P1σ ⊆ S ∧ (6)

(∀f. not(f) ∈ N1 =⇒ fσ /∈ S) ∧ σ |= Cond } . (7)

We can then define the successor function

succR(S) =
⋃

r∈R

stepr(S)

that given a set R of rules of the above form and a state S yields the corresponding set of successor
states by means of the following step function:

steplhs⇒rhs(S) = {S
′ | ∃ σ.

σ ∈ applicable lhs(S) ∧ (8)

S′ = (S \ (state(m2σ) ∪ P1σ)) ∪ state(m3σ) ∪ i knows(m4σ) ∪ P2σ } . (9)

Here and elsewhere, we simplify notation for singleton sets by writing, e.g., state(m2σ) ∪ P1σ for
{state(m2σ)} ∪ P1σ.

The function applicable yields the set of ground substitutions under which a rule can be applied
to a state. In particular, the condition (5) ensures that the message m1 (that is expected by the
honest agent) as well as all messages that appear in i knows facts in P1 can be generated from the
intruder knowledge under σ, where according to (4) σ is a ground substitution for the variables
in the positive facts of the LHS of the rule r. Note that this ensures that each i knows fact in
the LHS of a rule is treated like a message that the intruder has to generate. In particular, the
message to generate is not required to be directly contained in the intruder knowledge, but rather
it is sufficient that the intruder can generate this message from his knowledge. With P1 as defined
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by (3) we refer to all facts in P1 other than i knows facts. The conjuncts (6) ensure that the other
positive facts of the rule appear in the current state under σ, and (7) ensures that none of the
negated facts are contained in the current state under σ, and that the conditions are satisfied
under σ.

The step function implements the step-compression technique described above in that it com-
bines three transitions: the intruder sends a message that is expected by an honest agent, the
honest agent receives the message and sends a reply, and the intruder intercepts this reply and
adds it to his knowledge. In particular, the step function creates the set of successor states of
a state S by identifying the substitutions such that the given rule is applicable (as is done in
condition (8)), and by defining, under such substitutions σ, the successor states S ′ that result by
removing from S the positive facts of the LHS of r and replacing them with the RHS of r (as is
done in condition (9)).

Example 2. As an example, we consider the step performed according to the second (extended)
rule of the Yahalom protocol for roleB, i.e. (2). We have the following instantiation for the meta-
variables in the description of the step-function:

• m1 = {|A,KAB|}KBS, {|NB|}KAB for the incoming message,

• m2 = roleB, . . . ,NB for the message describing the current local state of the agent playing
in roleB,

• m3 = roleB, . . . ,NB,KAB for the message describing the agent’s next state,

• m4 = finished for the reply message, where finished is a dummy message (initially known by
the intruder) to give the rule the required form,

• P1 = ∅,

• N1 = {not(seen(B,KAB))},

• P2 = {seen(B,KAB)}, and

• Cond = true.

Now consider a state S that contains the fact

state(roleB, step1, sess2, i, b, s, k(b, s), na, fresh(idNB,sess2)) ,

where na is a value that the intruder chose earlier. Further, assume that in S the intruder has
received from the server the message

{|b, fresh(idKAB,sess2), na, fresh(idNB,sess2)|}k(i,s),

{|i, fresh(idKAB,sess2)|}k(b,s) .

Let us refer to the fresh values fresh(idNB,sess2) and fresh(idKAB,sess2) as nb and kab for short.
Then the successor states of stepr(S) are determined as follows. Let σ = [SID 7→ sess2,A 7→ i,B 7→
b,S 7→ s,KBS 7→ k(b, s),NA 7→ na,KAB 7→ kab,NB 7→ nb]. Two conditions must be satisfied for
stepr(S) to yield a successor state with this substitution σ. First, the intruder must be able to
generate m1σ, which is

{|i, kab|}k(b,s), {|nb|}kab .

That is, it must be that m1σ ∈ DY({m | i knows(m) ∈ S}). Second, the negative facts under σ
must not be contained in S, i.e. it must be that seen(b, kab) /∈ S. Under these two conditions, the
rule r is applicable under σ since, by assumption,

state(m2σ) = state(roleB, step1, sess2, i, b, s, k(b, s), na, nb) ∈ S ,

11



P1σ = P1σ = ∅ ⊆ S, and Cond = true. S′ is obtained by replacing the matched state fact with
the updated fact

state(m3σ) = state(roleB, step1, sess2, i, b, s, k(b, s), na, nb, kab) ,

as well as P2σ = seen(b, kab). Since the intruder already knows the dummy message m4σ =
finished, the intruder knowledge does not grow. 2

Definition 5. We define the set of reachable states of a protocol (I,R,AR) as reach(I,R) =
⋃

n∈N succnR(I).

The set of reachable states is ground as no state reachable from the initial state I may contain
variables (by the definition of a protocol description and the form of the rules). As the properties
we are interested in are reachability properties, we will sometimes abstract away the details of the
transition system and refer to this set as the ground model of the protocol.

We now introduce a predicate isAttackar(S) that characterizes insecure states: if the attack-
rule ar is applicable at state S, then S is an insecure state.

Definition 6. We define the attack-predicate isAttack ar(S) to be true iff applicablear(S) 6= ∅.
We then say that a protocol (I,R,AR) is secure iff isAttackar(S) is false for all S ∈ reach(I,R)
and all attack-rules ar ∈ AR.

3 The Lazy Infinite-State Approach

In the previous section, we have defined a protocol model for the IF in terms of an infinite-state
transition system. This transition system defines a (computation) tree in the standard way, where
the root is the initial system state and children represent the ways that a state can evolve in one
transition. The tree has infinitely many states since, by the definition of DY, every node has
infinitely many children. It is also of infinite depth, provided we do not bound (and in fact we
cannot recursively bound) the number of protocol sessions. The lazy intruder technique presented
in the next section uses a symbolic representation to solve the problem of infinite branching, while
the lazy infinite-state approach [7, 8] allows us to work with infinitely long branches. As we have
integrated the lazy intruder with this approach, we now briefly summarize the main ideas of [7, 8].4

The key idea behind the lazy infinite-state approach is to explicitly formalize an infinite tree
as an element of a data-type in a lazy programming language. This yields a finite, computable
representation of the model that can be used to generate arbitrary prefixes of the tree on-the-fly,
i.e. in a demand-driven way. One can search for an attack by searching the infinite tree for an
attack-state. Our on-the-fly model-checker OFMC uses iterative deepening to search this infinite
tree. When an attack is found, OFMC returns the attack-trace, i.e. the sequence of exchanged
messages leading to the attack-state (cf. Fig. 1). This yields a semi-decision procedure for protocol
insecurity: our procedure always terminates (at least in principle) when an attack exists. Moreover,
our search procedure terminates for finitely many sessions (e.g. using the approach to bounded
session generation described in §6) when we employ the lazy intruder to handle the infinite set of
messages the intruder can generate.

The lazy approach has several strengths. It separates (both conceptually and structurally)
the semantics of protocols from heuristics and other search reduction procedures, and from search
itself. The semantics is given by a transition system generating an infinite tree, and heuristics
can be seen as tree transducers that take an infinite tree and return one that is, in some way,
smaller or more restricted. The resulting tree is then searched. Although semantics, heuristics,
and search are all formulated independently, lazy evaluation serves to co-routine them together
in an efficient, demand-driven fashion. Moreover, there are efficient compilers for lazy functional
programming languages like Haskell, the language we used to implement OFMC.

4Note that there is no relation between the lazy intruder and the lazy protocol analysis, except that both are
demand-driven (“lazy”) techniques.
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4 The Lazy Intruder

The lazy intruder is an optimization technique that significantly reduces the search tree without
excluding any attacks. This technique uses a symbolic representation to avoid explicitly enumerat-
ing the possible messages that the Dolev-Yao intruder can generate, by storing and manipulating
constraints about what must be generated. The representation is evaluated in a demand-driven
way and hence the intruder is called lazy.

The idea behind the lazy intruder was, to our knowledge, first proposed by [32] and then
subsequently developed by [1, 11, 12, 19, 25, 31, 41]; see [22] for an overview. Our contributions
to the lazy intruder technique are as follows. First, we simplify the technique, which, as we show
in the appendix, also leads to a simpler proof of its correctness and completeness. Second, we
formalize its integration into the search procedure induced by the rewriting approach of the IF
and, on the practical side, we present (in §5) an efficient way to organize and implement the
combination of state exploration and constraint reduction. Third, we extend the technique to ease
the specification and analysis of a larger class of protocols and properties, where we implement
negative facts and conditions in the IF rewrite rules by inequality constraints for the lazy intruder.
Finally, we show how to employ the lazy intruder to solve the problem of instantiating protocols
for particular analysis scenarios (cf. §6).

4.1 Constraints

The Dolev-Yao intruder leads to an enormous branching of the search tree when one näıvely
enumerates all (meaningful) messages that the intruder can send. The lazy intruder technique
exploits the fact that the actual value of certain parts of a message is often irrelevant for the
receiver. Therefore, whenever the receiver will not further analyze the value of a particular message
part, we can postpone during the search the decision about which value the intruder actually
chooses for that part by replacing it with a variable and recording a constraint on which knowledge
the intruder can use to generate the message. We express this information using constraints of
the form from(T, IK ), meaning that T is a set of terms generated by the intruder from his set of
known messages IK (for “intruder knowledge”).

Definition 7. The semantics of a constraint from(T, IK ) is the set of satisfying ground substitu-
tions σ for the variables in the constraint, i.e.

[[from(T, IK )]] = {σ | ground(σ) ∧ ground(Tσ ∪ IKσ) ∧ Tσ ⊆ DY(IKσ)} .

We say that a constraint from(T, IK ) is simple if T ⊆ V, and we then write simple(from(T, IK )).
A constraint set is a finite set of constraints and its semantics is the intersection of the se-

mantics of its elements, i.e., overloading notation, [[{c1, . . . , cn}]] = uni=1[[ci]]. A constraint set C
is satisfiable if [[C]] 6= ∅. A constraint set C is simple if all its constraints are simple, and we then
write simple(C).

Example 3. As an example, consider again the trace of the attack on the Yahalom protocol in
Fig. 1, and let us again refer to the fresh values fresh(idNB,sess2) and fresh(idKAB,sess2) as nb

and kab for short. The intruder first chooses a nonce NA for communication with b. Then, the
intruder sees both the message from b to s, namely {|i,NA, nb|}k(b,s), and the message from s to

i, namely {|b, kab,NA, nb|}k(i,s), {|i, kab|}k(b,s). Hence, the following constraints arise from the steps
taken in the trace:

{ from(NA, IK 0) ,
from(〈{|i,KAB|}k(b,s),{|nb|}KAB〉 ,

IK 0 ∪ {|i,NA, nb|}k(b,s) ∪ {|b, kab,NA, nb|}k(i,s),{|i, kab|}k(b,s)) } ,

where KAB is a fresh variable and IK 0 is the initial intruder knowledge, which includes all agent
names and the intruder’s shared key with the server, k(i, s). 2
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from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from(〈m1,m2〉 ∪ T, IK ) ∪ C, σ
Gl

pair ,

from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from({|m2|}m1
∪ T, IK ) ∪ C, σ

Gl
scrypt ,

from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from({m2}m1
∪ T, IK ) ∪ C, σ

Gl
crypt ,

from(m1 ∪ m2 ∪ T, IK ) ∪ C, σ

from(m1(m2) ∪ T, IK ) ∪ C, σ
Gl

apply ,

(from(T,m2 ∪ IK ) ∪ C)τ, στ

from(m1 ∪ T,m2 ∪ IK ) ∪ C, σ
Gl

unif (τ = mgu(m1,m2), m1 /∈ V) ,

from(T,m1 ∪ m2 ∪ 〈m1,m2〉 ∪ IK ) ∪ C, σ

from(T, 〈m1,m2〉 ∪ IK ) ∪ C, σ
Al

pair ({m1,m2} \ IK 6= ∅) ,

from(m1, IK ) ∪ from(T,m2 ∪ {|m2|}m1
∪ IK ) ∪ C, σ

from(T, {|m2|}m1
∪ IK ) ∪ C, σ

Al
scrypt (m2 /∈ IK ) ,

from(m1
−1, IK ) ∪ from(T,m2 ∪ {m2}m1

∪ IK ) ∪ C, σ

from(T, {m2}m1
∪ IK ) ∪ C, σ

Al
crypt (m2 /∈ IK ) ,

from(m1, IK ) ∪ from(T,m2 ∪ {m2}m1
∪ IK ) ∪ C, σ

from(T, {m2}m1
−1 ∪ IK ) ∪ C, σ

Al
crypt−1 (m2 /∈ IK ) .

Figure 2: Lazy intruder: constraint reduction rules.

4.2 Constraint Reduction

The core of the lazy intruder technique is to reduce a given constraint set into an equivalent one
that is either unsatisfiable or simple. (As we show in Lemma 3, every simple constraint set is
satisfiable.) This reduction is performed using the generation and analysis rules of Fig. 2, which
describe possible transformations of the constraint set. Afterwards, we show that this reduction
does not change the set of solutions, roughly speaking [[C]] = [[Red(C)]], for a relevant class of
constraints C.

A generation or analysis rule r has the form

C ′, σ′

C, σ
r ,

with C and C ′ constraint sets and σ and σ′ substitutions. It expresses that (C ′, σ′) can be derived
from (C, σ), which we denote by (C, σ) `r (C ′, σ′). That is, the constraint reduction rules are
applied backwards. Note that σ′ extends σ in all rules. As a consequence, we will be able to
apply the substitutions generated during the reduction of C also to the facts of a lazy state, as we
discuss below.

The generation rules Gl
pair, G

l
scrypt, G

l
crypt, and Gl

apply express that the constraint stating
that the intruder can generate a message composed from submessages m1 and m2 (using pairing,
symmetric and asymmetric encryption, and function application, respectively) can be replaced by
the constraint stating that he can generate both m1 and m2. The rule Gl

unif expresses that the
intruder can use a message m2 from his knowledge provided this message can be unified with the
message m1 that he has to generate (note that both the terms to be generated and the terms in
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the intruder knowledge may contain variables). The reason that the intruder is “lazy” stems from
the restriction that the Gl

unif rule cannot be applied when the term to be generated is a variable:
how the intruder chooses to instantiate this variable is immaterial at this point in the search and
hence we postpone this decision.

The analysis of the intruder knowledge is more complex for the lazy intruder than in the
ground model since messages may now contain variables. In particular, if the key term of an
encrypted message contains a variable, then whether or not the intruder can decrypt this message
is determined by the substitution we (later) choose for this variable. We solve this problem by
using the rule Al

scrypt, where the variable in the key term can be instantiated during subsequent
constraint reduction.5 More specifically, for a message {|m2|}m1

that the intruder attempts to
decrypt, we add the content m2 to the intruder knowledge of the respective constraint (as if
the check was already successful) and add a new constraint expressing that the symmetric key
m1 necessary for decryption must be generated from the same knowledge. Hence, if we attempt
to decrypt a message that cannot be decrypted using the corresponding intruder knowledge, we
obtain an unsatisfiable constraint set.

Note that we also make the restriction that the message {|m2|}m1
to be analyzed may not be

used in the generation of the key; this is in contrast to similar approaches that can also handle
non-atomic symmetric keys, such as [41, 20]. In our notation, their decryption rule is

from(m1, {|m2|}m1

∗ ∪ IK ) ∪ from(T,m2 ∪ {|m2|}m1
∪ IK ) ∪ C, σ

from(T, {|m2|}m1
∪ IK ) ∪ C, σ

Al
scrypt

∗ .

This rule is the same as ours, except that the constraint governing the derivation of the key m1

additionally contains the message {|m2|}m1
marked with a ∗. This marking denotes that {|m2|}m1

may not be further analyzed (as there is already an analysis of this term in progress). Without
this mark, the approaches of [41, 20] would not terminate since, in the derivation of m1, one could
infinitely often decrypt {|m2|}m1

, repeatedly producing the same constraint. Although the mark
ensures termination, it gives the rule a procedural aspect, making it less declarative.

As formally justified in the proof of our completeness theorem (the proof of Theorem 1 in the
appendix), our rule Al

scrypt, which omits marking entirely, does not exclude any solution. The
intuition behind this is as follows: the only case in which the marked term {|m2|}m1

is actually
used to derive m1 is when there is another term t ∈ IK that is encrypted with the term {|m2|}m1

as a key. However, in this case, we could have first performed the analysis of t and hence need not
perform it during the derivation of m1. In general, if one performs the analysis steps in the order
that they depend on each other, no analysis is needed in the constraints that are introduced by
the analysis rules, in this case the from(m1, ·) constraint.

Note that our rule is not only simpler and more declarative, it also considerably simplifies the
completeness proof. For example, the respective completeness proof in [41] must split into one
part with encryption hiding (as they call the marked terms) and one without.

Definition 8. Let ` denote the reflexive and transitive closure of the union of the derivation
relations `r for every rule r of Fig. 2. The set of pairs of simple constraint sets and substitutions
derivable from (C, id) is Red(C) = {(C ′, σ) | ((C, id) ` (C ′, σ)) ∧ simple(C ′)}, where we define
[[Red(C)]] = {σσ′ | ∃C ′. (C ′, σ) ∈ Red(C) ∧ σ′ ∈ [[C ′]]} .

Example 4. Consider the reductions performed on the constraints of the Yahalom example above.
First, the intruder can perform an analysis step on the intruder knowledge IK , since a part of the
message sent by the server s is encrypted by the shared key k(i, s) of i and s. Applying the rules
Al

pair and Al
scrypt to the second constraint results in the following constraint set:

{ from(NA, IK 0) ,
from(k(i, s), IK 0 ∪ {|i,NA, nb|}k(b,s) ∪ {|i, kab|}k(b,s)) ,

from(〈{|i,KAB|}k(b,s),{|nb|}KAB〉,

IK 0 ∪ {|i,NA, nb|}k(b,s) ∪ {|i, kab|}k(b,s) ∪ kab ∪ NA ∪ nb) } .

5This solution also takes care of non-atomic keys since we do not require that the key is contained in the intruder
knowledge but only that it can be generated from the intruder knowledge, e.g. by composing known messages.
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In the following, we will refer to the intruder knowledge of the third constraint in the above
set as IK . The second of these constraints is directly solvable using the Gl

unif rule since k(i, s) ∈
IK 0. Applying Gl

pair to the third constraint replaces the pair in the terms to generate with its
components:

{ from(NA, IK 0) ,
from({|i,KAB|}k(b,s) ∪ {|nb|}KAB, IK ) } ,

where, here and in the following, we omit the constraints of the form from(∅, IK ).
For the first message that the intruder has to generate in the second constraint, i.e. {|i,KAB|}k(b,s),

there are two possibilities: using the Gl
unif rule, this message can be unified either with the mes-

sage {|i,NA, nb|}k(b,s) sent earlier by b (where the unifier is KAB 7→ 〈NA,nb〉), or with the original

message {|i, kab|}k(b,s) from the server (where the unifier is KAB 7→ kab). The second possibility

reflects the “correct” protocol execution (and the remaining constraint is easily solved in this
case). Let us thus consider the other possibility, which leads to the attack displayed in Fig. 1,
i.e. KAB 7→ 〈NA,nb〉 so that:

{ from(NA, IK 0) ,
from({|nb|}〈NA,nb〉, IK ) } .

These constraints can be solved by first applying the rules Gl
crypt and Gl

pair, resulting in

{ from(NA, IK 0) ,
from(NA ∪ nb, IK ) } ,

and then eliminating nb using the Gl
unif rule (as nb ∈ IK ). The remaining constraint set is simple.

To summarize, there are two simple constraint sets corresponding to the original constraint set
in this example: one corresponding to the correct execution of the protocol, the other representing
an attack. 2

4.3 Properties of Red

By Theorem 1 below, the Red function is correct, complete, and recursively computable (since ` is
finitely branching). To show completeness, we restrict our attention to a special form of constraint
sets, called well-formed constraint sets. This is without loss of generality as all states reachable in
the lazy intruder setting obey this restriction (cf. Lemma 4).

Definition 9. A constraint set C is well-formed if one can index the constraints,

C = {from(T1, IK 1), . . . , from(Tn, IK n}) ,

so that the following conditions hold:

IK i ⊆ IK j for i ≤ j , (10)

vars(IK i) ⊆
i−1
⋃

j=1

vars(Tj) . (11)

Intuitively, (10) requires that the intruder knowledge increases monotonically, and (11) requires
that every variable that appears in terms known by the intruder is part of a message that the
intruder created earlier. Said another way, variables only “originate” from the intruder.

Note that the analysis rules of the lazy intruder can destroy property (10), as a message
obtained by an analysis rule is not necessarily contained in the subsequent (i.e. of higher index)
intruder knowledge sets. However, as we show in the proof of Theorem 1 given in the appendix,
there is a straightforward procedure that transforms every simple constraint set obtained by Red
into an equivalent, well-formed, simple one.

Theorem 1. Let C be a well-formed constraint set. Red(C) is finite and ` is well-founded.
Moreover, [[C]] = [[Red(C)]], i.e. Red(C) is correct and complete.
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The intuition behind this theorem is that with every reduction step the constraints become
simpler in some sense, and thus ` is well-founded and Red(C) is finite. Correctness, i.e. [[C]] ⊇
[[Red(C)]], holds as no rule application adds solutions to the constraint set. Completeness, i.e. [[C]] ⊆
[[Red(C)]], holds as if a solution σ is allowed by the constraint set (i.e. σ ∈ [[C]]), then we can either
find an applicable rule such that the resulting constraint set C ′ still supports σ (i.e. σ ∈ [[C ′]]) or
C ′ is already simple. Since ` is well-founded, after finitely many applications of rules support-
ing σ, the resulting constraint set C ′′ must be simple. Thus if σ ∈ [[C]] then there is a simple
C ′′ ∈ Red(C) such that σ ∈ [[C ′′]].

4.4 Lazy Intruder Reachability

We describe now the integration of constraint reduction into the search procedure for reachable
states. The space of lazy states consists of states that may contain variables (as opposed to the
ground model where all reachable states are ground) and that are associated with a set of from
constraints as well as a collection of inequalities. The inequalities are used to handle negative
facts and conditions in the context of the lazy intruder. We require that the inequalities are
given as a conjunction of disjunctions of inequalities between terms. We will use the inequalities
to rule out certain unifications, for example to express that both the substitutions σ = [v1 7→
t1, v2 7→ t2] and τ = [v1 7→ t3] are excluded in a certain state, we use the inequality constraint
(v1 6= t1∨∨∨v2 6= t2) ∧∧∧ (v1 6= t3). Note that we write ∨∨∨ and ∧∧∧ to avoid confusion with the respective
meta-connectives ∨ and ∧.

A lazy state represents the set of ground states that can be obtained by instantiating the
variables with ground messages so that all associated constraints are satisfied.

Definition 10. A lazy state is a triple (P,C,N), where P is a sequence of (not necessarily ground)
positive facts, C is a constraint set, and N is a conjunction of disjunctions of inequalities between
terms. The semantics of a lazy state is [[(P,C,N)]] = {Pσ | σ ∈ [[C]] ∧ σ |= N}.

Let freshvarsS(r) be a rule obtained from the rule r by renaming the variables in r with respect
to the lazy state S = (P,C,N) so that vars(S) and vars(freshvarsS(r)) are disjoint. As in the
ground case, let r = lhs⇒rhs be a rule of the form (1), i.e.

msg(m1).state(m2).P1.N1 ∧∧∧ Cond ⇒ state(m3).msg(m4).P2 ,

and let P1 be obtained from P1 by removing all i knows facts, i.e.

P1 = P1 \ {f | ∃m. f = i knows(m)} . (12)

We can then define the applicability of such a rule r to a lazy state (P,C,N) by the function
applicable l that maps (P,C,N) and the left-hand side lhs of r to a set of substitutions under which
the rule can be applied to the state:

applicable llhs(P,C,N) =
{

(σ,C ′, N ′) |

dom(σ) ⊆ vars(m1) ∪ vars(m2) ∪ vars(P1) ∪ vars(P,C,N) ∧

state(m2σ) ∈ Pσ ∧ P1σ ⊆ Pσ ∧ (13)

C ′ = (C ∪

from(m1 ∪ {m | i knows(m) ∈ P1}, {i | i knows(i) ∈ P}))σ ∧ (14)

N ′ = Nσ ∧∧∧
∧∧∧

φ∈subCont(N1σ,Pσ) φ∧∧∧ Cond σ
}

(15)

where

subCont(N,P ) =
{

φ | ∃ t, t′, v1, . . . , vn, t1, . . . , tn.

not(t) ∈ N ∧ t′ ∈ P ∧ mgu(t, t′) = [v1 7→ t1, . . . , vn 7→ tn] ∧

φ =
∨∨∨

n
i=1 vi 6= ti

}

.
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We can then define the lazy successor function

succlR(S) =
⋃

r∈R

steplfreshvarsS(r)(S)

that maps a set R of rules of the form (1) and a lazy state S = (P,C,N) to a set of lazy states by
means of the following lazy step function:

steplr(P,C,N) = { (P ′, C ′, N ′) | ∃ σ.

(σ,C ′, N ′) ∈ applicable llhs(P,C,N) ∧ (16)

P ′ = (Pσ \ (state(m2σ) ∪ P1σ)) ∪ state(m3σ) ∪ i knows(m4σ) ∪

P2σ } . (17)

The function applicable l is the “lazy equivalent” of the ground applicable function: given a
lazy state and the LHS of a rule of the form (1), applicable l yields the set of triples of substi-
tutions, constraint sets, and inequalities such that the following three conditions are satisfied.
Condition (13) is similar to the first two conjuncts in condition (7) in the ground model, where
the substitution is now applied also to the set of positive facts in the state (instead of matching,
we now perform unification). The constraint in condition (14) expresses that both the message m1

and i knows facts of the positive facts of the LHS of the rule r must be generated by the intruder
from his current knowledge. Condition (15) states that the inequalities are conjoined with the
inequalities of the rule and with the conjunction of all formulae that subCont(N1σ, Pσ) yields.
The name subCont represents that this function produces a formula that excludes those most
general substitutions under which the given negative facts are contained in the given state. More
concretely, for a set N of negative facts and a set P of positive facts, subCont(N,P ) generates a
disjunction of inequalities that excludes all unifiers between two positive facts t and t′ such that
not(t) ∈ N and t′ ∈ P . Note that in the special case that t = t′ we obtain the solution σ = [], and,
as is standard, we define ∨∨∨0

i=1 φ to be false for any φ. Hence, subCont(not(f) ∪ N, f ∪ P ) = false,
for any fact f . Also N ′ is conjoined with the inequalities of the rule under σ. Note that unlike
in the ground model, we cannot directly check here if the condition is satisfied since it is not
necessarily a ground term; instead, we store this constraint.

Similar to the successor function of the ground model, the lazy successor function also performs
step-compression, by exploiting the lazy step function step l (where, in contrast to the ground case,
we rename the variables of the rule to avoid clashes with the variables that may appear in the
lazy state). The lazy step function step l creates the set of lazy successor states of a lazy state
(P,C,N) by first using the applicable l function to identify triples consisting of the new constraints
C ′, the new inequalities N ′, and a substitution σ such that the given rule is applicable (as is done
in condition (16)), and then using this σ to describe the positive facts P ′ in the successor state,
which result by removing the positive LHS facts from P (under σ) and adding the RHS facts.

Note that the lazy applicability and step functions do not check the satisfiability of the gen-
erated constraints and inequalities. This is because we do not want to prescribe, as part of the
formalism, whether or not constraints are directly reduced after every transition. Instead, we leave
this decision to the search strategy, discussed in §5.

Example 5. We return to our Yahalom example to contrast the lazy successor function step l with
the ground successor function step. The major difference is that we now start with a symbolic
state (P,C,N) where S ∈ [[(P,C,N)]] for the state S introduced in Example 4. We can obtain
such a symbolic state, occurring in the analysis of the Yahalom protocol, by replacing in S the
value na (whatever the agent playing in roleB received) with the variable NA (this yields the set
P of positive symbolic facts) and the constraint set C = {from(NA, IK 0)} representing that the
intruder generated this value NA earlier.

The substitution taken in the step l function thus differs from the substitution taken in the
ground case step by not substituting values for NA and for KAB. Note that the value of KAB is
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not determined by the rule since the agent playing in roleB accepts any value whenever he receives
messages of the proper format. For instance,

m1σ = {|i,KAB|}k(b,s), {|NB|}KAB .

Another difference is that the step l function does not “check” that the intruder can generate
the messages in question (in this case m1σ). Instead, it adds an appropriate constraint to the
constraint store (in this case C ′ = C∪ from(m1σ, IK ), where IK is the set of messages m for which
i knows(m) ∈ P ). If there is no solution for this constraint, then the semantics of the successor
state (P ′, C ′, N ′) is empty.

Similarly, the negative facts are not directly evaluated. Suppose, for instance, that the set
P contains the fact seen(b, kab). Then the new conjunctions added to N by subCont(N1σ, Pσ)
(where N1σ is the condition not(seen(b,KAB))) entail the inequality KAB 6= kab. Intuitively, the
newly received key must differ from all keys already in the database of seen keys and this check
is done as soon as the constraint set is reduced, possibly leading to substitutions for the variable
KAB.

Finally, in the successor state (P ′, C ′, N ′) we have the updated state fact for b, containing now
both the variables NA and KAB, and the (non-simple) constraint set C ′ as described above. 2

Definition 11. We define the set of reachable lazy states of a protocol (I,R,AR) as reach l(I,R) =
⋃

n∈N (succlR)
n
(I, ∅, ∅).

We also call reach l(I,R) the lazy intruder model of the protocol (I,R,AR), or the lazy model
for short.

As we show in the appendix, the lazy model is equivalent to the ground model, in the sense
that they both represent the same set of reachable states.

Lemma 1. reach(I,R) = ∪(P,C,N)∈reachl(I,R)[[(P,C,N)]] for every initial state I and every set R
of rules of the form (1).

Recall that we have defined that a protocol is secure iff isAttack ar(S) is false for all reachable
ground states S and ar ∈ AR. A similar check suffices in the lazy intruder model, where we
rename the variables of the attack-rule as for the lazy successor function in Definition 10 in order
to avoid clashes.

Definition 12. For a lazy state (P,C,N) and an attack-rule ar, we define the lazy attack-predicate
isAttack lar (P,C,N) to be true iff [[(Pσ,C ′, N ′)]] 6= ∅ for some (σ,C ′, N ′) ∈ applicable lar′(P,C,N)
with ar′ = freshvars(P,C,N)(ar).

If isAttack l is true for a reachable lazy state (P,C,N), then (P,C,N) represents an attack-
state:

Lemma 2. For all lazy states (P,C,N) and all attack-rules ar, the predicate isAttack lar(P,C,N)
holds iff isAttackar(S) holds for some represented ground state S ∈ [[(P,C,N)]].

We thus have the following theorem, proven in the appendix.

Theorem 2. A protocol (I,R,AR) is secure iff isAttack lar(P,C,N) is false for all attack-rules
ar ∈ AR and all reachable lazy states (P,C,N) ∈ reach l(I,R).

Using the above results, we now show how the lazy intruder allows us to build an effective
decision procedure for protocol (in)security for a bounded number of sessions with unbounded
message complexity, and a semi-decision procedure for protocol insecurity for an unbounded num-
ber of sessions. To this end, we have to tackle three problems.

First, the stepl function may return infinitely many successors, as there can be infinitely many
unifiers σ for the positive facts of the rules with a state. However, as we follow the free algebra
assumption on the message terms, two unifiable terms always have a unique mgu, and we can,
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without loss of generality, represent only that unifier. Note also that there are always finitely
many mgu’s as the set of rules is finite and a lazy state contains finitely many facts.

Second, we must represent the reachable states. The lazy infinite-state approach provides a
straightforward solution to this problem: we represent the reachable states as the tree generated
using the lazy intruder successor function. For an unbounded number of sessions, this tree is
infinitely deep, but using lazy data-types we can compute with a finite representation of it. In
particular, we can apply the lazy attack-predicate as a filter on this tree to obtain the lazy attack-
states.

Third, we must check whether one of these lazy attack-states is satisfiable, i.e. represents a
possible attack. (We will see that this check can also be applied as a filter on the tree.) Constraint
reduction is the key to this task. By Theorem 1, we know that, for a well-formed constraint set C,
constraint reduction produces a set of simple constraint sets that together have the same semantics
as C. The following lemma shows that a lazy state with a simple constraint set and a satisfiable
collection of inequalities is always satisfiable.

Lemma 3. Let (P,C,N) be a lazy state where C is simple and N is satisfiable, i.e. there is a σ
such that σ |= N . Then [[(P,C,N)]] 6= ∅.

The proof given in the appendix is based on the observation that a simple constraint set with
inequalities is always satisfiable as the intruder can always generate sufficiently many different
messages. This is the intuition why inequalities can be so easily integrated into our lazy model.

From this lemma we can conclude the following for a well-formed constraint set C and a
collection of inequalities N . If there is at least one solution (C ′, τ) ∈ Red(C) and Nτ is satisfiable,
then [[(P,N,C)]] 6= ∅, since C ′ is simple and [[C ′]] ⊆ [[C]], by Theorem 1. Otherwise, if Red(C) = ∅
or if N is unsatisfiable, then [[(P,C,N)]] = ∅, also by Theorem 1.

So, for a reachable lazy state (P,C,N) we can decide if [[(P,C,N)]] is empty, as long as C
is well-formed. To obtain simple constraint sets, we call Red, which only applies to well-formed
constraint sets. It thus remains to show that all constraint sets of reachable lazy states are well-
formed. This follows from the way that new constraints are generated during the step l transitions.

Lemma 4. For a protocol (I,R,AR), if (P,C,N) ∈ reach l(I,R) then C is well-formed.

We can now put all the pieces together to obtain an effective procedure for checking whether
a protocol is secure: we generate reachable lazy states and filter them both for attack-states and
for constraint satisfiability. We next describe how to implement this procedure in an efficient way.

5 Organizing State Exploration and Constraint Reduction

When implementing the lazy intruder, we are faced with two design decisions: (i) in which order
to apply the two “filters” mentioned above, and (ii) how to realize constraint reduction.

With respect to (i), note that the definition of reachable lazy states does not prescribe when
Red should be called; Red is only used to determine if a constraint set is satisfiable. OFMC applies
Red after each transition to check if the constraints are still satisfiable. This allows us to eliminate
from the search all states with unsatisfiable constraint sets, as the successors of such states will
again have unsatisfiable constraint sets. We also extend this idea to checking the inequalities
and remove states with unsatisfiable inequalities. In the lazy infinite-state approach, this can be
realized simply by swapping the order in which the “filters” are applied, i.e. the tree of reachable
lazy states is first filtered for satisfiable lazy states (using Red), thereby pruning several subtrees,
and then for attack-states (using isAttack l). Note that Red can lead to case splits if there are
several solutions for the given constraint set; in this case, to avoid additional branching in the
search tree, one can continue the search with the original constraint set.

With respect to (ii), note that the question of how to reduce constraints (in particular, how
to analyze the intruder knowledge) is often neglected in other presentations of symbolic intruder
approaches. One solution is to proceed on demand: a message in the intruder knowledge is analyzed
iff the result of this analysis can be unified with a message the intruder has to generate. We adopt

20



a more efficient solution. We apply the analysis rules to every constraint until a fixed-point is
reached, i.e. no rule produces additional knowledge. The result is that the intruder knowledge is
“normalized” with respect to the analysis rules. As a consequence, we need not further consider
analysis rules during the reduction of the constraints. This has the advantage that to check if the
Gl

unif rule is applicable to a message m that the intruder has to generate, we must simply check
if in the (analyzed) intruder knowledge some message appears that can be unified with m. In
contrast, with analysis on demand it is necessary in this case to check if a unifiable message may
be obtained through analysis.

However, when normalizing the intruder knowledge, we must take into account that the analysis
may produce substitutions. Every substitution restricts the set of possible solutions and in this
case the restriction is only necessary if the respective decrypted message content is actually used
later.6 Our solution is that when an analysis step is possible only under a substitution σ, then we
perform a case split. In one case we apply σ and perform the analysis step, and in the other case
we do not perform the analysis step and exclude the substitution σ to prevent repeated application
of the same case split to this case. Excluding a substitution σ = {(v1, t1), . . . , (vn, tn)} is achieved
by conjoining the disjunction of the inequalities

v1 6= t1 ∨∨∨ . . .∨∨∨ vn 6= tn

to the constraint set.
Note that a demand-driven analysis would perform such a case split only if the analyzed term

is actually used. However, our strategy is often more efficient as it does not require compli-
cated caching strategies, and experience shows that most case splits during normalization analysis
distinguish states that must also be considered by demand-driven analysis.

6 Symbolic Sessions

The lazy approach to model-checking security protocols described above allows one to work even
with an unbounded number of sessions. However, in practice it is often advantageous to organize
and control search by considering (and searching) different scenarios under which a protocol should
be checked, corresponding to different sessions where different agents assume different roles in the
interleaved protocol executions. In this section, we consider several alternatives of increasing
sophistication and power: (i) manual session specification, which is common in many tools, e.g. in
previous versions of HLPSL and OFMC [2] or CAPSL/CIL [26], (ii) automatic session generation,
which has been developed in [14], and finally (iii) our new approach based on symbolic sessions.

6.1 Manual Session Specification

The first alternative is that the user explicitly describes the scenario under which the protocol
should be checked using OFMC. This may be done by specifying a finite list of instantiations of
the roles of the protocol with agent names, where i denotes the intruder and all other agents (a,
b, ...) are honest. For example, in a protocol with roles A and B (in the notation of the HLPSL,
which correspond to roleA and roleB in the notation of the IF) one might specify the following
instances:

[ A:a, B:b ]

[ A:a, B:b ]

[ A:b, B:i ] .

6As an example, suppose that the intruder wants to analyze the message {|{|m|}k|}{|M|}k
, where the variable M

represents a message the intruder generated earlier, and that he already knows the message {|m|}k. Obviously the
new constraint expressing that the key term can be derived from the rest of the knowledge, from({|M|}k, {|m|}k),
is satisfiable, unifying M = m. The point is that the result of the decryption does not give the intruder any new
information (he already knows {|m|}k). Hence, by unifying M = m we unnecessarily limit the possible messages the
intruder could have said.
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This describes a scenario consisting of three parallel sessions, two between the honest agents a

and b, and one between b and the intruder. Recall that the intruder can always send messages
under any identity; however, a session instance between an honest agent and the intruder explicitly
models an honest agent who runs a protocol with a dishonest or corrupted agent.7

The formal meaning of such a scenario is defined by the translation to the IF that is performed
by the HLPSL2IF translator. In the IF, the initial state determines the scenario to be explored:
every state fact represents an honest agent who is willing to perform one run of the protocol. This
is because every rule in the IF contains exactly one state fact both on the left-hand side and on
the right-hand side, so that the number of agent facts is the same in all reachable states. A state
fact of the initial state thus corresponds to the initial node of a strand in a strand space model or
an agent process in a process calculus model; see, e.g., [30, 38, 48] as well the discussions in §8.8

Given a protocol with r roles in HLPSL, for every specified session, the HLPSL2IF translator
generates r state facts in the initial state of the resulting IF files, one fact for each role that contains
the agent names of the respective session instance. For example, for the instances specified above,
the initial state contains the facts

state(roleA, step0, sess1, a, b).state(roleB, step0, sess1, b, a).
state(roleA, step0, sess2, a, b).state(roleB, step0, sess2, b, a).
state(roleA, step0, sess3, b, i).state(roleB, step0, sess3, i, b) ,

where we again omitted the pairing operator to simplify the notation. Every pair of state facts
contains a unique identifier sessj. In our set rewriting approach, this allows us to specify multiple
parallel sessions between the same agents (in the example, the sessions sess1 and sess2).

The last state fact, state(roleB, step0, sess3, i, b), represents that the intruder can execute the
protocol in the role roleB with b in the role roleA. This and other state facts for the intruder are
actually not necessary under the Dolev-Yao intruder model since an intruder can always execute a
protocol in the intended way under his own, real name. Indeed, the HLPSL2IF translator checks
that the HLPSL specification of the protocol is executable in the sense that, given the required
initial knowledge, every agent can construct the messages he is supposed to, and this ability is of
course subsumed by the abilities of the Dolev-Yao intruder.

Manual session instantiation constitutes a basic mechanism for specifying protocol analysis
scenarios. However, it is unsatisfactory that the user must specify instances manually. In practice,
to avoid state-space explosion due to parallelism, it is desirable to iterate through many scenarios,
with differing role instances. Support for searching among instances is called for here.

6.2 Automatic Session Generation

The second alternative is to automatically generate scenarios. This may be accomplished, for a
given number n of sessions and a set of roles, by generating all scenarios with n session instances
of the roles up to isomorphy, i.e. renaming of the honest agents and re-ordering the list of sessions
(see [14]). OFMC can then analyze the protocol for each of the scenarios generated this way.
However, even for a small number n, the number of scenarios to be considered is enormous.

6.3 Symbolic Session Generation

One can interpret automatic session generation as a kind of parameter search: the protocol model
is parametrized over a scenario and we can explore the values of this parameter (for a given upper
bound). We now introduce a refinement of this idea that we use in OFMC. Namely, we improve
upon this approach by letting the lazy intruder take care of sessions. This is possible as there is no

7This also reflects that we do not distinguish between different intruders and corrupted parties, but assume that
they all work together and can thus be merged into one intruder.

8We assume here that the rules of an IF protocol specification ensure that every state fact can be involved only
in a bounded number of transitions. This assumption holds, for instance, for all protocols that can be specified in
HLPSL, but it excludes streaming and group protocols (unless one bounds the length of the stream or the size of
the group).
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essential difference between choosing an agent from a limited set of possibilities when generating
sessions and using the lazy intruder to choose a message from his knowledge during the normal
search.

More in detail, we take advantage of the symbolic representation of the lazy intruder to avoid
enumerating all possible session instances (for a given bound on the number of sessions). To do
this, we instantiate the roles with variables rather than with constant agent names. The variables
are then instantiated by unification during search, either to constant agent names or to other
variables. For instance, for n = 3 and a protocol with two roles roleA and roleB, the lazy initial
state contains

state(roleA, step0, sess1,A1,B1).state(roleB, step0, sess1,B2,A2).
state(roleA, step0, sess2,A3,B3).state(roleB, step0, sess2,B4,A4).
state(roleA, step0, sess3,A5,B5).state(roleB, step0, sess3,B6,A6)

A1 6= i∧∧∧ B2 6= i∧∧∧ A3 6= i∧∧∧ B4 6= i∧∧∧ A5 6= i∧∧∧ B6 6= i .

Note that, following our previous discussion, we add inequalities that explicitly prevent unifying
variables that are intended to represent honest agents with the name of the intruder.9

Now let Agent = {i, a, b, . . .} be a set of agent names. If all the variables that we have introduced
into the initial state range over the set Agent, then this symbolic initial state represents the set of
all initial states that would result from automatic session generation with this set of agents (for a
given bound n of the sessions).

In order to integrate the approach just described with the lazy intruder there is, however,
one subtlety that we must address: we have assumed that all constraint sets are well-formed, in
particular, that each variable that appears in a constraint set is introduced on the left-hand side
of some constraint. Intuitively speaking, combining session instantiation with the lazy intruder
means that the intruder chooses the concrete names of the agents in the initial state, but leaves
variables for these choices and lazily instantiates them during the search. The initial state must
therefore contain a constraint set that requires that the lazy intruder “generates” all agent names
from his initial intruder knowledge IK 0. That is, for symbolic agent names A1, . . . ,Ap in the initial
state we have the constraint

from({A1, . . . ,Ap}, IK 0) ∪ I0 ,

where I0 is the initial set of inequalities and we assume that IK 0 contains the names of all agents
(which is usually not a problem, at least for protocols not involving anonymity or pseudonymity).
Note, however, that this constraint actually allows more than we want: each Aj can be instantiated
with an arbitrary term that can be generated from IK 0 (e.g. the concatenation of two agent
names). We can simply exclude this by enforcing the Aj ’s to be typed variables (that can only
be instantiated with constants of type Agent). Integrating a typed or partially typed model
(where only part of the type-information is checked as in this case) into OFMC’s untyped model
is technically not difficult and can be realized in different ways, e.g. by extending the term algebra
with unary functions such as agent(·).

Regarding the set Agent as a type even allows us to use an infinite set of agent names, with the
special rule that the intruder knows every constant of type Agent. Although for a finite number
of sessions we only need a finite set of agents (everything else will be equivalent modulo renaming
of constant agent names), it can be difficult to determine how many distinct agents are actually
necessary (in particular, if there is some form of negation in the model). An infinite type Agent

makes matters simpler in this regard. Also, the fact that the intruder knows all agent names

9This specification of the initial state is slightly more general than the enumeration of ground sessions described
above; there, the state facts of the same session ID contain the same agent names, i.e. it results from unifying
A1 = A2, B1 = B2, etc:

state(roleA, step0, sess1, A1, B1).state(roleB, step0, sess1, B1, A1).
state(roleA, step0, sess2, A3, B3).state(roleB, step0, sess2, B3, A3).
state(roleA, step0, sess3, A5, B5).state(roleB, step0, sess3, B5, A5)

A1 6= i∧∧∧ B1 6= i∧∧∧ A3 6= i∧∧∧ B3 6= i∧∧∧ A5 6= i∧∧∧ B5 6= i .
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implies that the initial constraint set is always satisfiable, and its ground solutions are exactly
the possible instantiations of the sessions. In particular, as an immediate consequence of the
definitions, we have:

Lemma 5. Consider a symbolic initial state with variables A1, . . . ,Ap of type Agent, and an initial
intruder knowledge IK 0 such that Agent ⊆ IK 0. Then the semantics of the initial constraint set
is the set of all substitutions of the variables Aj with agent names, i.e.

[[from({A1, . . . ,Ap}, IK 0)]] = {σ | Ajσ ∈ Agent for 1 ≤ j ≤ p} .

Hence, the lazy intruder can be straightforwardly adapted to solve the problem of session
instantiation.

Example 6. To illustrate session instantiation at work, let us now consider the Needham-
Schroeder Public Key Protocol NSPK [21, 36]

1. A -> B: {NA,A}KB

2. B -> A: {NA,NB}KA

3. A -> B: {NB}KB

which aims at providing mutual authentication between two agents but suffers from the well-known
man-in-the-middle attack first reported by Lowe. Let us focus, in particular, on the states that
form the trace for the man-in-the-middle attack, in the symbolic model where there is one session.
(Indeed, using symbolic sessions we only need one session, i.e. one pair of honest agents, to find
the attack.)

The initial state in this case contains

state(roleA, step0, sess1,A1,B1).state(roleB, step0, sess1,B2,A2)
A1 6= i∧∧∧ B2 6= i .

The attack-trace starts with the agent A1 sending a message for B1, encrypted with B1’s public
key. The intruder can analyze this message iff B1 = i; hence, we have a case-split, i.e. one state
where we perform the substitution B1 = i and one where we have the additional inequality B1 6= i.
The attack corresponds to the first case, where the substitution is performed. In this case, the
intruder learns the nonce n1 that A1 has created for him. In the next step, the intruder sends a
message to B2, posing as A2 (whoever that is). B2 responds with a message encrypted with the
public key of A2, and again the intruder can decrypt that message iff A2 = i. Now consider the
case A2 6= i. In this case, the intruder chooses to send (under his real name) an answer to A1’s first
message. A1 expects this message to be encrypted with his public key and to contain the nonce
he sent earlier to i, i.e. we have the constraint set

{ from({A1,A2,B2}, IK 0) ,
from(NA, IK 0 ∪ n1) ,
from({n1,NB}k(A1)

, IK 0 ∪ n1 ∪ {NA, n2}k(A2)
) }

and the inequalities
A1 6= i∧∧∧ B2 6= i .

Here NA is a variable representing the nonce the intruder sent earlier to B2, n1 is the nonce the
agent A1 has created for i, n2 is the nonce the agent B2 has created for A2, and NB is a variable
for whatever the intruder sends to A1 as his nonce.

The constraint reduction will identify two possible solutions for this constraint set: either the
intruder generated the last message {n1,NB}k(A1)

from its components (which he can do, as he

knows A1, the key-table k, and the nonce n1) or he replays the message he just received from A2,
since it is unifiable using the substitution

[A2 7→ A1 , NA 7→ n1 , NB 7→ n2 ] .
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Hence, we have found out that this trace (which leads to Lowe’s man-in-the-middle attack) only
works if the agent that B2 thinks he is talking to (i.e. A2) is indeed the one who receives the
message (i.e. A1), while A1 thinks he is talking to i. As an answer, A1 sends the final message of
the protocol {n2}k(i), so the intruder knows the nonce that B2 has generated for A2 6= i, which is
a violation of secrecy. Furthermore, authentication is violated if he sends this nonce to B2. 2

This example demonstrates how, during search, the space of possible instances is narrowed
down in a demand-driven fashion. Note that in the manual session generation, even for only three
agents Agent = {a, b, i}, we would have 24 instances. However, under the demand-driven strategy
of the lazy intruder, not all of these instances must be explored.

To conclude this section, observe that during the example derivation, variables were instanti-
ated with other variables or with the constant i. In general, the Aj ’s can be instantiated only with
those constant agent names that appear in the initial state or in some transition rule, and this is
usually just the name of the intruder i. Note that this bears some similarity to the phenomenon
observed in [23], namely that under certain conditions “two agents are sufficient” (an honest agent
and a dishonest one). Investigating this relationship in more detail will be subject of future work.

7 Experimental Results

To assess the effectiveness and performance of OFMC, we have tested it on a large protocol
suite, which includes the authentication protocols of the Clark/Jacob library [21, 28], as well as
a number of industrial-scale protocols. Since OFMC implements a semi-decision procedure, it
does not terminate for secure protocols, although it can establish the security of protocols for a
bounded number of sessions. We describe below the search times we have measured for finding
attacks in flawed protocols.

7.1 The Clark/Jacob Library

OFMC can find all known attacks and discovers a new one in a test-suite of 38 protocols from
the Clark/Jacob library. As the performance times in Table 1 show, OFMC is a state-of-the-art
tool: for each of the flawed protocols, a flaw is found in under 4 seconds and the total analysis of
all flawed protocols takes less than one minute of CPU time. The time displayed for each attack
is the one measured for the minimum number of protocol sessions such that the attack can be
performed (which is two sessions in most cases). The experiments were carried out on a PC with
a 1.4GHz Pentium III processor and 512Mb of RAM; but note that, due to the use of iterative
deepening search, OFMC requires a negligible amount of memory.

To our knowledge, there are only few automated tools, such as [28, 39], that have comparable
coverage. Most existing tools have been implemented only as prototypes and have only been ap-
plied to a small number of examples. In terms of efficiency, there are also few tools comparable to
OFMC. The lazy intruder technique provides a great advantage with respect to more “näıve” tech-
niques. Other tools based on the lazy intruder technique, such as CL-atse [50], have comparable
performance although currently smaller coverage.

Note that the analysis of the untyped and typed IF specifications may lead to the detection
of different kinds of attacks. When this is the case, we report in Table 1 both attacks found. In
all other cases, the times are obtained using the untyped model. “MITM” abbreviates man-in-
the-middle attack and “STS” abbreviates replay attack based on a short-term secret. Also note
that the table contains four variants of protocols in the library, marked with a “∗”, that we have
additionally analyzed.

7.2 A New Attack on the Yahalom Protocol

The Clark/Jacob library reports an attack on the Yahalom protocol, but this attack requires that
the intruder can guess the nonce NB, which is contrary to the usual assumption of unguessability
of nonces. Using OFMC, however, we have uncovered the subtle weakness that we presented in

25



Protocol Name Attack Time (s)

ISO symm. key 1-pass unilateral auth. Replay 0.0
ISO symm. key 2-pass mutual auth. Replay 0.0
Andrew Secure RPC prot. Type flaw 0.0

Replay 0.1
ISO CCF 1-pass unilateral auth. Replay 0.0
ISO CCF 2-pass mutual auth. Replay 0.0
Needham-Schroeder Conventional Key STS 0.3
Denning-Sacco (symmetric) Type flaw 0.0
Otway-Rees Type flaw 0.0
Wide Mouthed Frog Parallel-session 0.0
Yahalom Type flaw 0.0
Woo-Lam Π1 Type flaw 0.0
Woo-Lam Π2 Type flaw 0.0
Woo-Lam Π3 Type flaw 0.0
Woo-Lam Π Parallel-session 0.2
Woo-Lam Mutual auth. Parallel-session 0.3
Needham-Schroeder Signature prot. MITM 0.1
∗ Neuman Stubblebine initial part Type flaw 0.0
∗ Neuman Stubblebine rep. part STS 0.0
Neuman Stubblebine (complete) Type flaw 0.0
Kehne Langendorfer Schoenw. (rep. part) Parallel-session 0.2
Kao Chow rep. auth., 1 STS 0.5
Kao Chow rep. auth., 2 STS 0.5
Kao Chow rep. auth., 3 STS 0.5
ISO public key 1-pass unilateral auth. Replay 0.0
ISO public key 2-pass unilateral auth. Replay 0.0
∗ Needham-Schroeder Public Key NSPK MITM 0.0
NSPK with key server MITM 1.1
∗ NSPK with Lowe’s fix Type flaw 0.0
SPLICE/AS auth. prot. Replay 4.0
Hwang and Chen’s modified SPLICE MITM 0.0
Denning Sacco Key Distr. with Public Key MITM 0.5
CCITT X.509 Type flaw 0.1
Shamir Rivest Adelman Three Pass prot. Type flaw 0.0
Encrypted Key Exchange Parallel-session 0.1
Davis Swick Private Key Certificates Type flaw 0.1
(DSPKC), prot. 1 Replay 1.2
DSPKC, prot. 2 Type flaw 0.2

Replay 0.9
DSPKC, prot. 3 Replay 0.0
DSPKC, prot. 4 Replay 0.0

Table 1: Performance of OFMC over the flawed protocols of the Clark/Jacob library.
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Home DomainVisited Domain

VGKMT AuF

AuF

ReqMT

RespMT

AckMT ChalVGK

MT VGK

ChalMT RespVGK

ReqMT ReqVGK

AckMT AckVGK

Figure 3: The H.530 protocol (simplified). The deployment of the protocol is on the left, the
messages exchange between the participants are summarized on the right.

Fig. 1. In this trace, the intruder officially (under his real name i) plays in the role roleA, and
the agents b and s play in the roles roleB and roleS. The notation i(b) denotes that the intruder
poses as b. According to the protocol, the intruder receives the new session-key fresh(idKAB, sess2)
from the server in message 3, along with a message encrypted for b, which should be forwarded
to him in message 4. However, the intruder replays the encrypted part of message 2 instead.
This is accepted by b since the message is encrypted with the expected key k(b, s) and starts with
the expected agent name i. Hence, b accepts the pairing of nonces NA, fresh(idNB,sess2) as the
session-key issued by the server. Although the intruder does not “get in” with this attack (e.g. he
did not make the agent b believe that he is talking to somebody else or find out secrets of other
sessions), this state violates an authentication goal, namely that any agent playing in the role
roleB can rely on the integrity of the session-key. Here, the intruder can make the agent b accept
a fake key that did not originate from the server. A part of that key, i’s nonce NA, is completely
determined by the intruder.

We conclude with three remarks. First, in [45] Paulson proved non-injective agreement (in the
sense of [37]) for the Yahalom protocol, including the goal we have found to be violated. However,
he used a typed model and the above attack exploits a type-confusion between a key and a pair of
nonces. Second, the attack-trace given above is similar to the attack originally described in [21].
There, the intruder listens to the communication between honest agents, and then, similar to our
attack, tries to generate message 4 taking advantage of the same confusion with the encrypted
part of message 2 as in our attack (which is, however, impossible unless the intruder can guess
the nonce NB). Finally, the attack we have detected is different from the one of [46], in which
the intruder only makes the agent playing in the role roleB accept for the second time the key
KAB generated by the server. This is a replay attack violating agreement [37]. In our attack, the
intruder makes the agent playing in the role roleB accept a key different from the one issued by
the server.

7.3 The H.530 Protocol

We have applied OFMC to a number of industrial-scale protocols, such as IKE (for which we found
the weaknesses already reported in [40]), and the H.530 protocol of the ITU [33]. H.530, which has
been developed by Siemens, provides mutual authentication and key agreement in mobile roaming
scenarios in multimedia communication.

H.530 is deployed as shown in the left part of Fig. 3: a mobile terminal (MT) wants to establish
a secure connection and negotiate a Diffie-Hellman key with the gatekeeper (VGK) of a visited
domain. As they do not know each other in advance, the authentication is performed using an
authentication facility AuF within the home domain of the MT. Both MT and VGK initially have
shared keys with AuF. The right part of Fig. 3 shows the messages exchanged: first, both MT and
VGK create Diffie-Hellman half-keys, along with hashes that are encrypted for AuF (denoted by
the messages ReqMT and ReqVGK, respectively). After checking these messages, AuF replies with
appropriate acknowledge messages AckMT and AckVGK that also contain encrypted hashes for the
respective recipients. Finally, MT and VGK perform a mutual challenge-response using the new
Diffie-Hellman key that was authenticated by AuF (directly or over a chain of trustworthy servers).

The messages exchanged in the H.530 protocol are considerably more complex than the ones
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of the Clark/Jacob protocols. As an example, the following excerpt from our HLPSL-specification
of H.530 (in ASCII syntax) corresponds to the fourth protocol message

4. VGK -> MT : MT,VGK,CH1,CH2,exp(G,Y),

Hash(K, xor(exp(G,X),exp(G,Y))),Hash(K,MT),

Hash(exp(exp(G,X),Y),MT,VGK,CH1,CH2,exp(G,Y),

Hash(K,xor(exp(G,X),exp(G,Y))),Hash(K,MT))

Here, for instance, exp(G,Y) stands for exponentiation, K is a symmetric key, and G, CH1, and
CH2 are nonces. In contrast to other model-checking tools, e.g. [28, 38], this kind of complexity
is not a problem for our approach. We can directly analyze the full specification of the H.530
without resorting to abstraction or other techniques to simplify the messages.

We have applied OFMC to automatically analyze this protocol in collaboration with Siemens.
OFMC takes only 1.6 seconds to detect a previously unknown attack to H.530. It is a replay attack
where the intruder first listens to a session between honest agents mt in role MT, vgk in role VGK,
and auf in role AuF. Then the intruder starts a new session impersonating both mt and auf. The
weakness that makes the replay possible is the lack of fresh information in the message Ack VGK,
i.e. the message where auf acknowledges to vgk that he is actually talking with mt. Replaying
the respective message from the first session, the intruder impersonating mt can negotiate a new
Diffie-Hellman key with vgk, “hijacking” mt’s identity. To perform the attack, the intruder must
at least be able to eavesdrop and insert messages both on the connection between MT and VGK,
and on the connection between VGK and AuF. We have suggested including MT’s Diffie-Hellman
half-key in the encrypted hash of the message AckVGK to fix this problem. With this extension
we have not found any further weaknesses in the protocol and Siemens has revised the protocol
accordingly [34].

8 Related Work and Concluding Remarks

Our formal protocol model is based on the specification languages HLPSL and IF, which we have
developed with colleagues as part of a larger project [2, 3, 4, 18, 19, 20, 47] aimed at providing
security protocol validation tools. The HLPSL evolved out of the input language of the Casrul
system, described in [35].

The use of a generic high-level language and a lower-level language based on (multi)set rewriting
was developed by [26] and our work was inspired by this combination. There are, however, a
number of differences between our work and the CAPSL/CIL system, proposed in [26]. For
example, CAPSL cannot handle protocols where an agent first receives a message that he cannot
decrypt, say {|m|}k, and later receives the symmetric key k, which he can use to decrypt the
message. In our case, the agent will store {|m|}k and later decrypt it after receiving the key. In
comparison with CIL, the IF additionally supports negative facts and conditions, which extends
the scope of the protocols and properties that can be modeled. Finally, based on the available
experiments (cf. §7 as well as [8, 26]), OFMC appears to be considerably more effective on the
protocols we have analyzed than the current tools connected to CAPSL/CIL.

There are several model-checking approaches similar to ours. As a prominent example, we
compare our approach with Casper [28, 38], a compiler that translates protocol specifications,
written in a high-level specification language similar to CAPSL and HLPSL, into protocol de-
scriptions in the process algebra CSP. The approach uses finite-state model-checking with FDR2.
Casper/FDR2 successfully discovered flaws in a wide range of protocols: among the protocols of
the Clark/Jacob library, it found attacks on 20 protocols previously known to be insecure, as well
as attacks on 10 other protocols originally reported as secure. Experiments indicate that OFMC
is considerably faster than Casper/FDR2, despite being based on a more general model: Casper
limits the size of messages to obtain a finite-state model. This limitation is problematic for the de-
tection of type-flaw attacks. For example, Casper/FDR2 misses our type-flaw attack on Yahalom.
Finally, the Casper grammar only includes atomic keys, which hinders its application to protocols
like IKE, where each participant constructs only a part of the shared key that is negotiated.
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The Athena tool [49] combines model-checking and interactive theorem-proving techniques with
strand spaces [30] to reduce the search space and automatically prove the security of protocols
with arbitrary numbers of concurrent runs. Interactive theorem-proving in this setting allows one
to limit the search space by manually proving lemmata (e.g. “the intruder cannot find out a certain
key, as it is never transmitted”). However, the amount of user interaction necessary to obtain such
statements can be considerable. Moreover, like Casper/FDR2, Athena supports only atomic keys
and cannot detect type flaws.

To compare with related approaches to symbolically modeling intruder actions, we now expand
on the remarks in §4; see [22] for a detailed overview of the lazy intruder approaches. The idea
of a symbolic intruder model has undergone a steady evolution, becoming increasingly simpler,
more general, and better understood. In the earliest work [32], both the technique itself and
the proof were of substantial complexity. [1] drastically simplified the technique and its formal
presentation (in particular, the proofs of correctness and completeness), and proved that the
constraint reduction problem is NP-hard. [19] presented the first approach that can handle non-
atomic keys, albeit without a proof of its correctness and completeness, and [47] showed that,
for a bounded number of sessions, the protocol insecurity problem with non-atomic keys is NP-
complete. [41] independently proposed a similar generalization to non-atomic keys (although in
their case the public key infrastructure is fixed) and gave a simpler proof than [1]. [25] improved
the approach of [1] by increasing the expressiveness and providing a more efficient implementation.
Note that all approaches that can handle non-atomic keys use the marking of decrypted terms
during the analysis of keys as discussed in §4.2 (see the alternative intruder rule Al

scrypt
∗). In

contrast, our approach, which is closest to the one of [19, 47], works without such a marking, and
this provides for a simpler procedure and simpler proofs of its correctness and completeness.

In our work, we have also extended the lazy intruder by introducing inequalities and symbolic
sessions. The introduction of inequalities, together with the notion of simple constraints, has a
very natural interpretation: “the intruder can generate as many different terms as he likes”. As
a comparison, inequalities are introduced also in [1], where they are used to handle conditional
transitions. The support of inequalities is crucial for a number of advanced protocols and goals,
e.g. the replay-check described in Example 1. Our use of inequalities however goes beyond the
handling of conditional transitions, as we employ them to handle the entire instantiation problem
using only the lazy intruder (while other approaches tackle the instantiation problem by performing
an additional parameter search). Moreover, the use of inequalities allows us to explicitly exclude
certain substitutions, which is necessary for separating the analysis of messages from constraint
reduction, as we discussed in §5.

As we have seen, most approaches are restricted to atomic keys.10 This prevents the modeling
of many modern protocols like IKE. Moreover, untyped protocol models with atomic keys exclude
type-flaw attacks in which keys are confused with composed terms. We believe that this is the
reason why our type-flaw attack on the Yahalom protocol was not discovered earlier, even though
Yahalom has been extensively studied.

The work presented here originated with the idea of on-the-fly model-checking proposed in [7,
8]. The original tool required the use of heuristics and, even then, did not scale to most of the
protocols in the Clark/Jacob library. The use of the symbolic techniques described here has made
an improvement of many orders of magnitude and the techniques are so effective that heuristics
play no role in the current system. Moreover, OFMC scales well beyond the Clark/Jacob protocols,
as our example of the H.530 protocol suggests.

Current work involves applying OFMC to other industrial-scale protocols, such as those pro-
posed by the IETF. Although our initial experience is positive, we see an eventual role for heuristics
in leading to further improvements. For example, a simple evaluation function could be: “has the
intruder learned anything new through this step, and how interesting is what he learned?” We have
also been investigating the integration of reduction techniques inspired by partial-order reduction
in our model-checker and the first results are very positive [10].

10For example, [12] generalizes previous work [11] by introducing a generic set of cryptographic primitives, but
the approach is still limited to atomic keys and it is unclear how this can be lifted without losing the genericity.
Note that all cryptographic primitives that are given as examples in [12] are also implemented in OFMC.
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A Proofs of the Theorems and Lemmata

We now give the proofs of the theorems and lemmata stated in the body of the paper. We will
employ the following additional notation.

Notation 2. Given a constraint from(T, IK ), we use LHS and RHS to refer to T and IK , respec-
tively.

Our first theorem, Theorem 1, follows directly from Lemmata 6, 7, and 8.

Theorem 1 Let C be a well-formed constraint set. Red(C) is finite and ` is well-founded. More-
over, [[C]] = [[Red(C)]], i.e. Red(C) is correct and complete.

Lemma 6. Let C be a well-formed constraint set. Red(C) is finite and ` is well-founded.
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The intuition for the proof is that there can only be finitely many applications of the Gl
unif rule

in any derivation and all other rules can only be applied finitely often before a unification operation
is required. Like the other rules, the unification rule Gl

unif cannot introduce new variables. Either
it is applied to ground terms or, if the terms to be unified are not ground, then it actually reduces
the set of variables appearing in the constraints. The latter case cannot occur in a derivation an
infinite number of times as there are only finitely many variables in a finite constraint set. The
case of ground unifications as well as all other rule applications that can occur between two such
substitutions is also limited: Gl

unif always reduces the LHS terms and the other generation rules
of the lazy intruder decompose LHS terms. The applicability of analysis rules is bounded because
only subterms of the initial RHS terms can occur in the resulting intruder knowledge. Formally:

Proof. Let us begin by defining a weight function w for messages on the LHS of a constraint as
follows:

w(m) = 1, for m ∈ AtomicMsg

w(m−1) = 1

w(〈m1,m2〉) = w(m1) + w(m2) + 1

w({|m2|}m1
) = w(m1) + w(m2) + 1

w({m2}m1
) = w(m1) + w(m2) + 1

w(m1(m2)) = w(m1) + w(m2) + 1

w({m1, . . . ,mn}) =
n
∑

i=1

w(mi)

The definition of the weight of the intruder knowledge (i.e. of the RHS of the constraints)
must take into account that analysis is possible that introduces a new term into the intruder
knowledge as well as a new constraint for the derivation of the key. To measure the weight of the
intruder knowledge, we thus define the weight function wIK for messages in the IK in the RHS
of a constraints as follows:

wIK (m) = w(m), for m ∈ AtomicMsg

wIK (m−1) = w(m−1)

wIK (〈m1,m2〉) =











w(〈m1,m2〉), if m1 ∈ IK and m2 ∈ IK

w(〈m1,m2〉) + wm1 ∪m2 ∪ IK (m1 ∪ m2) + 1,

if m1 /∈ IK or m2 /∈ IK

wIK ({|m2|}m1
) =



















w({|m2|}m1
), if m2 ∈ IK

w({|m2|}m1
) + wm2 ∪ IK (m2) + w(m1)

+wIK ′(IK
′) + 1, for IK ′ = IK \ {|m2|}m1

,

if m2 /∈ IK

wIK ({m2}m1
) =



















w({m2}m1
), if m2 ∈ IK

w({m2}m1
) + wm2 ∪ IK (m2) + w(m1)

+wIK ′(IK
′) + 1, for IK ′ = IK \ {m2}m1

,

if m2 /∈ IK

wIK (m1(m2)) = w(m1(m2))

wIK ({m1, . . . ,mn}) =

n
∑

i=1

wIK (mi)

Observe now that if IK ′ ⊆ IK then wIK ′(M) ≥ wIK (M) for all sets M of messages. This holds
as the only places in wIK that depend on the set IK are in the case-splits for the cases 〈m1,m2〉,
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{|m2|}m1
, and {m2}m1

. In these cases, a smaller IK can only lead to a larger weight as the second
cases of the case-splits add in additional weights.

The weight W of a constraint set {from(T1, IK 1), . . . , from(Tn, IK n)} is defined as a pair (v, g),
where v is the number of variables in Ti and g is sum of the weights of the constraints. That is

W ({from(T1, IK 1), . . . , from(Tn, IK n)})

=

(

|
n
⋃

i=1

vars(Ti) | ,
n
∑

i=1

w(Ti) + wIK i
(IK i)

)

.

We order these pairs lexicographically, overloading the “>” symbol, defining

(v1, g1) > (v2, g2) iff v1 > v2 ∨ (v1 = v2 ∧ g1 > g2) .

This order is well-founded, as the ordering on both components is well-founded over the natural
numbers. We show that the application of any constraint reduction rule decreases the weight of a
constraint set according to >:

• Gl
unif : if no variable is substituted, then a term from the LHS is dropped (so strictly less in

g), else at least one variable is substituted (so strictly less in v).

• Gl
pair, G

l
scrypt, G

l
crypt, and Gl

apply: strictly less in g since

1 + w(m1) + w(m2) > w(m1) + w(m2) .

• Al
scrypt (and similarly for Al

crypt, A
l
crypt−1 , and Al

pair):

Consider the constraint set {from(T1, IK 1), . . . , from(Tn, IK n)}. As the number of variables
does not change, we consider the second component of the weight,

n
∑

i=1

w(Ti) + wIK i
(IK i) .

If we apply an analysis rule to the jth constraint, 1 ≤ j ≤ n, and IK j = {t1, . . . , tp} and the
analyzed message is tl = {|m2|}m1

for l ∈ {1, . . . , p}, then the constraint after application of
the analysis rule is

{from(T1, IK 1), . . . , from(Tj−1, IK j−1), from(m1, IK j\{tl}),

from(Tj ,m2 ∪ IK j), from(Tj+1, IK j+1), . . . , from(Tn, IK n)}

with the weight (second component):

O + w(m1) + wIK0
(IK 0) + w(Tj) + wm2 ∪ IK j

(m2 ∪ IK j)
= O + w(m1) + wIK0

(IK 0) + w(Tj) + wm2 ∪ IK j
(IK 0)

+w({|m2|}m1
) + wm2 ∪ IK j

(m2)
≤ O + w(m1) + wIK0

(IK 0) + w(Tj) + wIK j
(IK 0) + w({|m2|}m1

)
+wm2 ∪ IK j

(m2)
=def O + w(Tj) + wIK j

(IK 0) + wIK j
({|m2|}m1

)− 1
= O + w(Tj) + wIK j

(IK j)− 1
= snd(W ({from(T1, IK 1), . . . , from(Tn, IKn)})− 1 ,

where O = snd(W ({from(T1, IK 1), . . . , from(Tn, IK n)} \ from(Tj , IK j))) and IK 0 = IK j \
{|m2|}m1

. So the analysis decreases the weight by at least one. This concludes the proof of
the lemma.
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Lemma 7. [[C]] ⊇ [[Red(C)]] for a well-formed constraint set C.

Proof. Let C be a well-formed constraint set. Initially, observe that [[C]] ⊇ [[Red(C)]] abbreviates
[[C]] ⊇ {σσ′ | ∃C ′. (C ′, σ) ∈ Red(C) ∧ σ′ ∈ [[C ′]]}. To show that the rules of the lazy intruder do
not introduce new solutions to the semantics of the constraint set, it is enough to show that each
rule application is correct in the following sense. Whenever the application of a rule transforms
a constraint set and a substitution (C, τ) into (C ′, τσ), then any solution for C ′ is also a solution
for C, i.e. σ′ ∈ [[C ′]] =⇒ σσ′ ∈ [[C]] (where τ is not considered as vars(C) ∩ dom(τ) = ∅ by
the construction of Red). We show only the case of the rule Gl

unif , as the other cases are similar.
In this case, C, C ′, and σ have the form: C = from(t ∪ T, s ∪ IK ) ∪ C0, σ = mgu(t, s), and
C ′ = (from(T, s ∪ IK ) ∪ C0)σ. Let σ

′ ∈ [[C ′]]. Then σ′ already satisfies all constraints in C except
from(t ∪ T, s ∪ IK ). Now tσσ′ = sσσ′ and hence σσ′ is a solution of C.

Lemma 8. [[C]] ⊆ [[Red(C)]] for a well-formed constraint set C.

Proof. Let C be a well-formed constraint set. We begin the proof by observing that [[C]] ⊆
[[Red(C)]] abbreviates [[C]] ⊆ {σσ′ | ∃C ′. (C ′, σ) ∈ Red(C) ∧ σ′ ∈ [[C ′]]}. Showing the completeness
of Red, i.e. that all solutions of a constraint set C are also solutions of the reduction of C, is more
difficult than showing the correctness of Red. The main problem is that completeness requires
that Red is performed on a well-formed constraint set, but, during the reduction procedure,
property (10) of the well-formedness (cf. Definition 9) can be destroyed by the analysis rules.
In particular, an analysis rule introduces (i) a new constraint for the derivation of a key, where
the intruder knowledge no longer contains the decryption key (hence the intruder knowledge may
be smaller than the intruder knowledge of all previous constraints) and (ii) it adds the analyzed
term to the intruder knowledge of the constraint to which it was applied (hence the intruder
knowledge may be larger than the intruder knowledge in all successive constraints). Note that,
here and below, “previous” and “successive” constraints refer to the order given by the well-formed
constraint sets.

Problem (ii) is easy to overcome. To restore property (10) we perform the same analysis steps
also on the successive constraints: these must allow the same derivations in the intruder knowledge
since the initial constraint set was well-formed.

To tackle problem (i), we relax the invariant in the proof: at any step during the proof we
want to preserve the invariant that the constraint set is well-formed if one removes all constraints
that were introduced by the application of an analysis rule. For simplicity, we will still refer to
this invariant as well-formedness. For the resulting simple constraint sets, one can restore their
well-formedness in the original sense by simply deleting the constraints that were introduced by
applications of analysis rules.11

We say in the following that the result (C ′, σ) of a reduction step (or, simply, reduction)
supports τ if there exists a σ′ such that τ = σσ′ and σ′ ∈ [[C ′]]. Hence, our proof obligation is to
show that for a given well-formed constraint C and an arbitrary solution τ ∈ [[C]], the reduction
yields at least one result (C ′, σ) ∈ Red(C) that supports τ .

To show this, it is sufficient to prove that for a given well-formed, non-simple C and τ ∈ [[C]]
there exists at least one rule of the lazy intruder that can be applied to C such that the result
(C ′, σ) of the rule application supports τ . Once this property of the rules is proved, we show
completeness as follows. Let a well-formed constraint C and solution τ ∈ [[C]] be given. We
can repeatedly apply some of the lazy intruder rules, maintaining the solution τ , as long as the
constraint set does not become simple. By Lemma 6, we know that an infinite chain of rule
applications is impossible, so we must eventually reach a simple constraint set that supports τ .

So it remains to show that for a well-formed, non-simple constraint set C and a solution
τ ∈ [[C]], we can find a rule application such that the result supports τ . First, we introduce

11This does not change the semantics of the constraint set. The constraint set is simple and therefore all con-
straints have only variables in the LHS. Moreover, it is well-formed without the constraints C that were introduced
by the analysis, so the constraints C can only have variables in their LHS that were introduced by previous con-
straints. As these previous constraints have a smaller intruder knowledge, they are more restrictive. Hence, C is
already entailed by them.
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the notion of a derivation tree. Since τ ∈ [[C]], we know there must be a τ derivation for every
constraint from(T, IK ) ∈ C in the sense that Tτ ⊆ DY(IK τ). We want to make this derivation
explicit in the constraint set C by labeling every term in T with a DY-derivation tree: A DY-
derivation tree is a binary tree, where leaves are messages and each node is an application of one of
the DY rules. Note that we will simplify the notation by writing only the messages and omitting
the “∈ DY(IK )”; in particular, the applications of the Gaxiom rule will simply be the leaf nodes
of the tree.

Every leaf and every node then stands for a message, composed or decomposed from the (roots
of the) respective subtrees. Hence, if m ∈ DY(IK ), then there is a derivation tree such that m is
the derived message at the root node and all leaves are in IK . We say that a constraint set C is
labeled with DY-derivation trees for a solution τ ∈ [[C]], if in every constraint from(T, IK) ∈ C,
every term t ∈ T is labeled with a DY-derivation tree of tτ from terms in IK τ .

As a simple example, consider C = from(〈K,m〉, {|m|}k ∪ {|k|}{|m|}k
), which has, among others,

the solution τ = [K 7→ {|m|}k]. We can label the message 〈K,m〉 with the derivation tree for the
message 〈K,m〉τ = 〈{|m|}k,m〉 as follows:

{|m|}k
Gaxiom

{|m|}k
Gaxiom

{|k|}{|m|}k

Gaxiom

k
Ascrypt

{|m|}k
Gaxiom

m Ascrypt

〈{|m|}k,m〉
5

〈K,m〉

Gpair

.

Note that we use the symbol 5 to denote labeling of terms with Dolev-Yao derivation trees.
To resume the proof, let a well-formed, non-simple constraint set C and a solution τ ∈ [[C]] be

given, where C is labeled with DY-derivation trees for the solution τ . According to the order of the
well-formed constraint set, we pick the first constraint from(T, IK ) that contains a non-variable
message t ∈ T . We show that, depending on the root node of the DY-tree that labels t, we can
find a constraint reduction rule that is applicable and such that the resulting constraint set C ′ can
again be labeled with DY trees according to τ (and hence the result still supports τ). We now
consider the different possible cases for the kind of root node that the DY-tree has for t.

Gaxiom: This means that tτ ∈ IK τ . So t can be unified with a term s ∈ IK and the Gl
unif

rule is applicable to C, and the unifier σ = mgu(t, s) is compatible with τ . Hence the resulting C ′

supports τ as all remaining terms can be labeled with the same trees as in C. To illustrate this,
observe that applying the rule Gl

unif (using a substitution σ that is at least as general as τ) to the
constraint

from(

tτ
Gaxiom

5
t ∪

T0....
E0, IK )

yields

from(

T0....
E0σ, IKσ) .

Gscrypt (and similarly for Gpair, Gcrypt, and Gapply, mutatis mutandis): Since t is not a variable,
it must have the form t = {|t2|}t1 for some terms t1 and t2. As a result, the rule Gl

scrypt can be
applied. The resulting constraint contains the terms t1 and t2, which can be labeled with the
respective subtrees of the derivation tree of t. Hence C ′ still supports τ . To illustrate this, observe
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that applying the rule Gl
scrypt to the constraint

from(

T1....
t1τ

T2....
t2τ

{|t2|}t1τ
Gscrypt

5
{|t2|}t1 ∪

T0....
E0, IK )

yields

from(

T1....
t1τ
5
t1 ∪

T2....
t2τ
5
t2 ∪

T0....
E0σ, IKσ) .

Ascrypt (and similarly for Apair, Acrypt, and A−1
crypt, mutatis mutandis): tτ is obtained through

a decryption of a term {|t|}kτ . The respective analysis step of the lazy intruder may not yet be
possible if the subtrees of t’s derivation tree contain further analysis operations (that must be
performed first). Since the tree is finite, there must be an analysis operation in the DY-tree for t
that has no analysis operations in its subtrees. We pick such an analysis operation for applying
the next lazy intruder rule to the constraint set. Let t′0 be the term obtained in the DY-tree by
the selected analysis operation, and k′0 and {|t′0|}k′0

be the terms obtained at the children nodes

of the analysis operation (in the case that there were no analysis nodes in the subtrees, we have
t′0 = tτ and k′0 = kτ). There must be a message tk0 ∈ IK such that tk0τ = {|t′0|}k′0

. Without

loss of generality, we can assume that tk0 is not a variable: if it were a variable, then, since C
is well-formed, tk0 ∈ T for an earlier constraint from(T, IK 0) ∈ C (which is already simple) for
some IK 0 ⊆ IK with tk0 /∈ IK 0. Therefore, the term to be constructed can be generated from the
knowledge IK 0. Since tk0 is not a variable, it must have the form tk0 = {|k0|}t0 , where t0τ = t′0
and k0τ = k′0, and therefore the rule Al

scrypt can be applied. This adds the analyzed term t0 to
the intruder knowledge and the new constraint from(k0, IK \ {|t0|}k0

) to the constraint set (in the
case of Apair, no new constraint is added). Now all occurrences of the analyzed term t0τ in the
DY-tree can be replaced with a leaf-node. In the newly added constraint from(k0, IK \{|t0|}k0

) (in
the case of Ascrypt), the term k0 can be labeled with the k0τ -subtree of the analysis node in the
DY-tree. This labeling is correct since this subtree cannot contain any further analysis operations;
therefore it can contain only subterms of k0τ (if k0τ is non-atomic) that are present in IK τ . In
particular it cannot contain {|t0|}k0

τ . Hence, C ′ still supports τ . To illustrate this, observe that

applying the rule Al
scrypt to the constraint

from(

T1....
k0τ {|t0|}k0

τ
Gaxiom

t0τ
Ascrypt

....
kτ

T2....
{|t|}kτ

tτ
Ascrypt

5
t ∪

T0....
E0, IK )

yields

from(

T1....
k0τ
5
k0 , IK \ {|t0|}k0

) ∪ from(

t0τ
Gaxiom

....
kτ

T2....
{|t|}kτ

tτ
Ascrypt

5
t ∪

T0....
E0, t0 ∪ IK ) .
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This concludes the proof of the lemma.

To illustrate the proof, we consider again the constraint presented above and show how the
reduction proceeds according to the previous case split. First, the root of the only term to generate
is Gpair. Therefore we can apply the Gl

pair rule to obtain from(K ∪ m, {|m|}k ∪ {|k|}{|m|}k
) labeled

as follows (recall we consider the solution τ = [K 7→ {|m|}k]:

{|m|}k
5
K

Gaxiom

{|m|}k
Gaxiom

{|k|}{|m|}k

Gaxiom

k
Ascrypt

{|m|}k
Gaxiom

m

5
m

Ascrypt

.

Since K is a variable in the constraint set, we can only proceed by deriving m. As the root
of the derivation tree is an analysis operation and one subtree contains a further analysis step,
we proceed with this innermost analysis. The respective analysis rule decrypts {|k|}{|m|}k

, adds k

to the intruder knowledge and adds the new constraint that the key term, {|m|}k, can be derived
from the rest of the knowledge, i.e. from({|m|}k, {|m|}k), from(K ∪ m, k ∪ {|m|}k ∪ {|k|}{|m|}k

), with

the labeling

{|m|}k
5
K

Gaxiom
{|m|}k
5
{|m|}k

Gaxiom

k
Gaxiom {|m|}k

Gaxiom

m

5
m

Ascrypt

.

The first constraint is easily handled by the Gl
unif rule; we proceed then with the analysis of

{|m|}k, as the DY-tree contains no further analysis operations. This introduces the new constraint
for the derivation of k, i.e. from(k, k ∪ {|k|}{|m|}k

), from(K ∪ m,m ∪ k ∪ {|m|}k ∪ {|k|}{|m|}k
), with

the labeling

{|m|}k
5
K

Gaxiom
k

5
k

Gaxiom
m

5
m

Gaxiom

.

Two further applications of Gl
unif then result into the simple constraint set that supports τ , i.e. we

have from(K,m ∪ k ∪ {|m|}k ∪ {|k|}{|m|}k
), which concludes the example.

We now prove Lemma 1, i.e. that the lazy model is equivalent to the ground model, in the
sense that they represent the same set of reachable states. To do that, we first prove the following
auxiliary lemmata:

Lemma 9. For a rule r = lhs⇒rhs of the form (1) and a lazy state (P,C,N) where vars(P,C,N)∩
vars(lhs) = ∅, it holds that:

{στ | ∃S. S ∈ [[(P,C,N)]] ∧ S = Pσ ∧ τ ∈ applicable lhs(S)}

= {στ | ∃C ′, N ′. (σ,C ′, N ′) ∈ applicable llhs(P,C,N) ∧

ground(lhsστ) ∧ ground((P,C,N)στ) ∧ στ ∈ [[C ′]] ∧ στ |= N ′ } .

Proof. For the ⊆ direction, let (P,C,N) be a lazy state and S ∈ [[(P,C,N)]] be a ground state.
Let σ′ be the respective ground substitution, i.e. such that S = Pσ′, σ′ ∈ [[C]] and σ′ |= N . Let
τ ′ ∈ applicable lhs(S). We show for σ = σ′τ ′ and τ = id that the conditions of the right-hand side
of the equality of the lemma are satisfied, and therefore στ = σ′τ ′ is contained in the right-hand
side set.
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First, we construct C ′ and N ′ for σ according to the definition of applicable, i.e.

C ′ = (C ∪ from(m1 ∪ {m | i knows(m) ∈ P1}, {i | i knows(i) ∈ P}))σ

N ′ = Nσ ∧∧∧
∧∧∧

φ∈subCont(N1σ,Pσ) φ∧∧∧ Cond σ .

We then have that (σ,C ′, N ′) ∈ applicable llhs(P,C,N), because the conditions of applicable l are
satisfied: since state(m2τ

′) ∈ S, m2τ
′ = m2σ and S = Pσ′ = Pσ, it follows that state(m2σ) ∈ Pσ;

similarly, P1σ ⊆ Pσ.
We now show that σ ∈ [[C ′]]. As σ ∈ [[C]], we must only show that the newly added constraint

is satisfied by σ, i.e. that σ ∈ [[from(m1 ∪ {m | i knows(m) ∈ P1}, {i | i knows(i) ∈ P})]]. The
assumption that σ′ ∈ applicable lhs(S) implies that the messages m1σ

′ ∪ {mσ′ | i knows(m) ∈ P1}
can be generated according to DY from the intruder knowledge of S, i.e. from {m | i knows(m) ∈
S}. For the messages m of lhs, it holds that mσ = mσ′, and the intruder knowledge of S is equal
to the one under Pσ. Therefore the constraint is satisfied.

Finally, we show that σ |= N ′. Assume that σ 6|= N ′. Since σ |= N , and σ |= Cond, the
only possible reason for σ 6|= N ′ is that (at least) one of the conjuncts of subCont(N1σ, Pσ) does
not hold. That would mean that there are a fact not(f) ∈ N1σ and a substitution ρ such that
fσρ ∈ Pσρ. Since fσ and Pσ are ground, fσ ∈ Pσ. Since fσ = fτ ′ and Pσ = S, this contradicts
the assumption of τ ′ ∈ applicable lhs(S), which implies (∀f. not(f) ∈ N1 =⇒ fτ ′ /∈ S).

The converse direction ⊇ follows similarly, and we therefore only give the basic structure of
the proof. Let (P,C,N), σ, τ , C ′ and N ′ be as in the conditions of the set comprehension of
the right-hand side of the equality. Let σ′ be the restriction of στ to the variables of (P,C,N)
and let τ ′ be the restriction of στ to the variables of lhs (since στ is a ground substitution for
variables of both (P,C,N) and lhs). It is then easy to show that S = Pσ ∈ [[(P,C,N)]] and
τ ′ ∈ applicable lhs(S), which concludes the proof.

By employing the same construction of substitutions as in the proof of lemma 9, we can
straightforwardly show:

Lemma 10. For a rule r of the form (1) and a lazy state (P,C,N) where vars(P,C,N)∩vars(r) =
∅ it holds that:

⋃

S∈[[(P,C,N)]]

stepr(S) =
⋃

(P ′,C′,N ′)∈stepl
r(P,C,N)

[[(P ′, C ′, N ′)]] .

The main lemma about the reachability in the ground and lazy models follows by induction
on the number of applications of step and step l, using Lemma 10, where variable clashes between
lazy states and rules are prevented by the renaming performed as part of the succ l function.

Lemma 1 reach(I,R) = ∪(P,C,N)∈reachl(I,R)[[(P,C,N)]] for every initial state I and every set R
of rules of the form (1).

Before proving Theorem 2, we show the relationship between ground and lazy attack-predicates:

Lemma 2 For all lazy states (P,C,N) and all attack-rules ar, the predicate isAttack lar(P,C,N)
holds iff isAttackar(S) holds for some represented ground state S ∈ [[(P,C,N)]].

Proof. The lemma follows by observing that isAttack lar(P,C,N) holds iff there is (σ,C ′, N ′) ∈
applicable lar(P,C,N) such that τ |= N ′ holds for some ground substitution τ ∈ [[C ′]]. This is in
turn the case iff there is a ground state S ∈ [[(P,C,N)]] such that applicablear(S) holds, which
follows by Lemma 9.

Theorem 2 A protocol (I,R,AR) is secure iff isAttack lar(P,C,N) is false for all attack-rules
ar ∈ AR and all reachable lazy states (P,C,N) ∈ reach l(I,R).
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Proof. Let (I,R,AR) be a secure protocol. This is equivalent to the condition that isAttack ar(S)
does not hold for any ar ∈ AR and reachable state S. By Lemma 1, this is in turn equivalent
to the condition that isAttackar(S) does not hold for any state S in the semantics of a reachable
lazy state (P,C,N) and ar ∈ AR. Finally, by Lemma 2, this is equivalent to the condition that
the predicate isAttack lar(S) does not hold for all reachable lazy states (P,C,N) and ar ∈ AR.

We conclude by proving Lemma 3 and Lemma 4.

Lemma 3 Let (P,C,N) be a lazy state where C is simple and N is satisfiable, i.e. there is a σ
such that σ |= N . Then [[(P,C,N)]] 6= ∅.

Proof. In a simple constraint set, the messages the intruder has to generate consist only of unin-
stantiated variables, leaving his choice of instances open. Let us assume, as is standard, that the
initial intruder knowledge is not empty, but that he knows at least his own name i. Hence, as the
intruder can always generate some message from his knowledge, a simple constraint set is always
satisfiable, i.e. [[C]] 6= ∅ for a simple C.

The key idea behind the integration of inequalities is that, unless the inequalities alone are
already unsatisfiable, they cannot destroy the satisfiability of the constraint set, as we now show.
It is straightforward to check whether a conjunction of disjunctions of inequalities N is satisfiable.
Let vars(N) = {v1, . . . , vn} and σ = [v1 7→ m1, . . . , vn 7→ mn] for ground messages mi with
mi 6= mj for all 1 ≤ i, j ≤ n with i 6= j. The resulting ground collection of inequalities N ′ = Nσ is
satisfiable iff N is satisfiable. (And it is simple to check if N ′ is satisfiable as it is ground.) Hence,
if N is satisfiable and C is a simple constraint set, then every solution σ ∈ [[C]] (extended to the
variables in N that do not occur in C) is also a solution for N , provided it maps every variable in
N to different messages. So, to satisfy both C and N , it is sufficient that the intruder is able to
generate finitely many different messages, i.e. the messages m1, . . . ,mn above.

Since our model is untyped, the intruder can achieve this easily, for instance by composing
in different ways the terms that he knows, even when he knows only his name i. That is, for
vars(N) = {v1, . . . , vn} a solution would be σ = [v1 7→ i, v2 7→ 〈i,i〉, . . . , vn 7→ 〈i, . . . 〉]. Now
σ ∈ [[C]] and σ |= N , hence Pσ ∈ [[(P,C,N)]] by definition, which concludes the proof for the
untyped model. In the case of the typed model, the proof proceeds along the same lines since we
can assume, without loss of generality, that the intruder initially knows (or can freshly create) an
unbounded number of messages of each type.

Lemma 4 For a protocol (I,R,AR), if (P,C,N) ∈ reach l(I,R) then C is well-formed.

Proof. The lemma follows from the following stronger invariant on the states that can be reached
with stepl: all reachable states (P,C,N) have the property that

C is well-formed, vars(P ) ⊆ vars(C), and ik(C) ⊆ ik(P ) , (18)

where we introduce the function ik to denote the intruder knowledge for several types of arguments:
ik(P ) = {m | msg(m) ∈ P ∨ i knows(m) ∈ P} for a set P of facts, ik(from(T, IK )) = IK for a
constraint, ik(C) = ∪c∈C ik(c) for a set of constraints, ik(r) = ik(P ) for a rule r with set P of
positive facts in the left-hand side.

Let (P,C,N) be a state that obeys (18), let (P ′, C ′, N ′) ∈ steplr(P,C,N) for some rule r ∈ R,
and let σ be the corresponding substitution according to the definition of step l. Note that we can
safely assume that vars(r)∩vars(P ′, C ′, N ′) = ∅ as succl renames all rule variables. We show that
(P ′, C ′, N ′) obeys (18).

First, observe that in the definition of step l all the facts of P1 (i.e. the positive left-hand side
facts of the rule without the intruder-generated facts ik(r)) are unified under σ with facts of P .
Hence, σ substitutes all those variables of the rule that occur in P1. Due to the form of the rules,
all other variables of the rule r are those variables that occur in ik(r) but nowhere else in the
positive facts of the rule. Let us denote this set of variables with IV . We can thus conclude
that vars(P ′) ⊆ vars(P ) ∪ IV . Furthermore, the constraint set is augmented by the constraint
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c = from(ik(r), ik(P )), i.e. C ′ = C ∪ {c}. Hence, vars(C ′) = vars(C) ∪ IV ⊇ vars(P ′), proving
the second conjunct of (18) for (P ′, C ′, N ′). Moreover, for the new constraint c, it holds that
ik(c) = ik(P ) ⊇ ik(C). It follows that ik(P ′) ⊇ ik(P ) = ik(c) = ik(C ′), proving the third
conjunct of (18) for (P ′, C ′, N ′).

Finally, as C is already well-formed, there is an order on the constraints in C along which
the intruder knowledge increases and all variables are introduced on the left-hand sides of the
constraints. If we extend such an order making c′ the highest constraint in C ′, then these two
properties still hold so that C ′ is also well-formed. The intruder knowledge increases since, as
noted above, ik(c) ⊇ ik(C) and vars(c′) \ vars(C) = IV = vars(ik(r)) \ vars(ik(P )). This proves
the first conjunct of (18) for (P ′, C ′, N ′), and the lemma follows.
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