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Although much is known about how speech is produced, and research into speech production
has resulted in measured articulatory data, feature systems of different kinds and numerous
models, speech production knowledge is almost totally ignored in current mainstream ap-
proaches to automatic speech recognition. Representations of speech production allow simple
explanations for many phenomena observed in speech which cannot be easily analyzed from
either acoustic signal or phonetic transcription alone. In this article, we provide a survey of
a growing body of work in which such representations are used to improve automatic speech
recognition.

PACS numbers: 43.72.Ne (Automatic speech recognition systems); 43.70.Jt (Instrumentation and
methodology for speech production research); 43.70.Bk (Models and theories of speech production)
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I. INTRODUCTION

There is a well-established body of knowledge about
the speech production mechanism (e.g., Löfqvist, 1997),
covering articulatory processes (e.g., Perkell, 1997), co-
articulation (e.g., Farnetani, 1997) and so on. The move-
ments of the articulators can be directly measured in real
time and models of the articulatory system, particularly
the tongue, have been built (e.g., Honda et al., 1994;
Kaburagi and Honda, 1996). Aside from actual articula-
tory data, other representations of speech production are
available, including various kinds of feature systems, ges-
tures and landmarks. These expressive representations
allow simple explanations for many phenomena observed
in speech which cannot be easily analyzed from either the
acoustic signal or the phonetic transcription alone.

Acoustic modeling for automatic speech recognition
(ASR) currently uses very little of this knowledge and as
a consequence speech is only modeled as a surface phe-
nomenon. Generally, hidden Markov models (HMMs)

a) Electronic address: Simon.King@ed.ac.uk

link the phonetic level to the observed acoustic signal via
a single discrete hidden variable, the state. The state
space (i.e., the set of values the state variable can take,
which may be many thousands) is a homogeneous layer
with no explicit model of the structural differences or
similarities between phones; the evolution of the state
through time is modeled crudely. In this article we con-
sider whether acoustic modeling for speech recognition
stands to benefit from the judicious use of knowledge
about speech production.

The standard approach to acoustic modeling continues
to be the “beads on a string” model (Ostendorf, 1999)
in which the speech signal is represented as a concatena-
tion of phones. The fact that the acoustic realization of
phones is context-dependent – the consequence of coor-
dinated motion of multiple, slow-moving physical articu-
lators – is accounted for by the use of context-dependent
models. Because the set of contexts is very large, statis-
tical clustering techniques must be used. This approach
is probably not optimal, and perhaps effective only for
relatively constrained types of speech. Although these
clustering techniques use articulatory/phonetic features,
a direct use of these features as statistical factors may of-
fer better performance. Variations in speech production
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(e.g., due to speaking rate) are either not modeled, or
require the creation of situation-specific models, leading
to a problem of robust estimation. There is some work
on explicit modeling of pronunciation variation, but this
is severely limited by the coarseness of the phone unit:
another consequence of the “beads on a string” approach.
Section II provides a full definition of what we mean by
“speech production knowledge”. For now, we can take
it to include data about articulation (recorded directly,
or annotated by human labelers), automatic recovery of
such data, or features derived from phonetic transcrip-
tions.

A. The scope of this article

We aim to provide a comprehensive overview of the
large body of speech recognition research that uses speech
production knowledge: a road map for the reader that
makes connections between the different approaches.
This article was inspired by the Beyond HMM Workshop
(2004) and had its genesis in a short paper by McDermott
(2004).

Section I B makes the case for using speech production
knowledge, Section I C acknowledges ways in which cur-
rent systems already do and Section I D gives some point-
ers to early work. Section II defines in detail just what is
meant by “speech production knowledge” and discusses
how it can be represented with a view to using it in speech
recognition; we do not attempt a complete review of all
work on speech production, nor do we consider theories
of speech perception with a production basis (Liberman
and Mattingly, 1985). We will not consider formant fre-
quencies in any depth (because they only give an incom-
plete picture of speech production) or prosody, source
features or phrasal effects (because we are not aware of
any production-based ASR system that uses them). In
Sections III and IV, we look at how this speech produc-
tion knowledge can be obtained, whether it is from artic-
ulatory measurements, manual transcription, derivations
from phonetic labels or by machine-learning. Section V
provides a survey of efforts to use production knowledge
in acoustic modeling for automatic speech recognition.
Finally, in Section VI, we highlight some ongoing work
and suggest future directions.

B. The case for using speech production
knowledge in speech recognition

Incorporating speech production knowledge into ASR
may alleviate some of the problems outlined earlier
and enable improved recognition of spontaneous speech,
greater robustness to noise, and multi-lingual acoustic
models (Rose et al., 1996). In practice, it is hard to re-
alize these benefits.

Most production representations use a factored rep-
resentation: parallel “streams” of features/parameters.
Since any given feature/parameter will typically be
shared amongst many phoneme classes, the training

data are used in a potentially more effective way.
Low-frequency phonemes will share features with high-
frequency ones, benefiting from their plentiful training
data. Parameter tying for context-dependent HMMs al-
ready takes advantage of this property.

Rather than modeling complex acoustic effects of co-
articulation, explicit modeling at the production level
specifies precisely where, when and how co-articulation
occurs. Since production representations are easily in-
terpreted, models that use them are more transparent
than HMMs, where the hidden state defies any interpre-
tation or post-hoc error analysis. Although our under-
standing of the modeling capabilities of HMMs has re-
cently been advanced (Bilmes, 2004; Bridle, 2004; Tokuda
et al., 2004), there is still a long way to go before we are
able to interpret current large systems.

The advantages of explicit modeling and a factored
representation together imply better performance on
spontaneous or casual speech because of the greater
degree of co-articulation observed in this type of speech
(Farnetani, 1997). We also expect production-based
models to be noise robust. The factored representation
means each feature/parameter is easier to recognize than,
say, 61 phoneme classes, because features/parameters
typically have far fewer than 61 possible values. In a
factored representation, errors for each factor are multi-
plied together, which could potentially make the situa-
tion worse, but each feature/parameter will be affected
differently by noise, so we could expect that – provided
there is a little redundancy, or a strong enough lan-
guage model – in the presence of noise, sufficient fea-
tures/parameters could still be identified (“islands of re-
liability”) to perform speech recognition. In order to take
full advantage of the varying reliability of the different
features, a confidence measure is required.

It is possible to construct production-based represen-
tations that are multilingual or perhaps even language
universal. This is an under-explored area, deserving of
further research. The International Phonetic Alphabet
(IPA, International Phonetic Association (1999)) pro-
vides a phoneme set which is intended to be univer-
sal, but suffers from a number of problems, such as: A
single IPA symbol may be pronounced somewhat differ-
ently in different languages; Some symbols are very rare
amongst the world’s languages. Features offer a powerful
and language-universal system (Ladefoged, 1997). Some
representations of speech production can be argued to
be relatively speaker independent, compared to stan-
dard spectral features (Maddieson, 1997). Expressing
pronunciation variation as phonemic transcriptions is
problematic (Section V E). A factored feature represen-
tation is potentially both more expressive (e.g., it allows
small variations that do not result in phonemes changing
class) and more compact.
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C. How much production knowledge do current
HMM systems use?

Current systems, which are almost invariably HMM-
based, use a little knowledge of speech production. One
of the above advantages of a speech production represen-
tation – its factorial nature – is exploited, albeit to a lim-
ited extent and in somewhat opaque fashion, by standard
HMM systems during decision tree-based parameter ty-
ing. Vocal tract length normalization (Cohen et al., 1995)
acknowledges a physiological fact of speech production,
and is widely used. Jurafsky et al. (2001) suggest that
models of triphones (context-dependent phones) can usu-
ally deal with phonetic substitutions, but not large-scale
deletions.

1. Decision trees for state tying

Because the state space of a context-dependent HMM
system is large (there are more parameters than can be
learned from current data sets), it is necessary to share
parameters within clusters of states. Bundles of dis-
crete features, similar to the systems discussed in Sec-
tion II B, are the usual representation used for phonetic
context when building the decision trees used for tying
the states of context-dependent HMMs such as triphone
models (e.g., Young et al., 2002). If phonemes were used
to describe the left and right context, the power of state-
tying would be severely restricted. For example, it would
not be possible to identify the similar effect that nasals
like [n] and [m] have on preceding vowels, or the simi-
lar formant transitions seen in vowels following bilabial
stops like [p] and [b]. The fact that [p] and [b] have the
same values for some discrete features tells us that they
are similar (in terms of production) and will have sim-
ilar effects on neighboring phones. This use of features
is still limited, because features are attached to phones
(or HMM states), so the power of the modeling is still
restricted by the “beads on a string” problem. To really
exploit the power of features to describe contextual and
pronunciation variation in speech, probably requires the
model to retain an internal feature-based representation.

2. State tying gives structure to the state space

After state tying, the state space has structure. When
a pair of states from different triphone models (the same
base phone in different left and/or right contexts) are
tied, the acoustics of these two triphones must be similar.
Since the tying was guided by features that can be related
to production knowledge, the underlying production of
the two triphones must also be similar. A cluster of tied
states thus connects a localized region of acoustic space
with a localized region of articulatory space. Therefore,
although the state-space structure (the set of clusters)
formed by state tying is not at all easy to interpret, it
forms a mapping from production to acoustics. Within a
cluster, the mapping is approximately constant (all states

in the cluster share the same values for some subset of the
production-based features and all use the same output
density); from cluster to cluster, the mapping changes,
sometimes by a small amount (a smooth region in the
global articulation-to-acoustic mapping), sometimes by a
large amount (a discontinuity in the global articulation-
to-acoustic mapping). However, little attempt is made
to take any further advantage of this implicit mapping,
by interpolating between clusters for example. Luo and
Jelinek (1998) suggested “nonreciprocal data sharing” as
a method for estimating HMM state parameters without
hard state tying. This is, in essence, an interpolation
between the clusters of states, but it does not explicitly
use any articulatory information.

D. Historical perspective

Early attempts to use knowledge of speech production
for speech recognition were limited. Since articulatory
motion data was not easily available, knowledge had to
be gleaned from human examination of the acoustic sig-
nal, from experiments on human reading of spectrograms
(Cole et al., 1980; Zue, 1985), from static X-ray images or
introspection. This knowledge was then translated into
rules or other classifiers that typically produced either a
phoneme string or a phoneme lattice as output. Some
highlights of this early work are mentioned below.

Fujimura (1986) proposed that certain, critical artic-
ulatory movements are more speaker-invariant than the
acoustic signal. Cole et al. (1986) suggested that fea-
tures (e.g., formant-related) were required to make fine
phonetic distinctions and De Mori et al. (1976) used fea-
tures attached to syllables. Lochschmidt (1982) used sim-
ple articulatory parameters to aid phonetic classification.
Several systems have used a variety of acoustic-phonetic
features, which often have some speech production ba-
sis. The CMU Hearsay-II system (Goldberg and Reddy,
1976) and the CSTR Alvey recognizer (Harrington, 1987)
made use of phonetic features. More recent work has con-
tinued this knowledge-based approach (Bitar and Espy-
Wilson, 1995, 1996; Espy-Wilson and Bitar, 1995).

In this article, we will not further discuss these
early (and often failed) attempts, which generally
used knowledge-based “expert systems” methods. We
will instead consider more recent work, which uses
statistical/machine-learning techniques. One of the ear-
liest attempts at a production-inspired model within a
statistical machine-learning framework, was the Trended
HMM of Deng (1992) in which HMM states, instead of
generating independent identically distributed observa-
tions, generate “trended” sequences of observations in
the observation space. The model only accounts for one
aspect of the acoustic consequences of speech production:
piecewise smooth/continuous observation sequences. It
does not attempt to explicitly model underlying produc-
tion.
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II. WHAT IS “SPEECH PRODUCTION
KNOWLEDGE”?

In this section, we examine what various researchers
mean by “speech production knowledge”, the linguistic
theories which provide the original motivations, and how
speech production can be represented, whether that is in
a literal or abstract form.

A. Why the representation matters

For production knowledge to be useful for speech mod-
eling and recognition, an encoding must be chosen. A
variety of possibilities exist, ranging from continuous-
valued measurements of vocal tract shape during speech,
to the use of discrete-valued manually selected feature
sets. The speech production parameters which appear
in this survey can be broadly categorized as discrete or
continuous. “Discrete” is used in this article to cover
both categorical features and discretized positions (e.g.,
high/mid/low are the three possible values for the dis-
crete feature “height” in some feature systems). As we
will see, the form of the representation is crucial. If we
adopt an approach that models the representation explic-
itly, the representation will directly determine the type
of statistical or other model that can be used.

Generally, representations abstract away from the ar-
ticulatory organs and lie somewhere between a concrete
description of the continuous-valued physical positions
and motions of the articulators and some higher-level
symbolic, linguistic representation (e.g., phonemes). The
motivations for each representation are quite different: a
desire to explain co-articulation, or the atomic units in
some particular phonological theory, for example. Like-
wise, the position of each representation along the phys-
ical production space ←→ abstract linguistic space axis
is different. All of them claim to normalize articulation,
within and particularly across speakers – they are more
speaker-independent than measurements of tongue posi-
tion, for example. Most also claim to be language in-
dependent (Ladefoged, 1997). Many claim to be able
to explain phenomena that have complex acoustic conse-
quences, such as co-articulation or phonological assimi-
lation, quite simply, e.g., by overlapping or spreading of
features (Farnetani, 1997). These are all strong motiva-
tions for believing that production knowledge should be
used in ASR.

Clearly, the degree of abstraction affects the useful-
ness of a representation for modeling purposes. Whilst
physical measurements of articulator positions might be
most true to the reality of speech production, they pose
significant problems for statistical modeling – for ex-
ample, they are generally continuous-over-time trajec-
tories and therefore require a different class of models
and algorithms than frame-based data. At the other ex-
treme, highly abstract representations might be simpler
to model, but cannot express the details of speech pro-
duction that might improve speech recognition accuracy.

Typically, more abstract representations will tend to be
discrete whereas concrete ones will tend to be continuous-
valued. Discretization of continuous processes is com-
mon when formulating numerical models. In the case of
speech production, the choice of symbols may be sug-
gested by the feature system in use (e.g., a traditional
place/manner system may have 9 values for place and 5
for manner) or by quantizing articulatory measurements
(e.g., Stephenson’s work discussed in Section V A3). We
will use the terms articulatory features (AFs) to refer to
discrete-valued representations and articulatory parame-
ters to refer to continuous-valued representations.

B. Discrete representations of speech production

Discrete representations of speech production fall into
two categories. In one, the number of features is usu-
ally small, with each feature taking a value from a set
of possible values. It is possible for a feature to have
an unspecified value (the set of features is then called
“underspecified”). These features are often associated
with a linguistic unit. A traditional system for describing
phonemes using a small number of features, each of which
can take multiple values, has as its two most important
features manner and place. To these, various other fea-
tures can be added; for example, the inventory used by
Kirchhoff (1999) is manner (possible values: vowel, lat-
eral, nasal, fricative, approximant, silence), place (den-
tal, coronal, labial, retroflex, velar, glottal, high, mid,
low, silence), voicing (voiced, voiceless, silence), rounding
(rounded, unrounded, nil, silence) and front-back (front,
back, nil, silence). Because the set of possible places of
articulation depends on manner, the values that place
can take may be made conditional on the value of man-
ner (Chang et al., 2005; Juneja and Espy-Wilson, 2003b).
This is a frequently-used representation for modeling,
where the features are known as pseudo-articulatory fea-
tures, or simply articulatory features. AF-labeled data
are commonly produced using rule-based systems which
map from existing labels to a corresponding articulatory
configuration or sequence of configurations (see Section
IV B 3). Other discrete parameterizations include quan-
tizing measured articulatory data (Section V A 3).

The other category of representations uses a larger
number of binary features; a vector of such features
may be associated with a linguistic unit or, for the
purposes of ASR, may be specified for every time
frame. One influential phonological model (Chomsky
and Halle, 1968) represents phonemes as vectors of bi-
nary features, such as voiced/voiceless, nasal/non-nasal
or rounded/unrounded. These all have a physical produc-
tion interpretation, although they were intended for use
in phonological rules. Some approaches to ASR described
in this article use this approach (Section V A 1). How-
ever, they generally adopt only the feature set and ignore
the rule-based phonological component. They also gener-
ally specify the features every frame, rather than associ-
ating them with linguistic units because the features can
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thus be automatically recognized from the acoustic signal
prior to hypothesizing linguistic unit boundaries. This is
in contrast to “landmark” approaches, which first hy-
pothesize linguistically important events, and then pro-
duce either acoustic features for each event or distinctive
features defined at landmarks (Section IVC).

The key advantage of using features in phonology
transfers directly to statistical modeling. Features are
a factored representation and, through this factoriza-
tion, feature values are shared by several phonemes. As
we already mentioned in the Introduction, even in stan-
dard HMM-based recognition systems (e.g., Young et al.,
2002), this factored representation is extremely useful.

Chomsky and Halle’s features are an abstract represen-
tation of speech production. After all, they were used in
a phonological theory, in which only symbolic processes
(e.g., assimilation) are of interest. In speech modeling,
we wish to represent more acoustic detail than this. For-
tunately, the feature set can be used to describe some
acoustic (non-phonological) processes. For example, we
could describe a nasalized version of an English vowel
by simply changing its nasal feature value from − to +.
A simple extension of this feature system (see Section
V A1) changes the interpretation of the feature values to
be probabilistic, with values ranging from 0 to 1, thus
allowing degrees of nasalization, for example.

1. Speech as articulatory gestures

A separate and also influential perspective on speech
organization was developed at Haskins Laboratories dur-
ing the 1980s (e.g., Browman and Goldstein, 1992). A
central tenet of the gestural approach is that speech per-
cepts fundamentally correspond to the articulatory ges-
tures that produced the acoustic signal. Gestures typ-
ically involve several articulators working together in
(loose) synchrony. In the gestural view of speech produc-
tion, a “gestural score” is first produced, from which a
task dynamic model (Saltzman and Munhall, 1989) gen-
erates articulatory trajectories. The score is written us-
ing a finite number of types of gesture, such as “bilabial
closure” and “velic opening”. An example gestural score,
using Browman and Goldstein’s vocal tract variables, is
shown in Figure 1. These gestures correspond directly to
physical actions of the articulators.

The gestural approach provides an account of variation
in spontaneous or casual speech. Instead of using com-
plex phonological rules to account for phenomena such as
lenition, reduction and insertion, it uses simple and pre-
dictable changes in the relative timing of vocal tract vari-
ables (Browman and Goldstein, 1991). A vivid example
of the representational power of the gestural approach is
provided in Rubin and Vatikiotis-Bateson (1998) for the
utterances “banana”, “bandana”, “badnana” and “bad-
data” where it is shown that the differences between these
utterances all come down to differences in the timing of
velar movement.

velic
opening

velic
opening

pharyngeal wide

alveolar
fricative

bilabial
closure

bilabial
closure

opening-closing

lips

velic

oral

tongue
body

tongue
tip

glottal

FIG. 1. Gestural score for the word “spam”, adapted from
Browman and Goldstein (1991).

C. Continuous-valued representations of speech
production

In a few systems (e.g., Frankel, 2003; Wrench, 2001;
Zlokarnik, 1995), a number of continuous-valued streams
of data together give a smoothly-varying description
of speech production. These may consist of measured
human articulation, parameters automatically recov-
ered from acoustic input (Section IVA), or production-
inspired parameters (Nix and Hogden, 1998; Richards
and Bridle, 1999).

The relationship between articulation and acoustics is
highly non-linear. Measured articulatory parameters are
smooth, slowly varying and continuous (yet noisy), due
to the highly constrained dynamics of speech produc-
tion. By contrast, acoustic parameters display regions of
smooth spectral change interspersed by sudden discon-
tinuities such as found in plosives. Analysis of speaker-
dependent Electromagnetic Articulograph (EMA) data
from the MOCHA corpus (Wrench and Hardcastle, 2000)
reported by Frankel (2003) shows that a linear predictor
can explain much of the variation found in articulatory
parameters, both within and between phone segments.
On acoustic data, whilst a linear predictor is suitable
within phones, a non-linear predictor is required to model
dependencies between phone segments.

III. MEASURING SPEECH PRODUCTION FROM
THE ARTICULATORS

In this Section, we look at ways of measuring speech
production, then in Section IV we will cover methods
that only require the acoustics (at least, at recognition
time). We must make a distinction between “data” and
“knowledge”. Whilst data (e.g., articulation measured by
Electromagnetic Articulography or Magnetic Resonance
Imaging) may be regarded as ground truth, it is not
sufficient to build a model. Powerful machine-learning
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techniques are available for learning the parameters of
a model and, increasingly, for selecting amongst a set
of candidate models. These techniques use data but re-
quire the model (or model type) to be specified. Machine-
learning cannot hypothesize new types of model for us;
for that, we must apply knowledge of the problem. In
this article, we concentrate on systems that follow this
methodology: they use knowledge of speech production
to hypothesize a new type of model, then use machine-
learning and data to learn its parameters.

A. Techniques for measuring articulation

Measuring articulation is frequently an invasive pro-
cess. However, subjects generally manage to produce in-
telligible and reasonably natural speech despite the array
of instruments to which they are attached.

An X-ray microbeam system involves attaching 2-
3 mm gold pellets to the articulators which are tracked
by a narrow, high-energy X-ray beam. The system de-
scribed by Westbury (1994) achieves sampling rates of
between 40 Hz and 160 Hz depending on the articulator
being tracked. The X-ray machinery produces apprecia-
ble levels of background noise, resulting in a noisy speech
signal and also interfering with speech production – the
Lombard effect (Junqua, 1993).

An Electromagnetic Articulograph (EMA) system uses
small receiver coils, instead of gold pellets, which have
thread-like wires attached. These interfere surprisingly
little with speech production. Current is induced in the
coils by alternating magnetic fields from fixed transmit-
ter coils mounted on a helmet, and their position can
be inferred. As with an X-ray microbeam system, only
x and y coordinates of each sensor in the mid-sagittal
plane are measured, although a recently-developed three
dimensional version overcomes this limitation and addi-
tionally removes the need to attach the transmitter coils
to the subject (Hoole et al., 2003). EMA systems can be
located in recording studios, produce no operating noise,
and therefore offer very high quality audio. In practice,
the duration of recording sessions is limited because coils
become detached or the subject tires.

A laryngograph, or electroglottograph (EGG), mea-
sures variation in conductance between transmitting and
receiving electrodes positioned either side of the larynx,
which is related to the change in glottal contact. An
electropalatograph (EPG) measures tongue/palate con-
tact over the whole palate using a custom-made artifi-
cial palate which has electrodes embedded on the lower
surface in a grid pattern. Because it is a few millime-
ters thick, this interferes substantially with speech pro-
duction. However, articulatory compensation (Perkell,
1997) means that relatively natural speech can be pro-
duced if the speaker wears the palate for some time be-
fore the recording session starts. An overview of other
articulation-measuring devices can be found in Stone
(1997), including computed tomography, magnetic res-
onance imaging, ultrasound, electromyography, strain

gauges, video tracking systems, various aerodynamic
measurement devices and so on.

B. Available corpora

Corpora large enough for training and evaluating ASR
systems are scarce due to the expense and labor involved
in data collection. We are aware of just two such data
sets. The Wisconsin X-ray microbeam database (West-
bury, 1994) consists of parallel articulatory and acoustic
features for 60+ subjects, each of whom provide about
20 minutes of speech, including reading prose passages,
counting and digit sequences, oral motor tasks, citation
words, near-words, sounds and sound sequences, and
read sentences. The MOCHA corpus (Wrench, 2001;
Wrench and Hardcastle, 2000) was recorded at Queen
Margaret University College, Edinburgh, and consists of
parallel acoustic-articulatory recordings for a number of
speakers, each of whom read up to 450 sentences from
TIMIT (Garofolo et al., 1993), plus 10 further sentences
to cover the received pronunciation (RP) accent of British
English. The measurements comprise EMA, EPG and
EGG. Data sets from the other measurement devices
listed above do exist, but not usually in useful quanti-
ties. New data are gradually becoming available, includ-
ing EMA and magnetic resonance imaging (MRI) video
data from the University of Southern California.1

IV. INFERRING SPEECH PRODUCTION FROM THE
ACOUSTIC SIGNAL

In the absence of measurements of speech production,
some method is required for recovering this information
from the acoustic signal. Here, we discuss the tasks of
articulatory inversion (Section IVA), articulatory fea-
ture recognition (Section IV B), and landmark detection
(Section IV C). Articulatory inversion is concerned with
faithful recovery of articulation or realistic, articulator-
like parameters. Articulatory feature recognition is the
inference of discrete pseudo-articulatory states. Land-
mark detection aims to enhance feature detection by lo-
cating points in the signal at which reliable acoustic cues
may be found.

A. Articulatory inversion

An inversion mapping seeks to invert the process of
speech production: given an acoustic signal, it estimates
the sequence of underlying articulatory configurations.
There is evidence that multiple articulatory configura-
tions can result in the same or very similar acoustic sig-
nals: a many-to-one mapping. This makes the inver-
sion mapping one-to-many, which is an ill-posed problem.
For example, using the Wisconsin University X-ray mi-
crobeam database, Roweis (1999) showed that the artic-
ulatory data points associated with the nearest thousand
acoustic neighbors of a reference acoustic vector could be
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spread widely in the articulatory domain, sometimes in
multimodal distributions.

One method of inversion uses an analysis of the acous-
tic signals based on some mathematical model of speech
production and the physical properties of the articulatory
system (Krstulović, 1999; Wakita, 1979). Another tech-
nique uses articulatory speech synthesis models with an
analysis-by-synthesis algorithm: model parameters are
adjusted so the synthesizer output matches the acous-
tic target (e.g., Shirai and Kobayashi, 1986). Synthe-
sis models can be used to generate articulatory-acoustic
databases, which can then be used for performing the in-
version mapping as part of a code-book inversion method
(e.g., Atal et al., 1978) or as training data for another
data-driven machine-learning model (e.g., Rahim et al.,
1993). A fundamental problem facing the use of ana-
lytical methods and of articulatory synthesis models is
the difficulty in evaluating the result with respect to real
human articulation. From this point of view, measure-
ments of human articulation can provide a huge advan-
tage. (Section VI E considers the problem of evaluation
more generally).

Together with new data, the popularity of machine-
learning methods has led to a recent increase in data
driven methods, including extended Kalman filtering
(Dusan and Deng, 2000), self-organizing HMMs (Roweis,
1999), codebooks (Hogden et al., 1996), artificial neu-
ral networks (ANNs) such as the Multilayer Perceptron
(Papcun et al., 1992; Richmond et al., 2003) and the Mix-
ture Density Network (Richmond et al., 2003), Gaussian
Mixture Models (Toda et al., 2004), and an HMM-based
speech production model (Hiroya and Honda, 2004).

Finally, there are approaches that do not rely on ar-
ticulatory data: so-called latent variable models, such
as the Maximum Likelihood Continuity Map (MAL-
COM) (Hogden et al., 1998), which estimates the most
likely sequence of hidden variables in accordance with
articulatory-like constraints, given a sequence of acous-
tic frames. The constraint is simply that the estimated
motion of pseudo-articulators cannot contain frequency
components above a certain cutoff frequency, e.g. 15 Hz.
This is a direct use of the knowledge that articulator mo-
tion is smooth (more specifically, band-limited) to aid the
inversion process.

Although Hogden et al. do not use articulatory data
for training, they report that the trajectories of the hid-
den variables correlate highly with measured articulatory
trajectories.

B. Articulatory feature recognition

Articulatory feature recognition can be incorporated
directly into existing phone or word-based systems, or
can provide a subtask on the way to building a full
AF-based ASR system. Typically, separate models are
trained to distinguish between the possible values of each
feature. Kirchhoff (1999) proposes this approach because
the complexity of each individual classifier will be less

than that of a monolithic classifier, leading to improved
robustness. Efficient use is made of training data, im-
proving the modeling of infrequently occurring feature
combinations. ANNs, HMMs, and dynamic Bayesian
networks (DBNs) have all successfully been applied to
the task of AF recognition.

Attempting the task of AF recognition, without ac-
tually performing word recognition, presents two inher-
ent difficulties, both of which stem from deriving AF la-
bels from phone labels: obtaining labels for the data and
evaluating the system. If the AFs directly correspond
to articulator positions, then they may be obtained by
quantizing articulatory measurement data. If AF labels
are produced from phonetic transcriptions, there is the
possibility of merely having a distributed representation
of phonemes without the advantages of a truly factored
representation. Embedded training (e.g., Wester et al.,
2004) can be used to address limitations in phone-derived
AF labels, by allowing boundaries to be moved and labels
potentially changed.

The following work on AF recognition all aims towards
full ASR; AF recognition is merely a staging post along
the way. There are two distinct categories of work here.
The first uses AFs of the kind discussed above; we de-
scribe three different machine-learning approaches to rec-
ognizing the values of AFs from speech. The second ap-
proach is that of landmarks. Evaluation of such systems
can present some problems, which are discussed in Sec-
tion VIE.

1. Articulatory feature recognition using neural
networks

King and Taylor (2000) report articulatory feature
recognition experiments on TIMIT using ANNs, compar-
ing three feature systems: binary features based on the
Sound Pattern of English (SPE) (Chomsky and Halle,
1968), multivalued features using traditional phonetic
categories such as manner, place, etc., and Government
phonology (GP) (Harris, 1994). The percentage of frames
with all features simultaneously correct together was sim-
ilar across feature systems: 52%, 53% and 59% for SPE,
multivalued and GP respectively (59%, 60% and 61%
when each frame was mapped to the nearest phoneme).
Dalsgaard et al. (1991) aligned acoustic-phonetic features
with speech using a neural network; the features were
similar to the SPE set, but underwent principal com-
ponents analysis to reduce correlation. It is not clear
whether they retain linguistic meaning after this proce-
dure. Kirchhoff (Kirchhoff, 1999; Kirchhoff et al., 2002)
used articulatory features to enhance a phone-based sys-
tem. Wester et al. (2001) and Chang et al. (2005) used
separate place classifiers for each value that manner can
take. Omar and Hasegawa-Johnson (2002) used a maxi-
mum mutual information approach to determine subsets
of acoustic features for use in AF recognition.
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2. Articulatory feature recognition using hidden
Markov models

A number of systems use HMMs for AF recognition,
including Metze and Waibel (2002), who used the set
of linguistically motivated questions devised for cluster-
ing context-dependent HMM phone models to provide an
initial AF set. A set of feature detectors was then used
to supplement an HMM system via likelihood combina-
tion at the phone or state level. Word error rate (WER)
was reduced from 13.4% to 11.6% on a 40k word vocab-
ulary Broadcast News task and from 23.5% to 21.9% on
spontaneous speech from the Verbmobil task. An HMM
approach was also taken by Eide (2001), and used to gen-
erate observations for further processing in a phone-based
HMM system.

3. Articulatory feature recognition using dynamic
Bayesian networks

In contrast to the use of ANNs and HMMs, the use
of DBNs is motivated specifically by their particular ca-
pabilities for this task: the ability to transparently and
explicitly model inter-dependencies between features and
the possibility of building a single model that includes
both AF recognition and word recognition.

Frankel et al. (2004) proposed DBNs as a model for AF
recognition. As with the manner-dependent place ANNs
discussed above, evaluation on the TIMIT corpus (Garo-
folo et al., 1993) showed that modeling inter-feature de-
pendencies led to improved accuracy. The model is shown
in figure 2. Using phone-derived feature labels as the gold
standard, the overall framewise percent features correct
was increased from 80.8% to 81.5% by modeling depen-
dencies, and frames with all features simultaneously cor-
rect together increased dramatically from 47.2% to 57.8%
(this result can be compared to 53% for King and Taylor’s
multivalued feature system described in Section IVB 1,
where the feature system was very similar).

To mitigate the problems of learning from phone-
derived feature labels, an embedded training scheme
(mentioned in Section IVB) was developed by Wester
et al. (2004) in which a set of asynchronous feature
changes was learned from the data. Evaluation on a
subset of the OGI Numbers corpus (Cole et al., 1995)
showed that the new model led to a slight increase in
accuracy over a similar model trained on phone-derived
labels (these accuracy figures do not tell the whole story
– see Section VI E 2 a). However, there was a 3-fold in-
crease in the number of feature combinations found in the
recognition output, suggesting that the model was finding
some asynchrony in feature changes. Frankel and King
(2005) describe a hybrid ANN/DBN approach, in which
the Gaussian mixture model (GMM) observation process
used by the original DBNs is replaced with ANN output
posteriors. This gives a system in the spirit of hybrid
ANN/HMM speech recognition (Bourlard and Morgan,
1993), combining the benefit of the ANN’s discriminative
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FIG. 2. A DBN for articulatory feature recognition, from
Frankel et al. (2004), shown in graphical model notation
where square/round and shaded/unshaded nodes denote dis-
crete/continuous and observed/hidden variables respectively.
(Arcs between time slices are drawn here, and in all other
DBN figures, with “drop shadows” for clarity, although they
are otherwise no different to other arcs.) The discrete vari-
ables mt, pt, vt, ft, st, rt are the articulatory features (manner,
place, voicing, frontback, static, rounding) at time t. The
model consists of 6 parallel HMMs (e.g., consider only the
variables mt, mt−1 and their corresponding observations) plus
a set of inter-feature dependencies (e.g., the arc from mt to pt

indicates that the distribution of pt depends on the value of
mt). These inter-feature dependency arcs allow the model to
learn which feature values tend to co-occur. The continuous
observation yt is repeated 6 times (a product-of-Gaussians
observation density).

training with the inter-feature dependency modeling of-
fered by the DBN. The feature recognition accuracy on
OGI Numbers was increased to 87.8%.

C. Landmark-based feature detection

Feature-based representations have been used for a
long time in the landmark-based recognition work of
Stevens (2000; 2002) which models speech perception
in humans; this work has inspired landmark-based ASR
(e.g., Hasegawa-Johnson et al., 2005; Juneja, 2004; Zue
et al., 1989). Stevens (2002) describes the recogni-
tion process as beginning with hypothesizing locations
of landmarks, points in the speech signal correspond-
ing to important events such as consonantal closures and
releases, vowel centers and extrema of glides (e.g., Fig-
ure 3). The type of landmark determines the values of
articulator-free features such as [sonorant] and [contin-
uant]. Various cues (e.g., formant frequencies, spectral
amplitudes, duration of frication), are then extracted
around the landmarks and used to determine the val-
ues of articulator-bound distinctive features (e.g., place,
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P
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FIG. 3. Landmarks for the utterance “Yeah it’s like other
weird stuff.” Text labels correspond to the landmark to their
right. F1: fricative onset; Son: sonorant consonant onset;
P: vowel nucleus; D: syllabic dip; SIL: silence onset; B: stop
burst onset; VOP: vowel onset point. Based on Figure 4.2 in
Hasegawa-Johnson et al. (2005).

vowel height, nasality). The set of hypothesized features
is matched against feature-based word representations in
the lexicon.

There is no system for automatic speech recognition
of which we are aware that implements this theory fully,
but modules implementing some aspects of the theory
have been developed. Howitt (1999) reports on a method
for vowel landmark detection using a simple multilayer
perceptron; Choi (1999) presents knowledge-based cues
and detectors for consonant voicing at manually-labeled
landmarks. Two complete ASR systems using landmarks
– the MIT SUMMIT system and a system from the
2004 Johns Hopkins Summer Workshop – are described
in Section VB. Juneja and Espy-Wilson (Juneja, 2004;
Juneja and Espy-Wilson, 2003b) report related work,
which combines support vector machine outputs with dy-
namic programming to locate landmarks and label man-
ner features.

D. Comparison of AF and landmark approaches

In most AF-based systems, AF values are defined every
time frame. This is compatible with any of the frame-
based modeling techniques described in the next sec-
tion, including generative models such as HMMs. These
frame-based models compute the likelihood of an utter-
ance given some hypothesized labels (e.g., a word se-
quence) by multiplying together frame-level likelihoods.
It is also straightforward to compute a frame-level ac-
curacy for these types of systems, so long as reference
labels are available (Section VIE discusses this issue).
In contrast, landmarks are events. Evaluation of land-
mark accuracy requires a measure such as the F score
which combines recall and precision, plus some measure
of the temporal accuracy of the landmarks. For this rea-
son, reports of landmark accuracy are less common, less
consistent, and harder to interpret. For subsequent word
recognition, landmarks are used to guide acoustic feature
extraction, meaning that these acoustic features are not
available at every time frame to any subsequent model.

V. ACOUSTIC MODELING USING PRODUCTION
KNOWLEDGE

We now consider how speech production knowledge
has been used to improve acoustic modeling for speech
recognition. Some of the work builds on AF recogni-
tion described above. A simple way to use articulatory
features is as a replacement for conventional acoustic ob-
servations. Alternatively, “landmarks” may be located
in the signal, and acoustic parameters extracted at those
locations. AFs can be used to perform phone recogni-
tion, where they have been shown to improve noise ro-
bustness, although this approach suffers from the phone
“bottleneck” that AF approaches usually try to avoid. A
rather different way to harness the power of articulatory
information is to use it for model selection by, for exam-
ple, defining the topology of an otherwise conventional
HMM. Other models maintain an explicit internal repre-
sentation of speech production, whether that be discrete
or continuous. AFs have also been used in pronuncia-
tion modeling, and for recognition-by-synthesis using an
articulatory speech synthesizer.

A. Articulatory features or parameters as
observations

Articulatory parameters (continuous-valued or quan-
tized) can be used directly as (part of) the observation
vector of a statistical model. This requires access to mea-
sured or automatically-recovered articulation.

1. Hidden Markov Models

Zlokarnik (1995) used measured or automatically-
recovered articulatory parameters, appended to acoustic
features, in an HMM recognizer. On VCV sequences,
adding measured articulation to Mel-frequency cepstral
co-efficients (MFCCs) reduced WER by more than 60%
relative. Articulatory parameters recovered using a mul-
tilater perceptron (MLP) gave relative WER reductions
of around 20%. The additional information carried by
the recovered articulation may be attributable either to
the supervised nature of MLP training, or the use of 51
frames (approximately half a second) of acoustic context
on the MLP inputs.

Similar experiments were conducted on a larger scale
by Wrench. For a single speaker, augmenting acoustic
features with measured articulatory parameters gave a
17% relative phone error rate reduction using triphone
HMMs. The articulatory feature set was generated by
stacking EMA, EGG and EPG signals with their corre-
sponding δ (velocity) and δδ (acceleration) coefficients
and performing linear discriminant analysis (LDA) di-
mensionality reduction. However, when real articulation
was replaced with articulatory parameters automatically
recovered from the acoustics using an MLP, there was
no improvement over the baseline acoustic-only result
(Wrench, 2001; Wrench and Hardcastle, 2000; Wrench
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FIG. 4. 4(a): HMM in graphical model notation. qt is the hid-
den discrete state at time t and ot is the continuous-valued ob-
servation. This graph illustrates the conditional independence
assumptions in this model, e.g., ot is conditionally indepen-
dent of everything except qt, given qt. 4(b): Linear dynamic
model (LDM). xt is the continuous hidden state and yt is the
continuous observation at time t. The model is similar to the
HMM except the state is now continuous: its value is a vector
of real numbers. Whereas the HMM stochastically chooses a
state sequence, the LDM makes stochastic trajectories in its
state-space. 4(c): DBN from Stephenson et al. (2000). qt is
the hidden state at time t, yt is a discrete acoustic observa-
tion and at is a discretized articulator position (which may be
observed during training). This model is somewhat similar to
the conventional HMM with a mixture-of-Gaussians output
density in Figure 4(e), except that the observation is discrete
(for practical implementation reasons). The dependency of at

on at−1 models the dynamics of articulator movement. 4(d):
Hybrid HMM/BN from Markov et al. (2003).. qt is the hid-
den state at time t, yt is a discrete acoustic observation and
at is an observed, discretized articulator position. The model
is very similar to that of Stephenson except the articulator
position is always observed (so the dependency of at on at−1

is not needed). 4(e): A conventional mixture-of-Gaussians
continuous-density HMM. wt is the hidden mixture compo-
nent at time t (the probability mass function of wt is constant:
it is the set of mixture weights). The production-based mod-
els in Figures 4(c) and 4(d) use a similar structure to achieve
a mixture distribution over the observation.

and Richmond, 2000).
Eide (2001) describes augmenting the MFCC observa-

tion vector for a standard HMM system with information
about articulatory features. Mutual information between
the true and estimated presence of features was used to
reduce the original 14 features down to 4. In an evalu-
ation on city and street names spoken in a car with the
engine running at 0, 30 and 60 mph, the augmented ob-
servations gave 34%/22% relative word/string error rate
reductions.

Fukuda et al. (2003) used an MLP to map from acous-
tic parameters to a 33-dimensional output vector repre-
senting 11 distinctive phonetic features (DPFs) at the
current time frame along with inferred values at pre-
ceding and following contexts. The modeling of the

MLP-derived DPFs was refined through the application
of logarithmic feature transforms (Fukuda and Nitta,
2003a) and dimensionality reduction (Fukuda and Nitta,
2003b). Augmenting MFCC feature vectors with the
MLP-derived DPFs gave accuracy increases over the
baseline, particularly in the presence of noise.

King et al. (1998) and King and Taylor (2000) also re-
port recognition experiments based on the combination
of the output of a number of independent ANN classifiers.
The work was primarily aimed at comparing phonological
feature sets on which to base the classifiers, though the
feature predictions were also combined to give TIMIT
phone recognition results. Unlike Kirchhoff, who used
an ANN to combine the independent feature classifiers,
the predicted feature values were used as observations in
an HMM system. The resulting recognition accuracy of
63.5% was higher than the result of 63.3% found using
standard acoustic HMMs, though not statistically signif-
icant. The need for an asynchronous articulatory model
was demonstrated using classifications of a set of binary
features derived from Chomsky and Halle (1968). In
cases where features changed value at phone boundaries,
allowing transitions within two frames of the reference
time to be counted as correct, the percentage of frames
where all features were correct (i.e., where the phone was
correctly identified) rose from 52% to 63%. Furthermore,
the accuracy with which features were mapped onto the
nearest phone rose from 59% to 70%. This demonstrates
the limiting nature of forcing hard decisions at phone
boundaries onto asynchronous data. In both King et al.’s
and Kirchhoff’s systems, the individual feature classifiers
were independent.

2. Hybrid HMM/ANN systems

Kirchhoff (Kirchhoff, 1999; Kirchhoff et al., 2002)
showed that an AF-based system can increase robust-
ness to noise. The OGI Numbers corpus (Cole et al.,
1995) was used to develop this approach, using the fea-
ture representation given in Section II B. Feature la-
bels were generated from time-aligned phone labels us-
ing rules. As in Section IVB, a separate MLP for each
feature was trained to estimate posterior probabilities,
given the acoustic input. A further MLP was trained to
map from the outputs of the 5 feature networks to phone
class posteriors which were then used in a standard hy-
brid HMM/ANN recognition system.

On clean speech, the word error rates for the acous-
tic and articulatory models were comparable, 8.4% and
8.9% respectively, though in the presence of a high de-
gree of additive noise, the articulatory model produced
significantly better results. At 0 dB (signal and noise
have equal intensity), the word error rate for the acous-
tic model was 50.2% but was 43.6% for the articulatory
system. When the outputs of the acoustic and articu-
latory recognizers were combined, the error rates were
lower than for either of the two individually, under a
variety of noise levels and also on reverberant speech.
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The framewise errors for the different articulatory fea-
ture groups showed that classification performance on the
voicing, rounding and front-back features do not deteri-
orate as quickly as for manner and place in the presence
of noise. This result suggests that, by incorporating con-
fidence scores when combining the outputs of individual
classifiers, the system could be tailored to particular op-
erating conditions, and supports the authors’ suggestion
that combining individual classifiers might lead to im-
proved robustness over a monolithic classifier (i.e., one
that recognizes all features simultaneously). Similar ex-
periments were performed on a larger spontaneous dia-
log corpus (Verbmobil). Improvements were also shown
when acoustic and articulatory features were combined,
giving relative WER reductions of up to 5.6%.

3. Dynamic Bayesian Networks

Stephenson et al. (2000, 2004) created a DBN which
enhances the output mixture distribution of an HMM by
including dependency on an articulator position. Fig-
ure 4(c) shows two time-slices of the model. The artic-
ulator position is conditioned on its previous value and
on the current sub-word state, providing an element of
contextual modeling. Note that the decoding version of
the model is shown in which the articulator position is
hidden. During training, the articulator position may
be observed. The Wisconsin X-ray microbeam database
(Westbury, 1994) was used to provide parallel acoustic-
articulatory data for an isolated word recognition task.
The acoustic features were 12 MFCCs and energy along
with their δ coefficients, and the articulatory features
consisted of x and y coordinates for 8 articulator posi-
tions (upper lip, lower lip, four tongue positions, lower
front tooth, lower back tooth). Both acoustic and articu-
latory observations were discretized by generating code-
books using K-means clustering. The acoustic-only word
error rate of 8.6% was reduced to 7.6% when the ar-
ticulatory data was used during recognition. With the
articulation hidden, the system gave a recognition word
error rate of 7.8%, which is a 9% relative error decrease
over the acoustic baseline.

4. Hybrid Hidden Markov Model/Bayesian Network

Similar work is described in Markov et al. (2003), us-
ing a hybrid HMM plus Bayesian network (BN): an HMM
in which the BN provides the observation process. The
hybrid HMM/BN shown in Figure 4(d) was used to im-
plement a similar system to that in Stephenson et al.
(2000), but without the dependency between successive
articulator positions. By conditioning the GMM ob-
servation distributions on both the sub-word state and
the (discrete) articulator value, the model is an HMM
with a mixture output distribution where the mixture
component (i.e., articulator position) is observed. Fig-
ure 4(e) shows a standard HMM with continuous ob-
servations and a mixture-of-Gaussians output density

for comparison. As above, real articulatory data col-
lected on an EMA machine was used for training the
models, with the data first discretized. Unlike Stephen-
son et al. (2000), continuous-valued acoustic observa-
tions were used. Speaker-dependent experiments showed
that the structure in the BN observation process makes
it possible to support more mixture components than
with standard GMMs (Markov et al., 2003). Using 300
training sentences of parallel acoustic and articulatory
data from 3 speakers, HMMs trained and tested on
both acoustic and articulatory data significantly outper-
formed HMMs trained and tested on only acoustic data.
HMM/BN models trained on both acoustic and articu-
latory data, even though performing recognition using
only the acoustic parameters, gave similar performance
to the HMMs trained and tested on both. These findings
support those of Stephenson et al. (2000). Both these
systems require articulatory measurement data for train-
ing.

5. Linear Dynamic Models

In the preceding work using HMMs and HMM/BNs, no
attempt (other than the use of delta features) was made
to model the continuous nature of articulator positions
through time. Only Stephenson’s model includes a de-
pendency between the current articulatory state variable
and its value at the preceding time, but this variable
is discrete. All of these models use only discrete hid-
den state variable(s). In contrast, linear dynamic models
(LDMs) use a continuous state variable.

Frankel et al. (Frankel, 2003; Frankel and King,
2001a,b; Frankel et al., 2000) report the results of phone
classification and recognition on the MOCHA corpus us-
ing LDMs. These are generative state-space models in
which a continuous-valued hidden state variable gives
rise to a time-varying multivariate Gaussian output dis-
tribution. Figure 4(b) shows two time-slices of a LDM
in graphical model notation. Frankel (2003) describes
a phone classification task comparing various types of
observation vectors derived from the MOCHA corpus.
These include MFCCs, measured articulation (EMA),
EGG and EPG data. Acoustic-only observations gave
higher accuracy than EMA alone, but when EGG (i.e.
voicing information) and EPG data was added to EMA,
the accuracy approaches that of the acoustic-only system.
The acoustic-only phone error rate was reduced by 16.2%
relative by adding EMA. Replacing measured EMA pa-
rameters with values recovered from the acoustics by an
MLP (Richmond et al., 2003) actually led to a slight re-
duction in accuracy, compared to the acoustic-only sys-
tem. This may be due to the type of feed-forward MLP
used in the inversion mapping, which estimates the condi-
tional average articulatory parameters, given the acoustic
inputs. Papcun et al. (1992) and Rose et al. (1996) ob-
served that non-critical articulators tend to have higher
associated variance than critical articulators. With no
provision to model this variation, the MLP will intro-
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duce consistency where there should be none which may
lead to an overemphasis on data streams corresponding
to non-critical articulators. An alternative type of net-
work might be better: in Richmond (2002) a mixture
density network was applied to the inversion task. Such
networks can model one-to-many relationships and ac-
count for variance, because their outputs are mixtures of
probability density functions.

B. Landmark-based systems

The idea of locating landmarks in the speech signal,
and using those locations to extract acoustic information,
was introduced in Section IV C. The use of landmarks
does not, in itself, imply the use of production knowledge
or articulatory features, and has been used as part of both
phone-based and articulatory feature-based recognition
systems.

The MIT Summit speech recognition system (Glass,
2003; Zue et al., 1989) formalizes some of the ideas of
Stevens’ landmark-based approach (Stevens, 2002) in a
probabilistic setting. Summit locates potential phone-
boundary landmarks and uses a phone-based dictionary
to represent words. Summit has used various landmark
detection algorithms (Chang and Glass, 1997; Glass,
1988) and acoustic cues (Halberstadt and Glass, 1998;
Muzumdar, 1996; Zue et al., 1989). Summit operates in
either (or both) of two modes: a boundary-based mode,
in which the acoustic cues around phonetic-boundary
landmarks are explicitly modeled, and a segment-based
mode, in which the regions between landmarks are mod-
eled. Recent work by Tang et al. (2003) uses Summit in
a combined phone-feature approach to word recognition.

The 2004 Johns Hopkins Summer Workshop project
on landmark-based speech recognition used an entirely
feature-based representation of words rather than a pho-
netic one (Hasegawa-Johnson et al., 2005). It also dif-
fered from Summit in that it used support vector ma-
chines (SVMs) to detect both landmarks and the pres-
ence or absence of distinctive features. The outputs of
these SVMs were combined into word scores and used
to rescore word lattices produced by a baseline HMM-
based recognizer. This project experimented with three
ways of combining the SVM outputs into word scores.
The first system used the approach of Juneja and Espy-
Wilson (2003a), in which SVM discriminant scores are
converted to likelihoods and modified Viterbi scoring is
done using a phonetic baseform dictionary, mapped to
distinctive features. The second system used an articula-
tory feature-based pronunciation model inspired by that
of Livescu and Glass (Section V E) and the third used a
maximum entropy model to classify words in a confusion
network.

C. Articulatory features for HMM model selection

Articulatory features may also be used for the purposes
of model selection, providing a prior on model topology

by specifying the function of sub-word states. This is
distinct from AFs providing the internal representation
because, in the model selection approach, once the model
is selected (e.g., the topology of an HMM is specified),
the articulatory information is no longer required.

1. Feature bundles

Deng and colleagues (e.g., Deng and Sun, 1994a,b;
Sun et al., 2000) have developed HMM systems where
each state represents an articulatory configuration. Fol-
lowing Chomsky and Halle’s theory of distinctive fea-
tures and Browman and Goldstein’s system of phonology
(Browman and Goldstein, 1992), they developed a de-
tailed system for deriving HMM state transition networks
based on a set of ‘atomic’ units. These units represent
all combinations of a set of overlapping articulatory fea-
tures that are possible under a set of hand-written rules.
Each phone is mapped to a static articulatory configu-
ration (affricates and diphthongs each have a sequence
of two configurations). Features can spread, to model
long span dependencies. When articulatory feature bun-
dles overlap asynchronously, new states are created for
the intermediate portions which describe transitions or
allophonic variation. On a TIMIT classification task,
HMMs constructed from these units achieved an accu-
racy of 73% compared with context-independent HMMs
of phones which gave an accuracy of 62%. The feature-
based HMMs also required fewer mixture components.
This suggests that a principled approach to state selec-
tion requires fewer parameters and therefore less train-
ing data, since each state is modeling a more consistent
region of the acoustic space. This work was extended
to include higher level linguistic information (Sun et al.,
2000), including utterance, word, morpheme and syllable
boundaries, syllable onset, nucleus and coda, word stress
and sentence accents. This time, results were reported on
TIMIT phone recognition, rather than classification. A
recognition accuracy of 73% was found using the feature-
based HMM, which compares favorably to their baseline
triphone HMM which gave an accuracy of about 71%,
although this is not a state-of-the art accuracy.

2. Hidden articulator Markov model

Richardson et al. (2000a,b) drew on work by Erler
and Freeman (1996) in devising the hidden articulator
Markov model (HAMM), which is an HMM where each
articulatory configuration is modeled by a separate state.
The state transitions reflect human articulation: Static
constraints disallow configurations which would not oc-
cur in American English, and dynamic constraints en-
sure that only physically possible movements are allowed.
Asynchronous articulator movement is allowed: Each
feature can change value independently of the others.
On a 600 word PHONEBOOK isolated word, telephone
speech, recognition task, the HAMM gave a significantly
higher WER than a 4-state HMM (7.56% vs. 5.76%) but
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FIG. 5. A hidden feature model from Livescu et al. (2003)
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the articulatory variables, at time t. The dependency of the
observation on the phone is mediated by the articulatory vari-
ables. Adding this intermediary layer allows for feature-based
pronunciation modeling via the phone-to-feature dependen-
cies.

a combination of the two gave a WER 4.56%: a relative
reduction of 21% over the HMM system.

D. Articulatory information as internal structure

Articulatory information can be used to provide some
or all of the internal model structure. This can take the
form of decomposing sub-word states into a set of discrete
articulatory features (Bilmes et al., 2001; Livescu et al.,
2003), or using a continuous-valued articulatory-like rep-
resentation which then generates acoustic parameters via
some transform (Iso, 1993; Richards and Bridle, 1999;
Russell and Jackson, 2005); some of the linear dynamic
models of Frankel and colleagues (Section V A 5) can be
seen as having a hidden continuous articulatory-like state
variable which generates acoustic observations.

1. Factoring the state into discrete articulatory
features

Features provide a parsimonious framework within
which to represent the variation present in natural
speech. The approaches below use AF recognition (Sec-
tion IVB 1) coupled with some method of mapping from
features to sub-word or word units; thus, the AFs are
explicitly present in the model’s internal representation.

Eide et al. (1993) presents work in this vein, though
phones are used to mediate between features and words,
which compromises the benefits of a feature approach.
Kirchhoff (1996) observes that articulatory asynchrony
spans units longer than phones, and describes a system in
which synchronization of feature streams is delayed to the
syllable level. HMMs are used to infer values correspond-
ing to each of 6 feature streams, and syllables are defined

as parallel sequences of feature values. In evaluation on
spontaneous German speech, a baseline triphone-based
recognizer gave a phone accuracy of 54.81%. To allow
comparison, recognized syllables were mapped to a phone
sequence, and gave the substantially higher recognition
accuracy of 68.3%, although it should be noted that this
not a fair comparison because the syllable-based system
benefits from the phonotactic constraints provided by the
syllable models.

Bilmes et al. (2001) proposed a DBN-based approach
to ASR with an AF internal representation. Livescu
et al. (2003) continued this work and proposed a model
that uses an articulatory feature factorization of the state
space. A set of 8 features is defined, with the value of each
conditioned on the current phone state and its own pre-
vious value (Figure 5). Dependencies may also be added
between features in the same time-slice. To overcome
the problem of specifying an observation model for every
possible combination of features, a product-of-mixtures-
of-Gaussians model is used. Evaluation of the model on
the Aurora 2.0 noisy digit corpus showed small accuracy
increases over a phone-based HMM baseline in clean test
conditions and more substantial improvements in some
noise conditions. However, improvements over the base-
line were only found when a phone-to-observation edge
was included, giving a system in which the feature- and
phone-based model likelihoods are effectively combined
at the frame level. Only limited forms of such models
were considered (for computational reasons), in which the
inter-frame feature dependencies shown in Figure 5 were
omitted and features were conditionally independent of
each other. Given the flexibility of the DBN framework,
there is much scope for further development of this ap-
proach.

There have been other attempts to use a factored
state representation. For example, Nock (2001) pro-
posed “Loosely-coupled HMMs” which have two or more
Markov chains, each with its own observation variable. In
Nock’s work, the observations for each chain were derived
from a different frequency band of the spectrum. Al-
though it is clear that the acoustic consequences of speech
production do not factor neatly into frequency bands,
Nock’s approach is inspired by the asynchronous nature
of speech production and the loosely-coupled HMM may
be more effective with observation streams that relate
more directly to speech production (e.g., articulatory fea-
tures).

2. Continuous articulatory internal representation

A number of researchers have investigated the use of
continuous state-space representations, where the acous-
tic observations are modeled as the realization of some
(possibly unobserved) dynamical system. Some of these
approaches, such as the linear Gaussian systems de-
scribed by Digalakis (1992), Frankel (2003), and Rosti
(2004) are intended to reflect only the general properties
of speech production and provide a compact representa-
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tion of acoustic parameters (Section VA 5). Other stud-
ies, as described below, make a more explicit attempt to
incorporate a model of the relationship between articu-
latory and acoustic domains.

a. Segmental HMM Russell and Jackson (2005) de-
scribe a multi-level segmental hidden Markov model
(MSHMM) in which formant frequencies are used to
build an articulatory-like internal representation. Each
state in the model generates a variable-duration noisy
linear trajectory in articulatory space, which is pro-
jected into the acoustic space via a linear mapping. The
articulatory-acoustic mappings are either per-phone basis
or shared across phone classes. A number of tying strate-
gies were compared, with greater numbers of mappings
giving improved performance. Given the linear nature of
the articulatory trajectories, and the linear mapping to
the acoustic parameters, a theoretical upper bound on
performance is given by a fixed linear-trajectory acous-
tic segmental HMM (FT-SHMM) (Holmes and Russell,
1999), which models the acoustic parameters directly.
Experimental results show that this bound is met, and
that where triphone models are employed, the MSHMM
gives comparable performance to the FT-SHMM system
with a 25% reduction in the number of free parame-
ters. To overcome the limitations of using a linear map-
ping between articulatory and acoustic domains, Jackson
et al. (2002) investigated the non-linear alternatives of
MLP and radial basis function (RBF), finding superior
performance with the RBF (for background reading on
these and other machine-learning techniques, see Section
VI G).

b. Long-span contextual modeling Attempting to cap-
ture long-span contextual effects along with the non-
linear relationship between articulatory and acoustic pa-
rameters has prompted models such as that of Iso (1993)
and the hidden dynamic model (HDM) of Richards and
Bridle (1999). The HDM uses a segmental framework
in which a static target or series of targets in a hidden
state space is associated with each phone in the inventory.
A Kalman smoother is run over the targets to produce a
continuous trajectory through the state space. These tra-
jectories are connected to the surface acoustics by a single
MLP. For an N-best rescoring task on the Switchboard
corpus and a baseline WER of 48.2% from a standard
HMM system, 5-best rescoring with the reference tran-
scription included2 using the HDM gave a reduced error
rate of 34.7% (Picone et al., 1999). An identical rescor-
ing experiment using an HMM trained on the data used
to build the HDM gave a word error rate of 44.8%. This
suggests that the HDM was able to capture information
that the HMM could not.

Deng and Ma (2000) describe a similar model in which
the state is intended to model the pole locations of the
vocal tract frequency response via vocal-tract-resonance
(VTR) targets for each phone. Multiple switching MLPs

are used to map from state to observations, though in-
stead of the deterministic output distribution found in
the HDM, filtering is implemented with an extended
Kalman filter (EKF). To avoid the difficulties of train-
ing a non-linear mapping and the inherent problems of
the EKF, Ma and Deng (2004a,b) describe a system in
which a mixture of linear models is used to approximate
the non-linearity, and demonstrate slight error reductions
over an HMM baseline on a Switchboard rescoring task.

Zhou et al. (2003) describe a hidden-trajectory HMM
(HTHMM) which also combines VTR dynamics with a
mixture of linear projections to approximate a non-linear
state-to-observation mapping. However, the model is
frame-based rather than segmental, and the state tra-
jectories are deterministic, conditioned on the sequence
of sub-word units, which in fact consist of HMM states.
The model can be interpreted as an HMM in which the
output distributions are adapted to account for long-span
contextual information by conditioning on a continuous
hidden trajectory. The deterministic continuous state
obviates the need for filtering to infer state trajectories
that, in combination with frame-based computation, sim-
plifies decoder implementation – described in Seide et al.
(2003). Initial evaluation on TIDIGITS (Leonard, 1984)
with a context-independent HTHMM system produced
0.37% WER and matched the 0.40% WER of a context-
dependent triphone HMM system.

E. Articulatory feature modeling of pronunciation
variation

The usual choice of sub-word unit is the phoneme
and the usual representation of a word is as a string of
phonemes. AFs are an alternative to phonemes and their
use is motivated by difficulties in describing pronuncia-
tion variation using a string of phonemes. Spoken pro-
nunciations often differ radically from dictionary base-
forms, especially in conversational speech (Weintraub
et al., 1996). This contributes to the poor performance of
ASR (Fosler-Lussier, 1999; McAllaster et al., 1998; Sar-
aclar et al., 2000). Phoneme-based pronunciation mod-
els usually account for variability by expanding the dic-
tionary with additional pronunciation variants (Hazen
et al., 2005; Riley and Ljolje, 1996; Shu and Hether-
ington, 2002; Wester, 2003). However, phoneme-based
pronunciation models have numerous drawbacks. Sar-
aclar et al. (2000) show that a phonetic realization is of-
ten somewhere between the intended phoneme and some
other phoneme, rather than a phonemic substitution, in-
sertion, or deletion. Phonemic changes can lead to in-
creased confusability; e.g., “support” will be confusable
with “sport” if it is allowed to undergo complete dele-
tion of the schwa. In reality though, the [p] in “support”
will be aspirated even if the schwa is deleted; the one in
“sport” will not. Bates (2003) addresses these drawbacks
by building a model of phonetic substitutions in which
the probabilities of possible realizations of a phoneme are
computed using a product model in which each product
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term involves a different AF or AF group.
Livescu and Glass (Livescu, 2005; Livescu and Glass,

2004a,b) generate pronunciation variants from baseforms
through feature substitution and feature asynchrony us-
ing features based on Browman and Goldstein’s vocal
tract variables (Browman and Goldstein, 1992). Effects
that can be modeled include: asynchrony only: Nasal
deletions as in can’t → [ k ae n t ] are caused by asyn-
chrony between the nasality and tongue closure features;
substitution only: Incomplete stop closures, as in legal
→ [ l iy g fr ax l ], can be described as the substitu-
tion of a complete velar closure with a critical closure,
resulting in frication (the [g fr] is a fricated [g]); both
asynchrony and substitution: everybody → [ eh r uw ay
], which can be described as the substitution of narrow
lip and tongue closures for critical or complete ones (ac-
counting for the reduction of the [v], [b], and [dx]) and
asynchrony between the tongue and lips in the middle
of the word (accounting for [iy] → [uw] via early lip clo-
sure)3. Livescu and Glass represent this type of model
using a DBN and show improved coverage of observed
pronunciations and reduced error rate in a lexical access
task on the phonetically-transcribed portion of Switch-
board (Greenberg et al., 1996), relative to a phone-based
pronunciation model.

There are a number of ways in which such a pronunci-
ation model could be incorporated into a complete recog-
nizer. One recent attempt was described in Section V B,
in the context of landmark-based speech recognition. A
similar pronunciation model has been applied to the task
of visual speech recognition (i.e., lipreading) by Saenko
et al. (2005a,b) and Lee and Wellekens (2001) describe a
lexicon using phonetic features.

F. Recognition by articulatory synthesis

Blackburn (Blackburn and Young, 2000) investigated
an articulatory speech production model (SPM) in order
to give an explicit model of co-articulation. Experiments
using real articulatory data were carried out on the Wis-
consin X-ray microbeam data (Westbury, 1994) and other
experiments on the resource management (RM) corpus
(Price et al., 1988). The system rescored output from an
HMM recognizer by re-synthesizing articulatory traces
from time-aligned phone sequences and mapping these
into log-spectra using MLPs (one per phoneme). Errors
between these and the original speech were used to re-
order the N-best list. The model includes a notion of
articulatory effort that leads to an account of the vary-
ing strength of coarticulation. On the Wisconsin corpus,
recognition performance was enhanced for all but one
speaker in the test set using N -best lists with 2 ≤ N ≤ 5.
The SPM worked best for speakers with low initial word
accuracy. On the RM corpus, N -best rescoring for small
N offered modest gains, but performance deteriorated
with N = 100.

VI. DISCUSSION

A. The use of data

This article has given an overview of many approaches
to using knowledge about speech production to improve
automatic speech recognition. Some require articulatory
measurement data, although perhaps only when training
the models. Others use a more abstract representation,
such as articulatory features or landmarks, which can be
obtained more easily.

Approaches that require actual articulatory data will
always have to deal with the problems of very limited
corpora and with the challenge of doing without this
data when actually performing recognition. Elegant so-
lutions to the latter problem include Stephenson’s use
of DBN variables that are observed during training but
hidden during recognition – a technique reminiscent of
multi-task training (Caruana, 1997). However, there is
still more work to be done, because new (and less in-
vasive) forms of articulatory measurement are becoming
available, such as real-time magnetic resonance imaging
(Narayanan et al., 2004) or ultrasound. These systems
offer great potential because they provide a complete con-
tour of the tongue.

On the other hand, approaches that can utilize knowl-
edge about articulation, such as articulatory features that
can be initialized from phonetic transcriptions or models
with kinematic constraints on (pseudo-)articulator move-
ment, suffer less from the lack of corpora and so are per-
haps more likely to transfer easily to larger tasks.

B. Explicit versus implicit modeling

The use of an explicit representation of speech pro-
duction in the statistical model used for ASR allows the
model to make a direct and interpretable account of the
processes mentioned earlier. The behavior of such models
is more easily analyzed than a large state-tied HMM sys-
tem and therefore it is, in theory, possible to determine
if the model is indeed learning to model specific speech
processes.

The price paid for this transparency is typically that
the wide variety of powerful techniques developed for
HMMs are not immediately available. In some cases, this
is merely for practical reasons: for example, algorithms
for adaptation or discriminative training are currently
more readily available for HMMs than DBNs. In other
cases, there are theoretical difficulties: for example, the
use of Gaussian mixture distributions in LDMs (Section
V A5) leads to intractable models.

A currently underexplored area of research is the mar-
riage of speech production inspiration with standard
models such as HMMs, DBNs or ANNs. We have seen
some initial work in this area: in Section IV B 1 we de-
scribed systems which first used ANNs to recover AFs
from speech, then used HMMs to model these AFs either
by deriving phone class posteriors (this is known as a hy-
brid HMM/ANN system) or by using the AFs as observa-

J. Acoust. Soc. Am. King, Frankel, Livescu, McDermott, Richmond & Wester: Production knowledge in ASR 15



tions to be generated by the HMM. This latter method is
essentially a Tandem system (Ellis et al., 2001), but with-
out the dimensionality reduction/decorrelation step. A
true Tandem system using ANNs trained to recover AFs
is a promising area to explore, as shown by Çetin et al.
(2007), and may be particularly appropriate in a multi-
lingual or language-independent situation. One can ar-
gue that it is far easier to devise a universal AF set than
a universal phoneme set. So, whilst the explicit use of
a speech production representation allows direct mod-
eling of speech effects, implicit approaches like Tandem
currently offer a better selection of powerful models and
techniques.

C. Moving into the mainstream

There are two distinct routes by which the work we
have discussed could move into the mainstream. The first
is obvious: if these techniques can show real accuracy
gains on the large vocabulary, very large corpus, con-
versational telephone speech tasks that drive research on
conventional HMM-based systems then they may replace
such systems. The second route is a little more subtle:
Speech production-based models can influence HMMs-of-
phones systems. For example, if it can be shown that a
factored state representation provides a more structured
or parsimonious state space and therefore allows more so-
phisticated parameter tying schemes, then this could be
used directly in HMM systems, where the factored state
is only required during training and can be “flattened”
to a single hidden variable so that the model becomes
a standard HMM (and can then be used in existing de-
coders – a major advantage). This transfer of techniques
into the mainstream has the added practical advantage
that the novel models can continue to be developed on
smaller corpora than are currently in use in mainstream
HMM research.

D. Ongoing work

In the work that we have mentioned, several strands
of research can be identified that continue to be areas of
active research. In particular, we wish to highlight DBNs
as a very exciting framework (Zweig and Russell, 1998).
With the advent of powerful toolkits such as the graphical
models toolkit GMTK (Bilmes, 2002) and the Bayes Net
Toolbox for Matlab (Murphy, 2001) it is now straight-
forward to quickly explore a very large family of models.
Many of the models mentioned in this article can be im-
plemented in the DBN framework, including all HMMs,
the hybrid HMM/BN model in Section V A4, linear dy-
namic models, factorial HMMs (Ghahramani and Jordan,
1995) and segmental models. Work in other formalisms
continues too. For example, landmark-based systems, as
described in section VB are benefiting from the incor-
poration of classifiers such as SVMs. Indeed, the most
successful speech production approaches to ASR gener-
ally follow the key principles of conventional techniques:

Statistical models are used, parameters are learned from
data; these models are used in a consistent probabilis-
tic framework, where evidence from all sources (e.g., the
acoustic signal, the lexicon and the language model) are
combined to reach the final decision.

E. Evaluation

Over the many decades of development of conven-
tional ASR, a single standard evaluation methodology
has emerged: systems are trained and evaluated on stan-
dard corpora, and compared using the standard measure
of word error rate. Whilst an imperfect measure in some
regards, the universal use of WER makes cross-system
comparison easy and fair.

For speech production-inspired systems, there is not
yet a single evaluation methodology. This is a severe
problem both in terms of the development of such meth-
ods and their acceptance into the mainstream. Those
systems that perform the full ASR task and produce word
transcriptions can, of course, be evaluated using WER.
However, it is necessary to be able to evaluate systems
under development: those that do not (yet) perform word
transcription.

The lack of standard evaluation methods hampers de-
velopment because it is difficult to make cross-system
comparisons and thus identify the best approaches. In
this paper, we have attempted to make these compar-
isons wherever possible, but have been limited by the
lack of common corpora, task definitions and error mea-
sures. Below, we suggest ways in which future compar-
isons could be made easier.

1. Standard corpora

It is often the case that novel acoustic models cannot
be developed on very large corpora (for computational
reasons) and it is also often desirable to use relatively
simple tasks, such as isolated words or small vocabular-
ies (to make decoding times shorter, or error analysis
easier, for example). Typical spontaneous speech cor-
pora have vocabularies that are too large for this pur-
pose. On the other hand, the spontaneous speech ef-
fects that production-inspired approaches aim to model
are less prominent in read-text corpora (e.g., spoken dig-
its, newspaper sentences). One solution is to construct a
small vocabulary corpus from fragments of a large, spon-
taneous speech corpus, as has been done in the SVitch-
board 1 corpus (King et al., 2005), which contains a num-
ber of manageable, yet realistic, benchmark tasks made
from Switchboard 1 data.

2. Standard error measures

a. Directly measuring feature recognition accuracy
Evaluation of AF recognition accuracy is problematic be-
cause comparing recognizer output to reference feature
labels derived from phone labels will incorrectly penalize
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a number of the processes which the feature models are
intended to capture but are not present in the reference
transcription. Making comparisons at the frame level will
penalize instances where the feature models change value
asynchronously. This may be alleviated through the use
of a recognition accuracy measure in which timing is ig-
nored, though all feature insertions, deletions and sub-
stitutions will still be counted as errors even where they
are in fact correct.

Evaluation of landmark accuracy is also problematic
since not only are both temporal and classification errors
possible, there also is the possibility of insertion or dele-
tion of landmarks. Each researcher currently appears to
use a different measure.

Niyogi et al. (1999) use receiver operating character-
istic (ROC) curves which show the trade off between
false detections (landmark insertions) and false rejections
(landmark deletions). Automatically detected landmarks
are compared to the landmarks in the reference tran-
scription within some time window to allow for small
temporal misalignments. Juneja (2004) uses two mea-
sures. The first is the frame-level accuracy of a small
number of binary manner classifiers. This measure gives
a very incomplete picture of the system’s performance.
The second measure is for the sequence of recovered man-
ner segments and uses the string measure “Percent cor-
rect”, which does not take into account the large number
of insertions that many event-based systems are prone
to. “Accuracy” figures are not given. Hasegawa-Johnson
et al. (2005) feed fragments of speech waveform (half of
which contain a reference landmark, and half of which do
not) to the landmark detector and the detection accuracy
is measured.

b. Evaluating in terms of other linguistic units One
option for evaluation is to convert to either phones or
syllables, and evaluate using a conventional WER-like
measure. This can give some insights into system perfor-
mance but care must be taken if a fair comparison is to
be made. A conversion from AFs to phones at the frame
level, as done by King and Taylor (2000), is straightfor-
ward, subject to the caveat above that phone-to-feature
conversion penalizes some of the very properties of fea-
tures that are thought to be most desirable.

However, if using a system that incorporates some
model of the syllable or word, conversion to phones for
evaluation purposes is unfair since the phonotactic con-
straints of syllables or words provide a strong language
model that may not be part of the systems being com-
pared to.

c. Evaluating pronunciation modeling Measures of
performance of a pronunciation model include coverage,
the proportion of spoken pronunciations which the model
considers to be allowable realizations of the correct word,
and accuracy, the proportion of the test set for which the
word is recognized correctly. Coverage can be increased

trivially, by giving all possible pronunciations of every
word a non-zero probability, but this would reduce accu-
racy by introducing confusability.

F. Future directions

Some powerful classifiers, such as SVMs, are inher-
ently binary (that is, they can only solve two-class prob-
lems). In standard ASR systems, such classifiers can only
normally be used by reformulating ASR as a two-class
problem; for example, disambiguating confusable word
pairs from confusion networks (e.g., Layton and Gales,
2004) or in event/landmark-based systems (Hasegawa-
Johnson et al., 2005; Juneja, 2004; Juneja and Espy-
Wilson, 2003b). Some articulatory feature systems (e.g.,
SPE, Section II B) are naturally binary, so would be ideal
for use with these classifiers.

The phonetic layer in most current systems is a bottle-
neck. As we have described, it is highly unsatisfactory for
describing many forms of pronunciation variation. Some
of the feature-based systems we have described still use a
phone-based representation between features and word.
This clearly constrains the flexibility afforded by the fea-
tures; for example, it will not allow modeling of highly
reduced pronunciations such as the everybody→ [ eh r uw
ay ] example from Section VE because it prevents mod-
eling asynchronous feature value changes. The problem
of mediating between acoustic and word levels, whilst
avoiding the phone(me) bottleneck, is addressed from a
rather different angle by Gutkin and King (2005) who
use a structural approach to discover hierarchy in speech
data.

Finally, the potential for language-independent recog-
nition systems based on AFs is huge. This is an almost
unexplored area (Stüker, 2003).

G. Suggested background reading

Löfqvist (1997), Perkell (1997) and Farnetani (1997)
are all chapters in Hardcastle and Laver (1997), which
contains many other interesting articles, such as Steven’s
chapter on articulatory-acoustic relationships (Stevens,
1997), and a long bibliography. Extensive reading lists
for many topics are available from Haskins Laboratories’
“Talking Heads” website. For papers on novel approaches
to ASR, the proceedings of the Beyond HMM Workshop
(2004) are a good starting point. For general background
on machine-learning and pattern recognition, we recom-
mend: Bishop and Hinton (1995) and MacKay (2003); for
dynamic Bayesian networks either Cowell et al. (1999) for
the theory, or Bilmes and Bartels (2005) for the use of
graphical models in ASR.

Acknowledgments

Frankel, Richmond and Wester are funded by grants
from the Engineering and Physical Sciences Research
Council (EPSRC), UK and from Scottish Enterprise, UK.

J. Acoust. Soc. Am. King, Frankel, Livescu, McDermott, Richmond & Wester: Production knowledge in ASR 17



King holds an EPSRC Advanced Research Fellowship.
Livescu was funded by an NSF grant and a Luce Post-
doctoral Fellowship. Thanks to Mark Hasegawa-Johnson
for pointers to various landmark accuracy measures.

Notes
1http://sail.usc.edu/span
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quite easily. Picone et al. worked around this problem
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for comparison.

3This example is taken from the phonetically tran-
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1997; Greenberg et al., 1996). All three examples use
the ARPABET alphabet modified by diacritics as in the
Switchboard phonetic transcriptions.
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