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ABSTRACT 

Soil erosion greatly affects the Loess Plateau of China, limiting local agricultural productivity 

and leading to severe sedimentation in the Lower Yellow River. As a key component of both natural 

and anthropogenic ecosystems, vegetation cover plays an important role in controlling soil erosion. 

The satellite-derived Normalized Difference Vegetation Index (NDVI) is an important indicator of 

terrestrial vegetation growth. The present study uses a multiyear NDVI dataset (1982–2013) and 

corresponding datasets of observed climatic variables to analyze changes in NDVI at both temporal 

and spatial scales using the Mann-Kendall test and a linear regression-based time-lag detection 

method. Relationships are also investigated between NDVI, climate variations, and human activities 

(such as afforestation and planting grasses). It is found that the annual average NDVI exhibits an 

upward trend over the 32-year study period, which is pronounced at the middle of the Loess Plateau. 

NDVI variations lag behind monthly temperature changes by approximately one month. The 

contribution of human activities to variations in NDVI has become more significant in recent years, 

with human activities responsible for 30.4% of the change in NDVI during the period 2001–2013. 

Increased vegetation coverage has reduced soil erosion at the Loess Plateau in recent years, and 

hence lowered the sediment load in the middle and lower reaches of the Yellow River. Natural 

restoration of vegetation appears to be the most effective erosion control measure; it is therefore 

recommended that engineering measures (such as terracing, check dams, aerial seeding, and 

irrigation systems) which promote vegetation restoration should feature in the future governance of 

the Loess Plateau. 
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INTRODUCTION 

Vegetation acts as a connection between soil, water, and the atmosphere, and is an important 

indicator of changes in climate and human activities (Vereecken et al., 2010). In an ecosystem, the 

ground cover provided by vegetation plays a pivotal role in the regulation of various biogeochemical 

cycles, e.g. water (Gerten et al., 2004; Scheffer et al., 2005; Troch et al., 2009) and carbon dioxide 

(Allen et al., 1987; Levis et al., 2000). At continental scale, land–atmosphere exchanges of energy 

and water result in positive feedback between vegetation density and climate, especially in semi-arid 

zones (Dekker et al., 2007; Zeng et al., 1999). Variations in vegetation growth related to either 

human activities or climate variations can induce natural disturbances as well as modify biosphere–

atmosphere interactions, including the hydrological cycle (Liang et al., 2015; Gao et al., 2016; Wu et 

al., 2017) and energy budgets (Chapin et al., 2005; McVicar et al., 2007). A lack of protective 

vegetation can easily trigger severe erosion (Cantón et al., 2001; Ludwig et al., 2005) and 

subsequent deterioration of the soil (Marques et al., 2008; Gómez et al., 2014; Rodrigo Comino et al., 

2017), decline in land productivity (Pimentel and Kounang, 1998; Lantican et al., 2003), and 

degradation of streams, lakes, and estuaries by transported sediments and pollutants (Zhang et al., 

2008; Ouyang et al., 2009, 2010; Tang et al., 2011).  

The Loess Plateau in northern China is vegetation deficient, primarily because of inappropriate 

land use. Low vegetation cover has exacerbated soil loss from the Loess Plateau leading to low 

agricultural productivity. With a mean denudation rate of 3.0±1.2 mm y
-1

 km
-2

 (Yue et al., 2016), 

the Loess Plateau supplies ~90% of the sediment in the Yellow River, leading to the well-known 

“hanging river” phenomenon in the lower reaches (Tang et al., 1991; Kong et al., 2015). For 

example, at Kaifeng in Henan province, the bed of the Yellow River is elevated approximately 10 m 

above street level (Miao et al., 2016). The climate of the Loess Plateau is arid and semi-arid, 

meaning that climate change, and especially changes in precipitation, directly influence vegetation 

cover (Zhang et al., 2012; Liu & Sang, 2013). Ambient temperature is believed to control seasonal 

changes in vegetation growth on the Loess Plateau (Xin et al., 2008). Sun et al. (2015) reported that 

higher temperatures promote growth of vegetation in areas that are less water-stressed. The 

relationship between vegetation and precipitation on the plateau has been studied extensively (Wang 



et al., 2010a). Human activity is another very important factor that can influence vegetation growth. 

To mitigate soil erosion, a series of programs to control water and soil loss have been implemented 

on the plateau since the 1980s. These particular human activities were designed to improve 

vegetation coverage. However, other human activities such as regional urbanization and 

industrialization, overgrazing, logging, and excessive reclamation and mining have resulted in 

adverse effects on vegetation growth on the Loess Plateau because of their unsustainable use of 

water resources (Feng et al., 2016). While human activities have played a major role in land-use 

changes on the Loess Plateau, it is believed likely that the change in vegetation growth may have 

been accelerated by climate change (Li et al., 2016). Being rather complicated, the overall impact of 

human activities on the Loess Plateau remains to be fully assessed. Although many previous studies 

have considered the impacts of climate change and human activities on vegetation cover and 

ecological restoration of the Loess Plateau (Xin et al., 2008; Li et al., 2013; Lang et al., 2014), the 

majority have focused on purely qualitative evaluations of the effects of climate change or human 

activities on variations in the Normalized Difference Vegetation Index (NDVI), and did not take into 

account time-lag effects.   

With this in mind, the present study aims to provide a quantitative overview of vegetation cover 

in the Loess Plateau, which can be used to guide future works on ecological rehabilitation in this 

region.  The study has the following objectives: i) to analyze variations in the vegetation cover of 

the Loess Plateau using NDVI time-series data; ii) to investigate time-lag effects of vegetation 

response to climate factors; and iii) to quantify contributions from climate change and human 

activities to changes in vegetation cover. The paper is structured as follows: Section 2 outlines the 

data sources and the analysis methodology; Section 3 presents the key results; and Section 4 lists the 

main conclusions and recommendations. 

 

DATASETS AND METHODS 

2.1 Study area 

Lying roughly within 101°–114° E and 34°–42° N, the Loess Plateau covers an area of more 



than 620,000 km
2
 of north-central China (Fig. 1), and overlaps the middle reaches of the Yellow 

River.  The Loess Plateau is affected by the typical continental monsoon climate with rainfall 

concentrated from July to September inclusive, accounting for 60 to 80% of annual precipitation. 

The surface of the plateau is covered by highly erodible loess layers of average depth 100 m. From 

the northwest to southeast of the plateau, the surface soil type varies in order of Eolian sand, sandy 

loess, typical loess and clayey loess (Xie et al., 2016) and the natural vegetation type varies from 

arid desert to steppe and then to broad-leaf deciduous forest (Sun et al., 2014). Throughout the Loess 

Plateau, most of the hillsides and native grasslands have been converted to farmland following 

population growth. The combined effects of frequent heavy rainfalls during the summer months, the 

high erodibility of loess soil, and low vegetation cover have made the Loess Plateau one of the most 

severely eroded areas in the world. This severe soil erosion has had a significant impact on the 

ecological security of the Yellow River and on the ecological environment of the Loess Plateau. 

Since the 1980s, China has implemented a series of programs to control soil and water loss by 

optimizing land-use structure and spatial configuration, terracing slopes, converting slope cropland 

into forest and grassland, enclosing hillsides to remove grazing, building reservoirs, and improving 

basic farmland practices (Yang, 2003; Miao et al., 2011; Fan et al., 2015a; 2015b; Wang et al., 2015). 

In 1999, an ecological rehabilitation program called the “Grain-to-Green” Project was extensively 

implemented on the Loess Plateau. Many infrastructure reforms and ecological projects were 

undertaken, including the construction of large reservoirs and silt dams, afforestation, conversion of 

cropland on steep slopes to forest and grassland, and restoration of the biological soil crust. By 2006, 

about 49% of eroded land on the plateau was subject to these types of soil and water conservation 

measures (including 52,729 km
2
 of prime farmland, 94,613 km

2
 of afforestation, and 34,938 km

2
 of 

grass planting) (Gao et al., 2011). 

2.2 Data sources 

The Normalized Difference Vegetation Index (NDVI), defined as the ratio of the difference 

between near-infrared reflectance and red visible reflectance to their sum, is an indicator of 

vegetation greenness and productivity (Tucker, 1979). NDVI has been widely used to describe 

vegetation dynamics because of its close correlation with biophysical and biochemical variables, 



such as vegetation coverage (Sun et al., 2015; Zhang et al., 2016). In this study, we consider the long 

time-series NDVI dataset from the Global Inventory Monitoring and Modeling Systems (GIMMS3g) 

for the period from January 1982 to December 2013, acquired from the National Oceanographic and 

Atmospheric Administration (NOAA) (http://ecocast.arc.nasa.gov/data/pub/gimms) (Tucker et al., 

2005). The data are at 15-day intervals with a spatial resolution of 0.083° (Fensholt & Proud, 2012). 

Given that the GIMMS NDVI systematically underestimates vegetation on the Loess Plateau (by up 

to 0.05) (Sun et al., 2015) we used the MODIS dataset from February 2000 to December 2013 to 

correct the GIMMS3g dataset and enhance its accuracy and reliability as follows. First, we used 

linear regression to assess the relationship between the GIMMS3g and MODIS datasets using data 

from February 2000 to December 2013 for each grid-point in the two datasets. Then, we 

reconstructed all the temporal data at each grid point over the period from January 1982 to December 

2013. (It should be noted that this correction method has been applied successfully in other studies, 

such as by Zhang et al., 2016). GIMMS3g and MODIS NDVI composites were created using the 

Maximum Value Composite (MVC) technique, which minimizes the effects of cloud cover by 

selecting the highest NDVI at each pixel from daily images taken over a period of 15 or 16 days 

(Holben, 1986). 

Observed monthly precipitation and temperature datasets were supplied by the National 

Meteorological Information Center of the China Meteorological Administration (http://data.cma.cn). 

The datasets were constructed from approximately 2400 station observations across China, including 

299 stations located on the Loess Plateau (Fig.1). The resulting high-density datasets ensure the 

reliability of the present analysis. For consistency with the NDVI data, we used linear interpolation in 

MatLab(R) to transform the precipitation and temperature data to a 0.083° × 0.083° grid for the 

period 1982–2013. 

Two detailed national soil erosion surveys were undertaken in China during the periods 1995–

1996 and 2010–2012. The soil erosion data were obtained from (http://cese.pku.edu.cn/chinaerosion/) 

provided by Yue et al. (2016). The national soil erosion survey was conducted with a county as a unit 

survey area, and included a total of 348 counties across the Loess Plateau. 

2.3 Methodology 

http://cese.pku.edu.cn/chinaerosion/


Trend detection 

The statistical significance of the trends in NDVI, precipitation, and temperature was assessed 

using the nonparametric Mann–Kendall test (Mann, 1945) in MatLab(R), and trend magnitudes were 

computed by Sen's slope estimator (Sen, 1968). The rank-based nonparametric Mann–Kendall test is 

more frequently applied than parametric statistical tests to analyses of hydrometeorological time 

series (Yue et al., 2002) and makes no assumptions about the probability distribution (Önöz & 

Bayazit, 2003). This method can examine trends in a time series without requiring normality or 

linearity. Mutation analysis was conducted with a sequential Mann–Kendall test, which involves 

sequential progressive (U(t)) and backward (U’(t)) analyses based on the Mann–Kendall test. If the 

two series cross and then diverge from each other as time progresses, the initial divergence year 

marks an abrupt turning point in the trend (Mohsin and Gough, 2010; Tabari et al., 2011). The 

sequential behavior fluctuates close to zero. Detailed descriptions of the Mann–Kendall and 

sequential Mann–Kendall tests are given by Partal & Kahya (2006) and Sayemuzzaman et al. (2014). 

 

Time-lag detection 

The relationship between the NDVI and the climatic factors is given by: 

𝑍 = 𝑘𝑖 × 𝑉 + 𝑏                                       (1) 

where ki is the regression coefficient with a time lag of i months, Z is the NDVI time series (1982–

2013), and V is the time series of precipitation or temperature, with a time lag of i. For each climatic 

factor, the lag month (i) that has the highest coefficient of determination (R
2
) is the optimum time lag 

for the vegetation response (to the given climatic factor). 

 

Quantitative assessment of the impact of climate change and human activities on NDVI variations 

Briefly, variations in the NDVI result from climate change, human activities, and other natural 

factors such as plant diseases, insect herbivory, or wildfire. Assuming that the effects of climate 

change, human activities, and other natural factors on NDVI are independent, the total change in 

NDVI (∆NDVItotal) can be expressed as: 

∆𝑁𝐷𝑉𝐼𝑡𝑜𝑡𝑎𝑙 = ∆𝑁𝐷𝑉𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + ∆𝑁𝐷𝑉𝐼ℎ𝑢𝑚𝑎𝑛 + ∆𝑁𝐷𝑉𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠          (2) 



where ∆NDVIclimate represents the change in NDVI caused by climate change, mainly by 

precipitation and temperature; ∆NDVIhuman represents the change in NDVI caused by human 

activities, including optimizing the land use structure, terracing slopes, converting slope cropland 

into forest and grassland, enclosing hillsides to remove grazing, building reservoirs, and improving 

basic farmland practices; and ∆NDVInatural factors represents the change in NDVI caused by other 

natural factors. 

To quantify the influence of different drivers on NDVI variations, a baseline (benchmark) 

period is set. Usually, the period during which one individual factor dominates the impact is selected 

as the baseline period. Here, climate change dominated the impact during the baseline period, with 

negligible effect arising from human activities (Wu et al., 2017). The relationship between NDVI 

and climate factors during the baseline period is determined by multiple linear regression analysis. 

The NDVI during the post-baseline period is then reconstructed on the basis of the above 

multiple linear regression. Variation in the reconstructed NDVI is affected solely by climate change. 

According to Equation (2), any differences between the observed and reconstructed NDVI can be 

attributed to human activities and other natural factors. Thus, the contributions of climate change 

(Cclimate) and human activities (Chuman) and other natural factors (Cnatural factors) to variations in NDVI 

can be calculated from:  

𝐶𝑐𝑙𝑖𝑚𝑎𝑡𝑒 =
𝑥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛−𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛−𝑥𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100%                      (3) 

and 

𝐶ℎ𝑢𝑚𝑎𝑛 + 𝐶𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = 100% − 𝐶𝑐𝑙𝑖𝑚𝑎𝑡𝑒                  (4) 

where xobservation represents the mean annual observed NDVI during the post-baseline period, 

xreconstruction represents the mean reconstructed annual NDVI during the post-baseline period, and 

xbaseline represents the mean annual NDVI during the baseline period. This process is shown 

schematically in Fig. 2. We have used similar application of this method in our previous studies 

(Miao et al., 2011; Kong et al., 2016).  

Compared with the impacts of climate change and human activities, the impact of other natural 

factors on NDVI variations has been very weak throughout the Loess Plateau. Moreover according 

to local government yearbooks, the states of other natural factors did not change significantly during 



the past five decades, meaning that their influence on NDVI variations during the post-baseline 

period can be regarded as the same as during the baseline period. Accordingly, the contribution of 

other natural factors was taken to be zero in equation (4), as was also the case in previous studies of 

Loess Plateau (Xin et al., 2007; Li et al., 2013; Li et al., 2015).  

 

RESULTS 

3.1 Temporal variations in vegetation cover 

The magnitude of the monthly average NDVI and how it changes over time are important 

indicators of the monthly contribution of vegetation activity to total annual plant growth. Fig. 3 

presents the monthly and annual average NDVI time series for the Loess Plateau over the period 

1982–2013. The monthly average NDVI fluctuated seasonally, with highest values occurring 

between July and August and the lowest values occurring between January and February, indicating 

that vegetation cover was dependent on climate over the 32-year study period. An upward trend is 

evident in the annual average NDVI (Table 1; Z = 3.91). However, the monthly NDVI variation 

trends are not consistent, as can be seen in Table 1. For January–March, the monthly NDVI trends 

are negative but exhibit non-significant Z values in the Mann–Kendall test. For April–October, 

significant upward trends occurred in NDVI, with a peak rate in October of 0.002 NDVI units per 

year.  

 

3.2 Spatial variations in vegetation cover 

To examine variations in vegetation cover across the Loess Plateau, owing to its complicated 

climate, NDVI contours extracted by ArcGIS 10.0 are now examined. Fig. 4 shows spatial changes 

in NDVI averaged over four intervals covering the overall study period from 1982 to 2013. There is 

greater vegetation cover in the southeast of the plateau than in the northwest. The NDVI = 0.3 

contour (blue) did not change significantly between 1982 and 2013. However, the NDVI = 0.2 

contour (red) retreated toward the northwest in 2008–2013, compared with the previous time period 

1982–2007. This retreat is associated with substantial changes to vegetation cover in the middle of 



the Loess Plateau. Fig. 5 illustrates the spatial distribution of changes in annual average NVDI 

throughout the plateau between 1982 and 2013. Although there was an overall upward trend in the 

annual average NDVI at the scale of the whole study area, there was also a high degree of spatial 

heterogeneity. As shown in Fig. 5, the annual average NDVI increased in most areas, especially in 

the middle, south, and north-east of the plateau, but decreased sharply in marginal areas in the west 

of the plateau. 

 

3.3 Impact of climate change on vegetation coverage 

Table 1 summarizes the results of the Mann–Kendall test for trends in precipitation and 

temperature on the Loess Plateau. Fig. S1 shows the temporal variations in annual precipitation and 

average temperature over the period 1982–2013. Precipitation increased in certain months and 

decreased in other months and, overall, there was a non-significant upward trend (0.4603 mm yr
-1

) in 

annual precipitation over the study period (1982–2013). An upward trend occurred in temperature in 

all months (Table 1), with an annual rate of increase of 0.0440
o
C yr

-1
, which was significant at the 95% 

confidence level. The concurrent increases in summer rainfall and temperature would have enhanced 

plant growth on the plateau.  

Fig. 6 shows the monthly precipitation, temperature, and NDVI averaged over the period 

1982-2013.  The results are plotted month by month and displayed in a stacked fashion to indicate the 

coupling between NDVI and climatic drivers. It can be seen that the pattern of mean monthly 

precipitation and temperature values was consistent with changes in NDVI: high values in summer 

and low values in winter. Fig. 6(c) shows that NDVI increased sharply from April to May and 

declined steeply from September to October. The peak value of mean NVDI occurred in August, 

whereas the maximum values of mean precipitation and temperature occurred in July, indicating a 

time lag in NDVI response to climate factors. Such a time-lag effect has also been reported in 

previous studies (Wu et al., 2015); the present study investigates the scale of this time lag. 

To evaluate the dependency of vegetation cover on temperature and precipitation at different 

time lags, the temperature and precipitation data were designated as independent variables and the 

NDVI data as the dependent variable. Given that previous studies at the monthly scale found that the 



time lag of vegetation responses to climate was generally shorter than three months (Anderson et al., 

2010; Chen et al., 2014), we consider time lags in the range 0–3 months. Fig. 7 shows the spatial 

distributions of time lags between NDVI and the climatic factors, temperature and precipitation, over 

the plateau. Here the NDVI response invariably lags the driving climatic factors by no more than one 

month. Comparison between Fig. 7a and Fig. 7b indicates that the time lag of the vegetation response 

was different for different climatic factors. Vegetation growth showed the greatest correlation with 

precipitation within the same month and exhibited almost no lag effects over most of the plateau. Grid 

locations with a 0-month time lag accounted for 66.1 % of the entire study region; the remaining grid 

locations had a 1-month time lag. For temperature, grid locations with a 0-month time-lag accounted 

for 36.1 % of the study region, with 1-month time-lags occurring over 63.9 % of the plateau. As 

shown in Fig. 7, the time lags between NDVI and the climatic factors were different in different 

regions of the plateau. This may be due to differences in vegetation cover, as reported previously 

(Wu et al., 2015). 

 

3.4 Impact of human activities on vegetation coverage 

Soil conservation projects on the Loess Plateau have predominantly focused on re-vegetation. 

Until the late 1990s, planting of trees and grasses was the primary approach taken to re-vegetation, but 

most of the planting attempts were unsuccessful. The planted trees and grasses grew well over the first 

few years but then began to die because of the formation of a dry layer in the soil (Ping et al., 2013). 

Climate change dominated the impact on NDVI variations during that period, with negligible 

influence from human activities. Thus, we select 1982–1990 as the baseline period, and compare the 

different contributions of climate change and human activities to the spatiotemporal variations in 

NDVI with respect to the baseline period.  The comparison is undertaken separately for the 

growing season (May to September) and the non-growing season (October to April), noting that the 

dependence of vegetation cover on climate factors varies between the two seasons. The relationship 

between NDVI and the climate factors during the baseline period is presented in Fig. S2, which 

confirms that the multiple linear regression models were acceptable. The annual NDVI data series 

for the period 1991–2013 was reconstructed on the basis of these two models. Table S1 lists the 



quantitative results. During the period 1991–2013, the overall contribution of climate change to 

variations in NDVI was 75.4%, whereas that from human activities was lower at 24.6%. However, 

during the initial period 1991–2000, climate change played a dominant role, making a 97.3 % 

contribution. During the later period 2001–2013, the contribution from human activities increased 

significantly to 30.4% while the contribution from climate change decreased to 69.6%. This is 

consistent with previous studies which found that soil-conservation projects that included 

re-vegetation became effective from the late 1990s (Ping et al., 2013; Li et al, 2016). Our results 

indicate that human activities have had a net positive impact on the restoration of vegetation on the 

Loess Plateau, in keeping with previous findingsresults (Lang et al., 2014). 

 

3.5 Influence of vegetation cover on soil retention 

The Loess Plateau is famous for its deep loess deposits. Relatively high degrees of vegetation 

cover are found in the mountainous areas and the agricultural areas (the valley plain) in the southern 

region of the plateau (e.g. the Weihe and Fenhe plains). Less-dense vegetation is found in the loess 

hilly and gully regions, which have been subject to severe soil erosion (e.g. the Mu Us Desert) (Fig. 

4). Restoration of vegetation has mainly occurred in areas of the plateau dominated by water erosion 

(Fu et al., 2011); and so wind erosion has not been included in the present assessment. According to 

the Second National Soil Erosion Survey, over 25.7 % of the Loess Plateau suffers from 

water-induced soil erosion to a moderate or higher degree. 

Fig. 8 shows the spatial distribution of water-induced soil erosion throughout the Loess Plateau 

according to national surveys conducted in 1995–1996 and 2010–2012. All regions on the plateau 

have suffered from water erosion to varying degrees. Fig. 8a shows that the area with the most 

severe soil erosion (greater than 8 Mt yr
-1

) lies in the region between the Toudaoguai and Longmen 

stations (Zhao et al., 2016) called the coarse sandy hilly catchments area (Zhang et al., 2008). This 

region covers an area of 7.86 × 10
4
 km

2
, accounting for only 14.8% of the entire Yellow River basin 

but producing nearly 80% of the coarse sediment input to the Yellow River (Xu et al., 1998). A 

comparison of the difference in soil erosion between the two periods considered (Fig. 8c) shows that 

the rate of soil erosion has declined in most areas (82%), with worsening erosion present in only a 



few areas at the margins of the plateau (18%). This is consistent with the spatial variation in 

vegetation cover on the Loess Plateau described previously. Taking the cases where soil erosion 

reduced (worsened) while the NDVI increased (decreased) as being consistent, it is found that 70.2% 

of the total area passes the consistency criteria (Fig. S3Fig. S3). We again find that the region with 

the highest degree of improvement in NDVI corresponds to those areas which suffered the greatest 

degree of erosion during the period 1995–1996 (Fig. 5Figure 5 and Fig. 8bFigure 8b).  

To better understand the effects of vegetation coverage on erosion, long-term data on the 

sediment load at the Tongguan and Huayuankou hydrological stations were examined for different 

soil-conservation periods (Fig. 9). Overall, between 1982 and 2013, the average annual sediment 

load exhibited a downward trend at both stations. During this period, a significant reduction in 

sediment load occurred, corresponding to increased vegetation coverage of the Loess Plateau. Our 

analysis shows that sediment load at Tongguan hydrological station was negatively correlated with 

vegetation coverage; the correlation coefficient of –0.49 is significant at the 95% confidence level. 

 

DISCUSSION 

Based on the foregoing quantitative analysis results, it can be inferred that the majority of 

afforestation projects before the late 1990s did not achieve their goals. Although re-vegetation 

measures were implemented over several decades beforehand, climate change remained the 

dominant factor influencing vegetation cover until 2000. It is worth noting that Xin et al. (2008) 

observed that the benefits from implementation of the large-scale re-vegetation policy continued 

until the early 21
st
 Century, during which time the annual maximum NDVI kept increasing even 

when precipitation fell below the annual mean level. Li et al (2016) found that vegetation cover 

exhibited higher correlation to precipitation and temperature during 1980–1999 compared to 1999–

2010 while rates of vegetation growth were higher during 1999–2010 compared to 1980–1999. This 

also indicated that the re-vegetation projects implemented after 1999 had significant impact on 

vegetation restoration, in accordance with the present findings. The planting of inappropriate 

vegetation species appears to have been the main reason why the re-vegetation projects undertaken 



before the late 1990s were unsuccessful. 

Too much emphasis was placed on the economic benefits of afforestation during its initial 

implementation, leading to a large proportion of non-natural forest with weak ecological 

functionality being planted (Zhang & Liu, 2007). Several programs within the later phases of the 

Grain-to-Green project, such as in Wuqi County in northern Shaanxi Province, have demonstrated 

success with natural re-vegetation, which is now considered the most suitable method for control of 

soil erosion and ecological restoration (König et al., 2014; Kou et al., 2016; Sun et al., 2014). 

However, the process of natural restoration is slow, and engineering measures (e.g. artificial 

irrigation) that promote natural restoration are also required (Li et al., 2015). Although a series of 

projects with the aim of returning sloping arable land to forest have been implemented, many of 

these ecological restoration projects based on artificial tree-planting have failed, demonstrating the 

lack of practical support for this method. Afforestation may initially increase the vegetation cover, 

but it has a negative effect on biodiversity, and its ability to restore the eco-environment depends on 

both the type of re-vegetation carried out and the local environment (Lamb et al., 2005; Wang et al., 

2014). Inappropriate restoration approaches might exacerbate soil moisture deficits and result in 

serious soil desiccation, and a consequent reduction in vegetation cover (Wang et al., 2016; Wang et 

al., 2010b). Thus, the availability of water and other ecological conditions in the local region should 

be considered before undertaking vegetation restoration. Therefore, for more efficient ecological 

restoration of the Loess Plateau, it may be best to implement the more successful policies, such as 

prohibition of grazing and logging, and conversion of unsuitable cultivated sloping land to forest, 

while maintaining the natural species. In general, the distribution of economic crops, food crops, 

artificially planted vegetation, and natural vegetation should be sensitively and holistically arranged 

within the regional governance of the Loess Plateau, forming a complete landscape and complex 

ecosystem (Li et al., 2003; Feng et al., 2016). From the foregoing analysis, it can be inferred that 

both vegetation species and planting density should be considered based on local ecological 

conditions; this is of great significance for future vegetation restoration projects in areas of rapid 

water-induced soil erosion. 

 



CONCLUSIONS 

This study used a multiyear NDVI dataset from 1982 to 2013 and corresponding climate 

datasets to analyze spatio-temporal trends in NDVI on the Loess Plateau, China, and their 

relationship to climate change and human activity. The annual average NDVI exhibited an overall 

upward trend over the 32-year study period, especially in the central regions of the Loess Plateau. An 

investigation was conducted as to whether the NDVI response lagged behind monthly changes in 

precipitation and temperature. It was found that vegetation growth had the greatest correlation with 

precipitation when there was no lag (i.e. within the same month), whereas there was usually a 

one-month lag with temperature. Quantitative estimates were made of the relative effects of climate 

change and human activities on variations in NDVI after correcting for the time-lag effect. The 

results indicate that the contribution of human activities to variations in NDVI has become 

increasingly significant since the turn of the millennium, rising from 2.7% in the period from 1991–

2000 to 30.4% from 2001–2013. This indicates that recent restoration measures are more effective 

than previous measures (which should be cancelled discontinued to avoid wasting human and 

financial resources). Increased vegetation coverage has reduced surface soil erosion on the Loess 

Plateau, leading in turn to a reduction in the volume of sediment delivered to the lower reaches of 

the Yellow River. We suggest that natural vegetation restoration is the most effective measure for 

control of erosion, and engineering measures that promote this should feature in the future 

governance of the Loess Plateau. A better match of vegetation species and planting density to the 

natural environment should be considered. Although other natural factors were found to have a 

limited effect on the results of the present study, it is recommended that, provided when suitable data 

become available, future assessments also consider the separate effects of particular other key 

natural factors like plant diseases, insect herbivory, and wildfire. 
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Table 1. Results of the Mann-Kendall test for NDVI, precipitation, and temperature. Bold emphasis 

indicates that the trend was significant at the 95% confidence level. 

Time 

NDVI 

 

Precipitation 

 

Temperature 

Z Slope Z 
Slope / mm 

yr
-1

 
Z 

Slope / 
o
C 

yr
-1

 

January -0.83 -0.0002  0.47 0.0244  0.24 0.0055 

February -0.86 -0.0002  1.54 0.0767  2.51 0.1040 

March -0.44 -0.0001  -1.70 -0.2591  3.03 0.0966 

April 2.55 0.0007  -0.47 -0.0842  2.40 0.0609 

May 3.13 0.0009  -0.08 -0.0687  1.86 0.0334 

June 2.32 0.0010  -0.83 -0.3322  4.10 0.0624 

July 1.96 0.0009  0.83 0.3447  2.77 0.0427 

August 2.68 0.0011  -0.76 -0.3404  2.77 0.0400 

September 3.36 0.0012  1.86 0.9025  1.12 0.0247 

October 4.01 0.0019  -0.76 -0.1829  1.25 0.0236 

November 1.05 0.0002  0.37 0.0365  1.51 0.0402 

December 0.18 0.0000  0.00 -0.0003  0.34 0.0092 

Annual 3.91 0.0007  0.37 0.4603  3.36 0.0440 

 

  



Figure Captions: 

Fig. 1 Location of the Loess Plateau and the distribution of meteorological stations. 

Fig. 2 Schematic diagram illustrating quantitative assessment of the impact of climate change and 

human activities, and the impact of other natural factors on NDVI. 

Fig. 3 Temporal variations in monthly and annual average NDVI for the Loess Plateau during the 

period 1982–2013.  

Fig. 4 Spatial distribution of average NDVI for the Loess Plateau. (a) 1982–1990; (b) 1991–2000; (c) 

2001–2007; (d) 2008–2013. 

Fig. 5 Spatiotemporal changes in annual average NDVI throughout the Loess Plateau during the 

period 1982–2013.  

Fig. 6 Comparison of average monthly precipitation (a), temperature (b), and NDVI (c) for the Loess 

Plateau over the period 1982–2013. 

Fig. 7 Time lags between NDVI and precipitation (a) and temperature (b). 

Fig. 8 Spatial distribution of soil erosion by water on the Loess Plateau from national surveys in 

1995–1996 (a) and 2010–2012 (b). The difference in total soil removal between the two 

surveys (c). 

Fig. 9 Annual sediment load at Tongguan and Huayuankou hydrological stations over the period 

1982–2013. 

 

 

 

 

  



 

 

Fig. 1 Location of the Loess Plateau and the distribution of meteorological stations. 

  



 

 

 

Fig. 2 Schematic diagram illustrating quantitative assessment of the impact of climate change and 

human activities, and the impact of other natural factors on NDVI. 

  



 

 

 

Fig. 3 Temporal variations in monthly and annual average NDVI for the Loess Plateau during the 

period 1982–2013.  

  



 

 

Fig. 4 Spatial distribution of average NDVI for the Loess Plateau. (a) 1982–1990; (b) 1991–2000; (c) 

2001–2007; (d) 2008–2013. 

  



 

 

 

Fig. 5 Spatiotemporal changes in annual average NDVI throughout the Loess Plateau during the 

period 1982–2013.  

  



 

 

Fig. 6 Comparison of average monthly precipitation (a), temperature (b), and NDVI (c) for the Loess 

Plateau over the period 1982–2013. 

  



 

 

Fig. 7 Time lags between NDVI and precipitation (a) and temperature (b). 

  



 

 

 

Fig. 8 Spatial distribution of soil erosion by water on the Loess Plateau from national surveys in 

1995–1996 (a) and 2010–2012 (b). The difference in total soil removal between the two surveys (c). 

  



 

 

Fig. 9 Annual sediment load at Tongguan and Huayuankou hydrological stations over the period 

1982–2013. 

  



SUPPORTING INFORMATION 

 

Table S1. Contribution of climate change and human activities to variations in NDVI.  

Time 

periods 

Observed average 

NDVI 

Reconstructed 

average NDVI 
∆NDVItotal ∆NDVIclimate ∆NDVIhuman 

1991-2000 0.3082 0.3081 0.0039 
0.0038 

(97.3%) 

0.0001 

(2.7%) 

2001-2013 0.3157 0.3123 0.0115 
0.0080 

(69.6%) 

0.0035 

(30.4%) 

1991-2013 0.3125 0.3104 0.0082 
0.0062 

(75.4%) 

0.0020 

(24.6%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S1 Temporal variations in annual precipitation (a) and average temperature (b) for the Loess 

Plateau during the period 1982–2013.  

 

 

 



 

 

Fig. S2 Relationship between NDVI and climate factors in the growing season (a) and the 

non-growing season (b) during the baseline period of 1982–1990. The relationships were obtained by 

multiple linear regression analysis. 

 

 

 

 



 

 

 

Fig. S3 Consistency test for changes in NDVI and soil erosion on the Loess Plateau during the 

period 1995–2012. Cases where soil erosion was reduced (worsened) while the NDVI increased 

(decreased) were considered consistent, and the red pixels represent the region which passed the 

consistency test.  

 


