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Individuals with chronic kidney disease are at increased risk
of premature cardiovascular disease. Among them, many
with elevated low-density lipoprotein cholesterol (LDL-C)
are unable to achieve optimal LDL-C on statins and require
additional lipid-lowering therapy. To study this, we
compared the LDL-C-lowering efficacy and safety of
alirocumab in individuals with hypercholesterolemia with
impaired renal function, defined as eGFR 30–59 ml/min/
1.73 m2, to those without impaired renal function eGFR
‡60 ml/min/1.73 m2. A total of 4629 hypercholesterolemic
individuals without or with impaired renal function, pooled
from eight phase 3 ODYSSEY trials (double-blind
treatments of 24–104 weeks), were on alirocumab 150 mg
or 75/150 mg every two weeks vs. placebo or ezetimibe.
Overall, 10.1% had impaired renal function and over 99%
were receiving statin treatment. Baseline LDL-C in
alirocumab and control groups was comparable in
subgroups analyzed. LDL-C reductions at week 24 ranged
from 46.1 to 62.2% or 48.3 to 60.1% with alirocumab
among individuals with or without impaired renal function,
respectively. Similar reductions were observed for
lipoprotein (a), non-high-density lipoprotein cholesterol,
apolipoprotein B, and triglycerides. Safety data were similar
in both treatment subgroups, regardless of the degree of
CKD. Renal function did not change over time in response
to alirocumab. This post hoc efficacy analysis is limited by
evaluation of alirocumab treatment effects on renal and
lipid parameters by serum biochemistry. Thus, alirocumab
consistently lowered LDL-C regardless of impaired renal
function, with safety comparable to control, among
individuals with hypercholesterolemia who nearly all were
on statin treatment.
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C hronic kidney disease (CKD), characterized by
impaired renal function (IRF), is associated with an
increased risk of cardiovascular disease (CVD),1–3 and

a mixed dyslipidemia phenotype: elevated levels of tri-
glycerides and remnant lipoproteins, and reduced levels of
high-density lipoprotein cholesterol (HDL-C).1 Individuals
with CKD and elevated low-density lipoprotein cholesterol
(LDL-C) are categorized as being at very high risk of
CVD.2,4 Statins are widely prescribed to lower LDL-C in those
with CKD and have been shown in numerous large trials to
reduce LDL-C levels and cardiovascular (CV) events (except
in those on dialysis).1,2,4–11 However, clearance of most statins
is affected by renal function, and most individuals with CKD
are on multiple drugs to treat other conditions (e.g., hypergly-
cemia, hypertension), raising the propensity for drug-drug
interactions. Recent treatment guidelines for kidney disease
recommend lower doses of statins, hence limiting the use of
high-dose statins in those with CKD.1,2,11–13 Therefore, if
further LDL-C reduction is required, additional lipid-
lowering therapies may be needed. The American College of
Cardiology expert consensus decision pathway recommends
the addition of proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors or ezetimibe to maximally tolerated statin
therapy in high-risk patients with atherosclerotic CVD and
CKD with <50% LDL-C reduction on statins, including
high-intensity statins.14

Alirocumab is a monoclonal antibody to PCSK9 that
reduces LDL-C levels significantly among high to very high risk
individuals, including those with very high baseline LDL-C.15,16

In the phase 3 ODYSSEY clinical program among individuals
with hypercholesterolemia, alirocumab reduced LDL-C
levels by up to 61% compared with controls and was
1
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generally well tolerated.15,17 PCSK9 is expressed transiently in
the kidneys and may play a role in kidney development.18

Increased plasma PCSK9 levels are observed in disorders of
the glomerular filtration barrier, such as in individuals
with nephrotic syndrome.19,20 Further, a reduction in PCSK9
levels observed during remission in these individuals correlated
with decreased levels of atherogenic lipids, suggesting
that reducing PCSK9 may treat dyslipidemia in those with
kidney disease.19 Therefore, it is important to evaluate the
safety and efficacy of alirocumab among individuals with IRF.
The aim of this analysis was to determine the lipid-lowering
efficacy and safety of alirocumab among individuals with or
without IRF and to assess the impact of alirocumab on renal
function over time.
RESULTS
IRF analysis (pool of 8 trials)
Overall, 10.5% (315/3010) of individuals randomized to
alirocumab and 9.4% (152/1619) of those randomized to
control were categorized as having IRF. The number of
individuals with IRF from each of the 8 trials is shown in
Table 1. In the subgroups with and without IRF, baseline
characteristics were similar between the alirocumab and
control groups (Table 2). Individuals with IRF had a mean
estimated glomerular filtration rate (eGFR) of 51 ml/min
per 1.73 m2 in both treatment groups, indicating that, on
Table 1 | Trials included in this analysis

Comparison Study
Duration
(wk)

8 trials included in the IRF analysis
Alirocumab 150 mg Q2W
versus placebo

LONG TERM17 (NCT01507831) 78
HIGH FH16 (NCT01617655) 78
LONG TERM þ HIGH FH

Alirocumab 75/150 mg Q2W
versus placebo

FH I35 (NCT01623115) 78
FH II35 (NCT01709500)

COMBO I36 (NCT01644175) 52
FH I þ FH II þ COMBO I

Alirocumab 75/150 mg Q2W
versus ezetimibe

COMBO II37 (NCT01644188) 104

OPTIONS I38 (NCT01730040) 24
OPTIONS II39 (NCT01730053) 24
COMBO II þ OPTIONS I þ

OPTIONS II

Additional 2 trials included in the renal safety analysis (10 trials total)
Alirocumab 75/150 mg Q2W
versus ezetimibe

MONO40 (NCT01644474)e 24
ALTERNATIVE41 (NCT01709513)e 24

MONO þ ALTERNATIVE

eGFR, estimated glomerular filtration rate; IRF, impaired renal function; LLT, lipid-loweri
aIRF was defined based on medical history: IRF (eGFR: 30–59 ml/min per 1.73 m2); witho
function (eGFR: $90 ml/min per 1.73 m2).
bControl was placebo in 5 trials (LONG TERM, FH I and II, HIGH FH, and COMBO I) and
cMaximally tolerated statin was defined as atorvastatin 40–80 mg, rosuvastatin 20–40 m
using lower doses (e.g. intolerance).
dAtorvastatin 20–40 mg in OPTIONS I and rosuvastatin 10–20 mg in OPTIONS II.
eIndividuals from MONO and ALTERNATIVE were included only in the analyses of renal
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average, these patients had slightly to moderately decreased
renal function, belonging to CKD category G3a per CKD
treatment guidelines.2 Individuals with IRF were slightly
older and had a higher incidence of diabetes at baseline
compared with those without IRF. Baseline levels of LDL-C,
non–HDL-C, and apoB were lower among individuals with
versus those without IRF, and there was a lower proportion
of individuals with IRF with heterozygous familial hyper-
cholesterolemia (Table 2). Individuals with IRF had
higher levels of triglycerides and lipoprotein (a) (Lp[a]) at
baseline compared with those who did not have IRF. A lower
proportion of individuals with versus without IRF were
receiving high-intensity statin treatment (40–80 mg ator-
vastatin, 20–40 mg rosuvastatin, or 80 mg simvastatin
[Table 2]).
Efficacy by IRF status
Efficacy was analyzed among individuals with versus without
IRF in 3 pools by alirocumab dose and control. In the
placebo-controlled pool with alirocumab at a starting dose of
75 mg every 2 weeks (Q2W), 20% (11/55) of individuals with
versus 35.9% (217/605) without IRF had their alirocumab
dose increased to 150 mg Q2W. In the ezetimibe-controlled
pool with alirocumab starting at 75 mg Q2W, 11.4% (8/70)
of individuals with versus 18.5% (104/561) without IRF were
increased to the higher dose of 150 mg Q2W.
Background therapy

IRF,a N (%) Without IRF,a N (%)

Alirocumab Controlb Alirocumab Controlb

N ¼ 315 N ¼ 152 N ¼ 2695 N ¼ 1467
Maximally tolerated
statinc � other LLT

176 (55.9) 74 (48.7) 1377 (51.1) 714 (48.7)
4 (1.3) 1 (0.7) 68 (2.5) 34 (2.3)

180 (57.1) 75 (49.3) 1445 (53.6) 748 (51.0)

20 (6.3) 9 (5.9) 303 (11.2) 154 (10.5)
2 (0.6) 1 (0.7) 165 (6.1) 81 (5.5)

37 (11.7) 24 (15.8) 172 (6.4) 83 (5.7)
59 (18.7) 34 (22.4) 640 (23.7) 318 (21.7)

Maximally tolerated
statin (no other LLT

allowed)

61 (19.4) 23 (15.1) 418 (15.5) 218 (14.9)

Stable statin dosed �
other LLT

7 (2.2) 14 (9.2) 97 (3.6) 88 (6.0)
8 (2.5) 6 (3.9) 95 (3.5) 95 (6.5)

76 (24.1) 43 (28.3) 610 (22.6) 401 (27.3)

N ¼ 321 N ¼ 160 N ¼ 2867 N ¼ 1635
No statins � other

LLT
0 0 52 (1.8) 51 (3.1)

6 (1.9) 8 (5.0) 120 (4.2) 117 (7.2)
6 (1.9) 8 (5.0) 172 (6.0) 168 (10.3)

ng therapy; Q2W, every 2 weeks.
ut IRF included individuals with eGFR: 60–89 ml/min per 1.73 m2, and normal kidney

ezetimibe in 3 trials (COMBO II and OPTIONS I and II).
g, or simvastatin 80 mg daily unless there was an investigator-approved reason for

function over time.

Kidney International (2018) -, -–-



Table 2 | Baseline characteristics of individuals pooled from eight phase 3 trials by IRF status (randomized population)

Characteristic

IRFa Without IRFa

Alirocumab (N [ 315) Controlb (N [ 152) Alirocumab (N [ 2695) Controlb (N [ 1467)

Age, yr, mean (SD) 67.3 (9.0) 67.5 (10.1) 58.4 (11.2) 58.9 (10.8)
Males, N (%) 178 (56.5) 88 (57.9) 1720 (63.8) 918 (62.6)
Race, white, N (%) 290 (92.1) 132 (86.8) 2431 (90.2) 1325 (90.3)
BMI, kg/m2, mean (SD) 30.8 (6.1) 31.3 (6.1) 30.1 (5.6) 30.3 (5.6)
Individuals on statin, N (%) 314 (99.7) 152 (100) 2693 (99.9) 1466 (99.9)

High-intensity statin,c N (%) 159 (50.5) 77 (50.7) 1600 (59.4) 869 (59.2)
Individuals on additional non-statin LLT, n (%) 76 (24.1) 38 (25.0) 846 (31.4) 466 (31.8)

Ezetimibe, N (%) 29 (9.2) 15 (9.9) 508 (18.8) 276 (18.8)
Diabetes, N (%) 146 (46.3) 79 (52.0) 793 (29.4) 442 (30.1)
HeFH, N (%) 34 (10.8) 18 (11.8) 830 (30.8) 419 (28.6)
Proteinuria, N (%)

Negative 193 (61.3) 89 (58.6) 1667 (61.9) 925 (63.1)
Trace 66 (21.0) 31 (20.4) 545 (20.2) 306 (20.9)
Positive 46 (14.6) 18 (11.8) 229 (8.5) 119 (8.1)
Missing 10 (3.2) 14 (9.2) 254 (9.4) 117 (8.0)

Hs-CRP, mg/dl mean (SD) 0.35 (0.55) 0.41 (0.70) 0.34 (0.66) 0.34 (0.75)
Lipids, mg/dl, mean (SD)

LDL-C (calculated) 108.1 (33.8) 107.4 (39.3) 124.6 (45.5) 122.2 (43.9)
Non-HDL-C 139.6 (39.2) 138.5 (44.4) 153.4 (48.7) 151.2 (47.8)
HDL-C 49.6 (13.6) 48.6 (13.2) 49.6 (13.3) 49.5 (13.0)
Triglycerides, median (Q1:Q3) 143.0 (103.5:205.0) 148.0 (103.0:201.5) 125.7 (91.0:176.1) 126.5 (93.0:177.0)
Lp(a), median (Q1:Q3) 29.1 (8.1:84.0) 28.4 (10.3:65.0) 24.6 (8.0:69.0) 23.0 (7.3:67.5)
ApoB 93.5 (23.8) 93.1 (26.8) 103.0 (28.3) 101.6 (27.7)
ApoA1 146.6 (25.8) 145.4 (26.2) 144.5 (25.3) 144.6 (26.6)

Renal function at baseline (safety population)
N ¼ 313 N ¼ 151 N ¼ 2691 N ¼ 1466

eGFR, ml/min per 1.73 m2, mean (SD) 51.3 (11.0) 51.2 (11.0) 79.0 (17.0) 79.1 (17.8)
BUN (mmol/l), mean (SD) 7.8 (2.6) 8.5 (3.7) 5.9 (1.7) 5.8 (1.7)
Cr (mmol/l), mean (SE) 114.9 (1.5) 116.6 (2.4) 83.0 (0.4) 82.7 (0.5)

Apo, apolipoprotein; BMI, body mass index; BUN, blood urea nitrogen; Cr, creatinine; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol;
HeFH, heterozygous familial hypercholesterolemia; hs-CRP, high-sensitivity C-reactive protein; IRF, impaired renal function; LDL-C, low-density lipoprotein cholesterol; LLT,
lipid-lowering therapy; Lp(a); lipoprotein (a).
aIRF was defined based on medical history: IRF (eGFR: 30–59 ml/min per 1.73 m2); without IRF included individuals with eGFR: 60–89 ml/min per 1.73 m2, and normal kidney
function (eGFR: $90 ml/min per 1.73 m2).
bControl was placebo in 5 trials (LONG TERM, FH I and II, HIGH FH, and COMBO I) and ezetimibe in 3 trials (COMBO II and OPTIONS I and II).
cHigh-intensity statin corresponds to atorvastatin 40–80 mg, rosuvastatin 20–40 mg, or simvastatin 80 mg.

PP Toth et al.: Alirocumab efficacy and safety in impaired renal function c l i n i ca l i nves t iga t ion
Significant reductions in LDL-C were observed with
alirocumab versus placebo or ezetimibe treatment at week 24
in all 3 pools analyzed (Figure 1a). In the pools on
alirocumab 75/150 mg Q2W, similar reductions in LDL-C
were observed among individuals with and without IRF
(nonsignificant interaction P values; Figure 1a). In the pool
with alirocumab 150 mg Q2W versus placebo, the mean
change in LDL-C with alirocumab was –62.2% and –60.1%
among individuals with and without IRF, respectively
(interaction P value ¼ 0.016, possibly due to the slight
apparent increase from baseline in LDL-C observed in the
control-treated group of those with IRF). The mean differ-
ence in LDL-C change between alirocumab and control was
greater in the placebo-controlled pools compared with the
ezetimibe-controlled pools (Figure 1a).

In the placebo-controlled pools, a significant proportion of
individuals on alirocumab versus placebo reached prespecified
LDL-C goals of <70 mg/dl or <100 mg/dl, depending on CV
risk, ranging from 65.4% to 82.7% versus 6.9% to 11.5% in
those with IRF, and from 76.1% to 78.5% versus 6.4% to 8.1%
in those without IRF (Table 3). In the ezetimibe-controlled
pool, the proportion of individuals reaching prespecified
Kidney International (2018) -, -–-
LDL-C goals with alirocumab was 82.1% versus 66.1% with
ezetimibe in those with IRF and 77.5% versus 50.9% in those
without IRF. No significant interaction was observed in the
analysis of the proportion of individuals reaching LDL-C goals
based on IRF status (Table 3).

Significant changes in apoB, non-HDL-C, Lp(a), and
HDL-C were observed on alirocumab versus placebo or
ezetimibe treatment at week 24 in all 3 pools analyzed and
were independent of IRF status in most of the subgroups
analyzed by alirocumab dosage and control (nonsignificant
interaction P values; Figure 1b, c, e, and f). Significant
interaction P values (from comparing efficacy data based on
IRF status) were observed only in the placebo-controlled
subgroups with alirocumab 150 mg Q2W for apoB
(interaction P value ¼ 0.003; Figure 1b) and with alirocumab
75/150 mg Q2W for non–HDL-C (interaction P value ¼
0.028; Figure 1c). In the ezetimibe-controlled subgroups with
alirocumab 75/150 mg Q2W, the comparison of percentage
of change in HDL-C based on IRF status resulted in an
interaction P value ¼ 0.049. Similar to the observed changes
in LDL-C in the placebo-controlled subgroups with
alirocumab 150 mg Q2W, this was possibly due to a
3



Figure 1 | Percentage of changes from baseline to week 24 in (a) LDL-C, (b) apoB, (c) non–HDL-C, (d) triglycerides, (e) Lp(a), and (f) HDL-C
by IRF status (intention-to-treat population; pool of eight phase 3 trials). Pool alirocumab 150 versus placebo (with statins): LONG TERM,
HIGH FH. Pool alirocumab 75/150 versus placebo (with statins): COMBO I, FH I, FH II. Pool alirocumab 75/100 versus ezetimibe (with statins):
COMBO II, OPTIONS I, OPTIONS II. Adjusted means (SE) taken from multiple imputation followed by robust regression. Interaction P values
compare the LDL-C percentage of reduction (difference vs. control) for the IRF and without IRF subgroups. IRF were defined based on medical
history: with IRF included those with eGFR 30–59 ml/min per 1.73 m2, without IRF included those with eGFR 60–89 ml/min per 1.73 m2, and
eGFR $90 ml/min per 1.73 m2. ALI, alirocumab; Apo, apolipoprotein; CI, confidence interval; eGFR, estimated glomerular filtration rate; EZE,
ezetimibe; IRF, impaired renal function; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein
(a); LS, least squares; PBO, placebo. (Continued)

c l i n i ca l i nves t iga t i on PP Toth et al.: Alirocumab efficacy and safety in impaired renal function
percentage increase in these lipids observed in the placebo
groups of these pools. No significant interaction was observed
based on IRF status in the percentage change from baseline at
week 24 in triglycerides and Lp(a) levels with alirocumab
4

versus control treatment in all 3 subgroups analyzed
(Figure 1d and e).

Significant reductions from baseline in LDL-C levels with
alirocumab versus control treatment were observed at
Kidney International (2018) -, -–-



Figure 1 | (Continued)
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week 24, regardless of baseline proteinuria status (nonsig-
nificant interaction P values; Figure 2). Treatment with
alirocumab 150 mg Q2W versus control resulted in sustained
reductions in LDL-C, apoB, non-HDL-C, triglycerides, and
Lp(a), and increases in HDL-C over time, which were com-
parable among individuals with and without IRF (Figure 3).
Similar results were observed with alirocumab 75/150 mg
Q2W versus placebo or ezetimibe for LDL-C, apoB, non-
HDL-C, Lp(a) and HDL-C (Supplementary Figures S1 and
S2). Absolute LDL-C reductions from baseline among in-
dividuals with and without IRF on alirocumab 150 mg Q2W
Kidney International (2018) -, -–-
were 74.7 mg/dl (vs. 6.7 mg/dl placebo) and 75.0 mg/dl (vs.
3.8 mg/dl), respectively, at week 24. In the subgroup with
alirocumab 75/150 mg Q2W versus placebo, absolute LDL-C
reductions from baseline to week 24 among individuals with
and without IRF were from 59.1 mg/dl (vs. 12.1 mg/dl
placebo) and 65.4 mg/dl (vs. 6.1 mg/dl), respectively. In
the subgroup with alirocumab 75/150 mg Q2W versus
ezetimibe, absolute LDL-C reductions among individuals
with and without IRF were 54.1 mg/dl (vs. 29.5 mg/dl
ezetimibe) and 53.8 mg/dl (vs 23.1 mg/dl), respectively,
at week 24.
5



Table 3 | Proportion of individuals reaching LDL-C goalsa at
week 24 pooled from eight phase 3 trials by IRF status (ITT
population)

Study pool

IRF Without IRF

Alirocumab Control Alirocumab Control

Percentage of individuals
achieving LDL-C goals

Alirocumab 150 versus
placebo

82.7 11.5 78.5 8.1

N 178 74 1423 741
Odds ratio (95% CI) 56.0 (23.3–134.6) 64.3 (46.3–89.5)
Interaction P value 0.7678

Alirocumab 75/150
versus placebo

65.4 6.9 76.1 6.4

N 58 34 635 316
Odds ratio (95% CI) 25.8 (5.5–121.2) 63.8 (37.1–109.6)
Interaction P value 0.2775

Alirocumab 75/150
versus ezetimibe

82.1 66.1 77.5 50.9

N 75 42 594 394
Odds ratio (95% CI) 3.0 (1.1–8.2) 5.0 (3.6–6.9)
Interaction P value 0.3555

CI, confidence interval; IRF, impaired renal function; ITT, intention-to-treat; LDL-C,
low-density lipoprotein cholesterol.
Proportions are estimated from multiple imputation. Odds ratios are estimated from
logistic regression.
aLDL-C goal of <70 mg/dl for individuals at very-high cardiovascular risk and
<100 mg/dl for individuals at high cardiovascular risk. Pool alirocumab 150 versus
placebo (with statins): LONG TERM, HIGH FH. Pool alirocumab 75/150 versus placebo
(with statins): COMBO I, FH I, FH II. Pool alirocumab 75/150 versus ezetimibe (with
statins): COMBO II, OPTIONS I, OPTIONS II.
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Safety by IRF status
The overall incidence of treatment-emergent adverse effects
was similar in the alirocumab and control subgroups with IRF
(82.1% and 82.8%, respectively) and in those without IRF
(78.4% and 78.2%, respectively; Table 4). Serious adverse
events occurred at a higher rate among individuals with IRF
compared with those without IRF, although the rate was
comparable between the alirocumab and control subgroups
(Table 4). Among individuals with IRF, treatment-emergent
adverse effects led to discontinuation in 10.5% of the
alirocumab-treated group versus 7.3% of the control-treated
group (P ¼ 0.2617), whereas in those without IRF, 6.2% of
Figure 2 | Percentage of change in low-density lipoprotein choleste
status (intention-to-treat population; pool of ten phase 3 trials). LS m
analysis. CI, confidence interval; LS, least squares.
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the alirocumab-treated group versus 5.9% of the control-
treated group experienced treatment-emergent adverse
effects leading to discontinuation (P ¼ 0.7271, Table 4).
Among individuals with IRF, major adverse CV events were
seen in 2.6% of alirocumab-treated versus 5.3% of control-
treated individuals (hazard ratio: 0.420, 95% confidence in-
terval 0.158–1.121). Among individuals without IRF, major
adverse CV events were seen in 2.1% of alirocumab-treated
versus 2.1% of control-treated individuals (hazard ratio:
0.938, 95% confidence interval 0.605–1.455). Injection-site
reactions were seen in 5.1% of those on alirocumab versus
2.0% of those on control treatment with IRF (hazard ratio:
2.568, 95% confidence interval 0.748–8.816) and in 6.4% of
alirocumab versus 4.4% of control group without IRF (hazard
ratio: 1.404, 95% confidence interval 1.055–1.869, Table 4).
The rates of major adverse CV events and injection site
reactions were not dependent on IRF status (nonsignificant
interaction P values, Table 4). The most common treatment-
emergent adverse effects in alirocumab-treated individuals
were nasopharyngitis and upper respiratory tract infection
among individuals with and without IRF (Table 4).

Effect on renal function over the study period (pool of 10
trials)
In the overall analysis of renal safety involving ten phase 3
trials, 68% of individuals were negative, 22% had trace, and
9% were positive for dipstick proteinuria across all treatment
groups. Mean eGFRs from baseline to week 24 were stable in
alirocumab and control arms, with or without the presence of
proteinuria (Table 5). Mean eGFR was stable from baseline up
to 104 weeks in alirocumab and control arms regardless of
IRF status in a pooled analysis from eight phase 3 trials based
on IRF status (Figure 4). Similar results were observed for
mean blood urea nitrogen and creatinine levels in the sub-
groups analyzed by IRF status (Supplementary Table S1,
Supplementary Figure S3). In an overall safety analysis of 4
phase 2 and 5 placebo-controlled phase 3 trials, 1 alirocumab-
treated individual (1/2258 [<0.1%]) versus 2 placebo-treated
individuals (2/1145 [0.2%]) reached end-stage renal disease
rol from baseline to week 24 according to baseline proteinuria
eans and SE taken from mixed-effects model with repeated-measures
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Figure 3 | Percentage of change from baseline of lipoproteins over time by IRF status in 2 trials using alirocumab 150 mg Q2W versus
placebo (a) LDL-C, (b) apoB, (c) non–HDL-C, (d) triglycerides, (e) Lp(a), and (f) HDL-C (intention-to-treat population). Alirocumab 150 mg
Q2W: LONG TERM, HIGH FH. ApoB, apolipoprotein B; HDL-C, high-density lipoprotein cholesterol; IRF, impaired renal function; LDL-C, low-
density lipoprotein cholesterol; Lp(a), lipoprotein (a); LS, least squares.
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(ESRD). There were no cases of ESRD in the pooled analysis
of the 5 ezetimibe-controlled trials.

There was no significant difference in the percentage of
change from baseline in high-sensitivity C-reactive protein
(hs-CRP) at week 24 with alirocumab and control treatment
in all groups analyzed with the exception of individuals
without IRF treated with alirocumab 75/150 mg Q2W versus
ezetimibe (�0.5 vs. �15.6%; Supplementary Figure S4).
Percentages of change in hs-CRP levels from baseline to week
24 analyzed by alirocumab doses and control treatments were
similar in those with and without IRF (nonsignificant inter-
action P values; Supplementary Figure S4). Furthermore,
hs-CRP levels were similar up to week 78 in the alirocumab
150 mg Q2W versus placebo treatment groups regardless of
IRF status (Supplementary Figure S5).
Kidney International (2018) -, -–-
Results similar to the overall IRF analysis were obtained in
a separate subanalysis of individuals with type 2 diabetes
mellitus with and without IRF (Supplementary Tables S2–S5
and Supplementary Figures S6 and S7).

DISCUSSION
Individuals with IRF are at high risk of future CV events. The
more intensive lipid-lowering resulting from alirocumab
treatment compared with statins might provide an important
new tool for CVD prevention in this population. In an analysis
of 4629 individuals from 8ODYSSEY phase 3 trials treated with
alirocumab or control (placebo or ezetimibe), mostly on
background statin with or without other LLT, alirocumab
substantially lowered LDL-C levels regardless of the presence or
absence of IRF. Absolute LDL-C reductions observed with
7



Table 4 | Safety data pooled from eight phase 3 trials by IRF status (safety population)

n (%)

IRFa Without IRFa

Alirocumab (N ¼ 313) Control (N ¼ 151) Alirocumab (N ¼ 2691) Control (N ¼ 1466)

TEAEs 257 (82.1) 125 (82.8) 2111 (78.4) 1146 (78.2)
Treatment-emergent SAEs 72 (23.0) 39 (25.8) 447 (16.6) 238 (16.2)
TEAEs leading to death 2 (0.6) 4 (2.6) 20 (0.7) 18 (1.2)

P valueb (vs. control) 0.0911 0.1167
TEAEs leading to discontinuations 33 (10.5) 11 (7.3) 167 (6.2) 87 (5.9)

P valueb (vs. control) 0.2617 0.7271
Safety events of special interest
Adjudicated CV eventc 21 (6.7) 9 (6.0) 105 (3.9) 53 (3.6)

HR (95% CI) 1.032 (0.472–2.254) 1.033 (0.742–1.438)
Interaction P valued 0.9973

Major adverse CV eventse 8 (2.6) 8 (5.3) 56 (2.1) 31 (2.1)
HR (95% CI) 0.420 (0.158–1.121) 0.938 (0.605–1.455)
Interaction P valued 0.1433

Injection-site reaction (HLT) 16 (5.1) 3 (2.0) 171 (6.4) 65 (4.4)
HR (95% CI) 2.568 (0.748–8.816) 1.404 (1.055–1.869)
Interaction P valued 0.3500

General allergic TEAE (CMQ) 25 (8.0) 16 (10.6) 250 (9.3) 113 (7.7)
HR (95% CI) 0.706 (0.376–1.322) 1.177 (0.942–1.470)
Interaction P valued 0.1324

Pruritus (PT)f 4 (1.3) 1 (0.7) 32 (1.2) 5 (0.3)
General allergic serious TEAE (CMQ)f 3 (1.0) 0 11 (0.4) 6 (0.4)
Neurocognitive disorders (CMQ) 5 (1.6) 3 (2.0) 23 (0.9) 12 (0.8)

HR (95% CI) 0.692 (0.165–2.901) 1.021 (0.507–2.054)
Interaction P valued 0.6332

ALT >3 x ULN (PCSA)f 3 (1.0) 2 (1.3) 53 (2.0) 21 (1.4)
TEAEs by preferred term in $5% of individuals in any group
Nasopharyngitis 31 (9.9) 10 (6.6) 292 (10.9) 155 (10.6)
Urinary tract infection 28 (8.9) 16 (10.6) 117 (4.3) 68 (4.6)
Upper respiratory tract infection 24 (7.7) 17 (11.3) 191 (7.1) 107 (7.3)
Fall 23 (7.3) 5 (3.3) 60 (2.2) 49 (3.3)
Hypertension 20 (6.4) 9 (6.0) 104 (3.9) 60 (4.1)
Injection-site reaction 16 (5.1) 3 (2.0) 169 (6.3) 64 (4.4)
Influenza 10 (3.2) 3 (2.0) 166 (6.2) 78 (5.3)
Dizziness 18 (5.8) 5 (3.3) 96 (3.6) 68 (4.6)
Headache 17 (5.4) 5 (3.3) 136 (5.1) 75 (5.1)
Back pain 16 (5.1) 8 (5.3) 134 (5.0) 78 (5.3)
Arthralgia 13 (4.2) 7 (4.6) 137 (5.1) 84 (5.7)
Myalgia 9 (2.9) 6 (4.0) 131 (4.9) 58 (4.0)
Diarrhea 15 (4.8) 12 (7.9) 126 (4.7) 58 (4.0)
Bronchitis 13 (4.2) 9 (6.0) 120 (4.5) 62 (4.2)
Osteoarthritis 13 (4.2) 10 (6.6) 63 (2.3) 37 (2.5)

ALT, alanine aminotransferase; CI, confidence interval; CKD, chronic kidney disease; CMQ, custom MedDRA query; CV, cardiovascular; eGFR, estimated glomerular filtration rate;
IRF, impaired renal function; HLT, high-level group term; HR, hazard ratio; PCSA, Potentially Clinically Significant Abnormalities; PT, preferred term; SAE, serious adverse event;
TEAE, treatment-emergent adverse event defined as any adverse event that developed, worsened, or became serious during the period from first to last injection þ70 days (or
to the first injection in the open-label extension, whichever came first); ULN, upper limit of normal.
Values shown are N (%).
aIRF was defined based on medical history: IRF (eGFR: 30–59 ml/min per 1.73 m2); without IRF included individuals with mild CKD (eGFR: 60–89 ml/min per 1.73 m2), and
normal kidney function (eGFR: $90 ml/min per 1.73 m2).
bThe P value was calculated from a c2 test if all expected counts were >5. Otherwise, the Fisher exact test was used.
cIncludes coronary heart disease death, nonfatal myocardial infarction, fatal and nonfatal ischemic stroke, unstable angina requiring hospitalization, congestive heart failure
requiring hospitalization, and ischemia-driven coronary revascularization procedure.
dInteraction P value was type 3 P value calculated from Cox regression model with treatment, impaired renal status, and treatment-by-impaired renal status interaction as
covariates, stratified by study.
eExcludes congestive heart failure requiring hospitalization and ischemia-driven coronary revascularization procedure.
fHazard ratio and P value are not calculated for these parameters due to a lack of derived data in the time-to-event analysis dataset.
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alirocumab at week 24 were comparable to those with versus
without IRF among the subgroups analyzed by alirocumab
dosage and control, suggesting a similar potential effect on CV
risk reduction.21 Reduction of LDL-Cbyw30mg/dl in patients
with moderate to severe CKD on statin therapy plus ezetimibe
versus placebo has been shown to reduce the incidence ofmajor
atherosclerotic events by 17%.8 The alirocumab safety profile
8

was consistent regardless of IRF status and comparable to that
of control treatment. Although in our analysis we did not
observe an increased risk of ESRD with alirocumab versus
control treatment, the total number of events was too small to
draw a meaningful conclusion.

Alirocumab also consistently reduced apoB, non–HDL-C,
and Lp(a), independent of IRF status. Moderate reductions in
Kidney International (2018) -, -–-



Table 5 | Mean change in eGFR from baseline to week 24
according to baseline proteinuria status (safety population;
pool of ten phase 3 trials)

Baseline proteinuria

Placebo controlled Ezetimibe controlled

Placebo Alirocumab Ezetimibe Alirocumab

eGFR, ml/min per 1.73 m2,
mean (SD)
Negative �0.1 (10.9) 0.5 (10.4) 0.1 (9.6) 0.3 (10.7)
N 660 1252 311 485
Trace �1.0 (9.7) �0.2 (10.9) –0.6 (11.7) 0.9 (10.1)
N 194 426 126 141
Positive 1.6 (9.4) 1.1 (12.7) –0.3 (10.2) –3.4 (13.5)
N 79 177 35 61

eGFR, estimated glomerular filtration rate.
Data are mean and SD, taken from a mixed-effects model with repeated-measures
analysis.
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triglycerides and moderate increases in HDL-C were also
observed with alirocumab treatment, irrespective of IRF sta-
tus. These data are consistent with previous reports in the
overall patient population and subgroup analyses.15,17,22

Non–HDL-C and apoB may correlate more closely with
CVD risk than LDL-C in individuals with IRF and has been
proposed as an alternative treatment target.1,23 Elevated Lp(a)
levels among individuals with IRF have been shown to predict
eGFR decline prospectively and are associated with increased
CV risk.24,25 Data on Lp(a) reduction with statins or other
LDL-C–lowering therapies have not been consistent.25 As
elevated Lp(a) levels are generally observed in individuals
with IRF, potentially mediating atherosclerotic CVD, the
substantial reduction in Lp(a) seen with alirocumab versus
control in our analysis suggests that alirocumab may reduce
CVD in those individuals with IRF compared with that of
other lipid-lowering therapies. Different apo(a) isoforms were
not assessed in these trials; however, an independent study did
not find an association between apo(a) isoforms and the
reduction of Lp(a) with alirocumab.26

In our analysis, alirocumab was generally well tolerated
and had no effect on renal function over the study period
Figure 4 | Mean estimated glomerular filtration rate (eGFR) values ov
pool of eight phase 3 trials).
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compared with control, regardless of baseline renal function
status. Individuals with diabetes often develop CKD and are
at high risk of CVD.27,28 Alirocumab did not affect eGFR
levels over the study period in an analysis of individuals with
diabetes with or without IRF. We found no evidence of an
adverse impact on renal function in these individuals with
IRF treated with alirocumab versus control. The metabolism
of alirocumab, as a monoclonal antibody, is not expected to
be affected by the glomerular filtration rate. However, because
PCSK9 is expressed in the kidney,18 the assessment of safety
and efficacy among individuals with IRF was important. To
the best of our knowledge, the impact of PCSK9 inhibitors
among individuals with IRF has not been previously reported.
Individuals with IRF at high or very high CV risk who are not
able to reach optimal LDL-C values on statins or other lipid-
lowering therapies may benefit from treatment with PCSK9
inhibitors. Our results indicate that alirocumab could be an
effective option for reducing LDL-C, apoB, non–HDL-C, and
Lp(a) in individuals with IRF.

Elevated hs-CRP levels are associated with increased CVD
risk and have been used as an inflammatory marker in several
statin trials.29–31 In our pooled analysis of eight phase 3 trials,
hs-CRP levels were unchanged with alirocumab treatment,
regardless of IRF status, indicating that this inflammatory
marker of CVD risk is unaffected by alirocumab treatment
among individuals with or without IRF. A recent meta-
analysis of randomized, controlled trials assessing changes
in hs-CRP concentrations during treatment with PCSK9
inhibitors found no significant effect of various doses and
types of PCSK9 inhibitors on hs-CRP levels.32

There are some limitations to this study as individuals with
severe CKD (eGFR <30 ml/min per 1.73 m2) or ESRD were
not recruited for the trials that were analyzed. Calculation of
eGFR in our analysis was performed by the Modification of
Diet in Renal Disease (MDRD) equation and not by the CKD-
Epidemiology Collaboration (CKD-EPI) equation, which is
considered to have a small improvement in precision and
greater accuracy, especially at higher eGFR values.2 As eGFR
er time by impaired renal function (IRF) status (safety population,
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values were constant during the course of our analysis in
groups analyzed by IRF status (eGFR ¼ 30–59 ml/min per
1.73 m2 for $3 months), this limitation most likely had a
minimal impact on our results. Whether the significant
reductions seen in LDL-C and other atherogenic lipids in
individuals with IRF will lower CV risk will need to be
determined. The ongoing ODYSSEY OUTCOMES study in
w18,000 individuals with recent acute coronary syndrome
randomized to receive alirocumab or placebo has an expected
follow-up period of at least 2 years and will provide an
evaluation of the effect of alirocumab on major adverse CV
events.33

METHODS
This analysis was performed in 2 parts from ten phase 3 randomized,
controlled ODYSSEY trials. For all efficacy and safety analyses in
subgroups by IRF status, individuals were pooled from eight phase 3
trials based on impairment of renal function. Individuals were
pooled by alirocumab dosage and control treatment used, with a
threshold of 10 individuals with IRF in each treatment group
considered to be included in the efficacy analysis (i.e., alirocumab
150 mg Q2W vs. placebo, alirocumab 75/150 mg Q2W vs. placebo,
and alirocumab 75/150 mg Q2W vs. ezetimibe) (all on background
statins [Table 1]). The other 2 trials, MONO and ALTERNATIVE,
comprising the pool of individuals who were treated with
alirocumab 75/150 mg Q2W versus ezetimibe (without any back-
ground statins) were not included in the efficacy analysis
because <10 individuals in each treatment group had IRF (Table 1).
An overall safety analysis was performed in all individuals pooled by
control (placebo or ezetimibe) from all ten phase 3 trials (Table 1).

Table 1 summarizes the key design criteria of the trials included
in this pooled analysis. All trials had similar designs, with double-
blind treatment periods of 24 to 104 weeks, and enrolled
individuals with hypercholesterolemia. Individuals were randomized
to either alirocumab or control in a 2:1 ratio in LONG TERM, FH I,
FH II, HIGH FH, COMBO I, and COMBO II trials (1:1 in the other
trials). Two trials (LONG TERM and HIGH FH, N ¼ 2448)
compared alirocumab 150 mg Q2W with placebo. The other 8 trials
(COMBO I, FH I, FH II, COMBO II, OPTIONS I, OPTIONS II,
MONO, and ALTERNATIVE, N ¼ 2598) used a dose adjustment
strategy whereby the alirocumab starting dose of 75 mg Q2W was
increased to 150 mg Q2W at study week 12 if prespecified LDL-C
levels were not attained by week 8 (indicated as alirocumab
75/150 mg in the text). Control was placebo in the LONG TERM,
FH I, FH II, HIGH FH, and COMBO I trials and ezetimibe in the
others. Most individuals were receiving background maximally
tolerated statin therapy with or without other lipid-lowering ther-
apies; there was no background statin therapy in the MONO and
ALTERNATIVE studies.

IRF, as measured by the 4-variable MDRD equation,2,34 was
defined as eGFR ¼ 30–59 ml/min per 1.73 m2 for $3 months
(including screening visit and as reported by the investigator). This
corresponds to eGFR categories used to define “mild-to-moderate”
and “moderate-to-severe” CKD in treatment guidelines.2 Individuals
with eGFR $60 ml/min per 1.73 m2 or otherwise not meeting the
definition of IRF were included in the “without IRF” subgroups. All
studies excluded individuals with an eGFR <30 ml/min per 1.73 m2.

LDL-C percentage changes from baseline were assessed in pools
of studies based on alirocumab dosage (75/150 mg Q2W or 150 mg
Q2W) and control (placebo or ezetimibe, Table 1). The percentage of
10
change from baseline in calculated LDL-C, apo B, non–HDL-C, and
HDL-C was analyzed using an intent-to-treat analysis (including all
lipid data irrespective of adherence to study treatment) and a mixed-
effects model with a repeated-measures approach to obtain least-
squares means and SEs. The models included the fixed categorical
effects of treatment group, randomization, time point, IRF status,
treatment-by-time point interaction, strata-by-time point interac-
tion, IRF status-by-time point interaction, IRF status-by-treatment
interaction, and IRF status-by-treatment-by-time point interaction,
as well as the continuous fixed covariates of the baseline LDL-C value
and baseline value-by-time point interaction. Adjusted mean and SE
for triglycerides, Lp(a), and hs-CRP (endpoints anticipated to have a
nonnormal distribution) were estimated by multiple imputation and
robust regressions using M-estimation. The robust regression models
included the following covariates: treatment group, randomization
strata, IRF status, treatment group by IRF status interaction, and
baseline value(s). The homogeneity of treatment effect across in-
dividuals with or without IRF was assessed using an interaction test.
An interaction P value >0.05 was considered as insignificant inter-
action between groups assessed. The percentage of change from
baseline over the duration of each study was also assessed for each
lipid parameter.

A c2 test (if expected count was >5) or the Fisher exact test was
used to calculate the P value for significance between treatment
groups in overall safety. For significance between treatment groups in
the rates of adverse events of special interest, the P values were
calculated from a Cox regression model including treatment, IRF
status, and treatment-by-IRF status interaction as covariates, strati-
fied by study. The interaction P values for comparing adverse events
of special interest between patients with and without IRF was a
type 3 P value calculated from a Cox regression model with treat-
ment, IRF status, and treatment-by-IRF status interaction as
covariates, stratified by study. ESRD was defined as eGFR
values <15 ml/min per 1.73 m2 and was analyzed in the overall pool
of placebo-controlled and ezetimibe-controlled trials. Hs-CRP, a
biomarker associated with increased CVD, was also evaluated and
individuals with hs-CRP values $10 mg/l were excluded from these
analyses, as this suggests concurrent infection.29

In the assessment of overall renal safety, renal function was
analyzed in all individuals (pool of 10 trials, Table 1) assessed by
analyzing changes in eGFR, serum creatinine and blood urea
nitrogen with or without the presence of proteinuria over the study
period. Proteinuria status was assessed by dipstick urinalysis. In
addition, an analysis of renal safety was performed in the subgroup
of individuals with type 2 diabetes (defined based on medical his-
tory) and IRF pooled from the same eight phase 3 trials as for the
analysis comparing those with and without IRF.
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Figure S3. Mean (A) creatinine and (B) blood urea nitrogen values
over time by impaired renal function status (safety population; pool
of eight phase 3 trials).
Figure S4. Percentage of change from baseline in hs-CRP at week 24:
subgroup analysis by impaired renal function status, excluding hs-
CRP values $10 mg/l (ITT population; pool of eight phase 3 trials).
Figure S5. Percentage of change in hs-CRP over time excluding
individuals with hs-CRP $10 mg/l by impaired renal function status in
two trials using alirocumab 150 mg Q2W versus placebo (ITT
population).
Figure S6. Percentage of change from baseline to week 24 among
individuals with type 2 diabetes mellitus by impaired renal function
status in (A) LDL-C, (B) non–HDL-C, and (C) Lp(a) (ITT populations;
pool of eight phase 3 trials).
Figure S7. Mean estimated glomerular filtration rate values over time
among individuals with type 2 diabetes mellitus by impaired renal
function status (safety population; pool of eight phase 3 trials).
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