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a b s t r a c t

Newly hatched chickens are more susceptible to infectious diseases than older birds because of an imma-
ture immune system. The aim of this study was to determine to what extent host responses to avian
influenza virus (AIV) inoculation are affected by age. Therefore, 1- and 4-week (wk) old birds were inoc-
ulated with H9N2 AIV or saline. The trachea and lung were sampled at 0, 8, 16 and 24 h post-inoculation
(h.p.i.) and gene expression profiles determined using microarray analysis. Firstly, saline controls of both
groups were compared to analyse the changes in gene profiles related to development. In 1-wk-old
birds, higher expression of genes related to development of the respiratory immune system and innate
responses were found, whereas in 4-wk-old birds genes were up regulated that relate to the presence of
higher numbers of leukocytes in the respiratory tract. After inoculation with H9N2, gene expression was
most affected at 16 h.p.i. in 1-wk-old birds and at 16 and 24 h.p.i. in 4-wk-old birds in the trachea and
especially in the lung. In 1-wk-old birds less immune related genes including innate related genes were

induced which might be due to age-dependent reduced functionality of antigen presenting cells (APC),
T cells and NK cells. In contrast cytokine and chemokines gene expression was related to viral load in
1-wk-old birds and less in 4-wk-old birds. Expression of cellular host factors that block virus replication
by interacting with viral factors was independent of age or tissue for most host factors. These data show
that differences in development are reflected in gene expression and suggest that the strength of host
responses at transcriptional level may be a key factor in age-dependent susceptibility to infection, and

nvolv
the cellular host factors i

. Introduction

Young animal are highly susceptible to opportunistic pathogens
hat are common in their environment. Susceptibility to disease
ecreases as the bird matures, suggesting that this phenomenon

s due to immaturity of the immune system (Beal et al., 2005;
ume et al., 1998; Raj and Jones, 1997). Neonatal immune dysfunc-

ion has also been reported for mammals (Chelvarajan et al., 2004;
asparoni et al., 2003; Velilla et al., 2006). At present, vaccination
f young chicks is commonly practised to establish immunity in a
ock. In newly hatched birds, the activation, phagocytosis and bac-
ericidal activities of heterophils and macrophages were shown to

e age-dependent in that they increase with age (Kodama et al.,
976; Kogut et al., 2002; Wells et al., 1998). T cells from 1-day-old
hicks hardly proliferate in response to mitogens and produce less
FN and IL-2 (Lowenthal et al., 1994). Immunization of 1-day-old

∗ Corresponding author. Tel.: +31 30 2534608; fax: +31 30 2533555.
E-mail address: s.reemers@uu.nl (S.S. Reemers).

161-5890/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.molimm.2010.03.008
ed in virus replication are not.
© 2010 Elsevier Ltd. All rights reserved.

broilers with BSA resulted in a much lower and slower antibody
production compared to immunization at 1 or 2 wks of age (Mast
and Goddeeris, 1999).

The respiratory tract is constantly exposed to pathogens like
influenza virus and to provide adequate protection, inhaled
pathogens are removed by mucus, neutralizing molecules like
IgA, complement and antimicrobial peptides. When virus entry is
not successfully blocked, influenza virus will infect the epithelial
cells resulting in the production of pro-inflammatory cytokines,
chemokines and interferons (Julkunen et al., 2001). This attracts
macrophages and DC, which upon activation or influenza virus
infection also start producing cytokines and chemokines attracting
more antigen presenting cells (APC) and lymphocytes to the place
of infection. The trachea, lung and air sacs contribute to the respi-
ratory immune system, but the lung plays a special role because

it contains secondary lymphoid structures (Kothlow and Kaspers,
2008). Newly hatched birds have dispersed T cells, B cells, leuko-
cytes and monocytes present throughout the lung. At 2 wks of age
areas with lymphocyte infiltrates are found around the bifurcations
of the caudal secondary bronchi. These organized structures show

http://www.sciencedirect.com/science/journal/01615890
http://www.elsevier.com/locate/molimm
mailto:s.reemers@uu.nl
dx.doi.org/10.1016/j.molimm.2010.03.008
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imilarity to Peyer’s patches and are called bronchus associated
ymphoid tissue (BALT; Fagerland and Arp, 1993; Jeurissen et al.,
989). Avian BALT is not comparable to inducible BALT in mice and
uman (Moyron-Quiroz et al., 2004; Rangel-Moreno et al., 2006),
ecause its presence is independent of antigenic stimulation (Reese
t al., 2006). In the trachea no organized lymphoid structures have
een reported, but infection with various pathogens results in lym-
hoid infiltration and in formation of lymphoid follicles (Gaunson
t al., 2006; Matthijs et al., 2009; Reemers et al., 2009b).

For replication and transcription of the influenza virus genome,
he virus uses both viral and cellular host factors. Viral factors
ike the polymerase complex or nucleoprotein have been known
o interact with mammalian host factors like importins or his-
ones during influenza virus infection (Engelhardt and Fodor, 2006;
affakh et al., 2008; Nagata et al., 2008). The virus must stimulate
xpression of host factors that are needed for replication ongo-
ng during infection to ensure virus multiplication. However, some
ost factors that interact with viral factors are used in host defense
esponses and can limit viral replication.

To investigate the effect of age on the early host response and on
ost factors affecting viral replication in the respiratory tract, we

noculated 1- and 4-week (wk) old birds with H9N2 avian influenza
irus (AIV) or saline. The trachea and lung were sampled at 0, 8, 16
nd 24 h post-inoculation (h.p.i.) and gene expression was studied
sing microarray analysis. Differences between 1- and 4-wk-old
aline inoculated control birds were mainly related to tissue devel-
pment and immunological maturation. Differences between 1-
nd 4-wk-old H9N2 inoculated birds were related to strength and
he timing of host responses at transcriptional level. Expression of
ellular host factors that block viral replication by interacting with
iral factors was independent of age and tissue.

. Materials and methods

.1. Experimental design

Lohmann Brown chickens of 1 and 4 wks of age were divided into
groups per age, a saline and AIV inoculated group. The birds were

noculated intratracheally (i.t.) with either 0.1 ml PBS or with 0.1 ml
07.7 EID50 H9N2 AIV, isolate A/Chicken/United Arab Emirates/99
kindly provided by Intervet Schering-Plough Animal Health). At 0,
, 16 and 24 h post-inoculation (h.p.i.) 5 birds per time point per
roup and per age were killed. The upper trachea and the left lung
ere isolated and stored in RNAlater (Ambion) at −80 ◦C for RNA

solation. The segment of the lung containing the primary and sec-
ndary bronchi was used for analysis. Selection of the upper trachea
nd the lung segment used for analysis was based on high viral load
nd high virus-induced gene expression as described previously
Reemers et al., 2009b). All experiments were carried out accord-
ng to protocols approved by the Animal Experiment Committee of
trecht University (Utrecht, The Netherlands).

.2. RNA isolation

The trachea (5 mm part) and lung (1 × 5 mm part) were homoge-
ized (Mixer Mill 301, Retsch) and total RNA was isolated using the
Neasy Mini Kit and DNase treated using the RNase-free DNase Set

ollowing manufacturer’s instructions (Qiagen). All RNA samples
ere checked for quantity using a spectrophotometer (Shimadzu)

nd quality using a 2100 Bioanalyzer (Agilent).
.3. Real-time quantitative reverse transcription-PCR (qRT-PCR)

cDNA was generated from 500 ng RNA using reverse transcrip-
ion using iScript cDNA Synthesis Kit (Biorad Laboratories B.V.).
eal-time qRT-PCR was used for detection of GAPDH, viral H9
nology 47 (2010) 1675–1685

hemagglutinin (HA), interleukins (IL-1�, IL-8, IL-18), interferon
alpha (IFN-�) and 28S as previously described (Reemers et al.,
2009a). Amplification and detection of specific GAPDH and viral
H9 HA products was achieved using iQ SYBR green supermix (Bio-
rad). For amplification and detection of IL-1�, IL-8, IL-18, IFN-� and
28S TaqMan Universal PCR Master Mix (Applied Biosystems) was
used.

2.4. Statistical analysis qRT-PCR data

To determine the statistical significance in viral RNA expression
between time points within an age group and between age groups
within a time point in the trachea and lung an ANOVA with a Tukey
post hoc test was used. To determine the statistical significance in
cytokine mRNA expression between control birds and H9N2 inocu-
lated birds within a time point and age group in the trachea and lung
an ANOVA was used. Correlations between viral RNA and cytokine
mRNA expression were based on the Pearson correlation coefficient
(r) and determined using SPSS 15.0 software. A p-value < 0.05 was
considered significant.

2.5. Oligonucleotide microarray analysis

Microarray analysis was performed as described previously
(Reemers et al., 2009b) using the Gallus gallus Roslin/ARK CoRe
Array Ready Oligo Set V1.0 (Operon Biotechnologies). All the tra-
chea and lung samples were co-hybridised with, respectively a
trachea or lung reference sample. These reference samples con-
sisted of pooled RNA extracted from tracheas or lungs of 4 chickens
that were not included in this experiment.

Ensembl Gallus gallus (assembly: WASHUC2, May 2006, geneb-
uild: Ensembl, August 2006, database version: 47.2e) was used
for gene names and description. For analysis of gene lists and
Gene Ontology (GO) analysis Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) 2008 was used. Primary
data are available in the public domain through Expression
Array Manager at http://www.ebi.ac.uk/microarray-as/aer/?#ae-
main[0] under accession number E-TABM-771 for the lung and
E-TABM-772 for the trachea.

3. Results

3.1. Age-dependent gene expression in control birds

Before we compared virus-induced host responses between 1-
and 4-wk-old birds we determined the effect of age on gene expres-
sion in control birds. Differences would affect virus-induced gene
profiles and a direct comparative study between the age groups
would not be possible. The number of genes in the lung that dif-
fered significantly between 1- and 4-wk-old control birds at 0, 8,
16 and 24 h.p.i. were, respectively 230, 167, 74 and 227 genes, and
in the trachea 58, 104, 47 and 19 genes. On each set of genes Gene
Ontology (GO) analysis was performed using DAVID and the result-
ing top three functional groups of every gene set were depicted in
Table S1 in the supplementary data. These functional groups were
mainly related to tissue development, but most functional groups
contained genes that also play a role in immune responses. Fur-
thermore, several functional groups relating to immune related
processes like immune system response, lymphocyte activation
and chemotaxis were also significantly differentially expressed
between 1- and 4-wk-old control birds, but did not belong to the

top 5 of functional groups found. The number of immune related
genes that were significantly differentially expressed between 1-
and 4-wk-old control birds was determined. The immune related
category was based on the GO annotations host–pathogen inter-
action, external stimulus and immune response. The number of
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Fig. 1. (A) Viral RNA expression in the lung and trachea of 1- and 4-wk-old H9N2 inoculated birds. Viral RNA expression was determined using qRT-PCR (n = 4) and data
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ere expressed as means with standard error of the mean (SEM). (B) Gene expressi
xpression of global genes was determined using microarray analysis. Gene expres
ates in age and time matched control birds (n = 4). Red indicated up regulated gen
gure caption, the reader is referred to the web version of the article.)

mmune related genes at 0, 8, 16, and 24 h.p.i. were in the lung,
espectively 34, 33, 13 and 38 genes and in the trachea 7, 17, 4 and
genes (Supplementary data Tables S2 and S3). In the lung these

enes were involved in antigen presentation/binding, apoptosis,
ell differentiation and proliferation, chemotaxis, innate immune
esponse, protein folding and binding and signal transduction. In
he trachea less genes were differentially expressed than in the
ung, but the ones expressed were involved in similar biological
rocesses. Most genes were expressed at a higher rate in 4-wk-old
irds in both the lung and trachea. Genes higher expressed in the

ung and trachea of 1-wk-old birds were mostly involved in apop-
osis, cell adhesion and proliferation, innate immune responses,
rotein binding and folding, and signal transduction.

These results indicated that gene expression levels differed
ignificantly between 1- and 4-wk-old control birds due to devel-
pment of the tissue itself and maturation of the immune system.
herefore, host responses induced by H9N2 inoculation in 1- and
-wk-old birds could only be compared indirectly by comparing
xpression patterns between control and H9N2 inoculated birds
ithin an age group.

.2. Early gene expression patterns after H9N2 inoculation

In the lung and trachea of all H9N2 inoculated birds viral RNA
as detected using qRT-PCR (Fig. 1A). There was no significant dif-

erence in viral RNA levels between 1-wk and 4-wk-old birds in
oth the lung and trachea at any time point.
To determine the effect of H9N2 inoculation at transcriptional
evel over time, we compared gene expression rates in H9N2 inoc-
lated birds to age matched control birds within a time point.
ifferences in gene expression rates were given as fold change
nd depicted over time generating gene expression patterns. For
terns of global genes induced after H9N2 inoculation in the lung and trachea. Gene
ates in 1- and 4-wk-old H9N2 inoculated birds were compared to gene expression

green down regulated genes. (For interpretation of the references to color in the

the lung and trachea gene expression patterns were generated for
global genes (Fig. 1B) and immune related genes (data not shown,
but patterns similar to those of global genes). After inoculation,
genes were mostly up regulated and not down regulated in both
the lung and trachea independent of age. In the lung more genes
were up regulated than in the trachea, but gene expression pat-
terns in the lung and trachea were similar. The biggest difference
was found between the age groups. In 1-wk-old birds gene expres-
sion was most affected by H9N2 inoculation at 16 h.p.i. and the
amplitude of change declined at 24 h.p.i. In 4-wk-old birds the effect
of H9N2 inoculation on gene expression increased over time and
gene expression was affected most at 16 and 24 h.p.i. Therefore the
overall gene expression pattern in response to H9N2 inoculation
differed between 1- and 4-wk-old birds. Genes involved in devel-
opment (based on GO annotation terms developmental process,
developmental maturation, multicellular organismal development,
anatomical structure development) did not follow this expression
pattern and did not differ in expression between H9N2 inoculated
birds and age matched control birds in both age groups (data not
shown).

3.3. Early gene expression after H9N2 inoculation

In order to determine early responses to H9N2 inoculation in
the respiratory tract we compared gene expression in H9N2 inoc-
ulated birds to age matched control birds within a time point. The
number of global and immune related genes significantly differen-

tially induced after H9N2 inoculation at 8, 16 and 24 h.p.i. in the
lung and trachea of 1- and 4-wk-old birds were depicted in Fig. 2A.
In the lung and trachea more genes were differentially expressed
after H9N2 inoculation in 4- compared to 1-wk-old birds, except
for global and immune related genes in the trachea at 16 h.p.i.
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Table 1
Immune related genes induced after H9N2 inoculation in the lung of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i.

Functional group 1-wk-old 4-wk-old

8 h.p.i. 16 h.p.i. 24 h.p.i. 8 h.p.i. 16 h.p.i. 24 h.p.i.

Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio

Anti-apoptosis HSP70 2.06
HSP90B1 2.67 HSP90B1 0.63
HSPA5 2.86

Antigen presentation/binding CTSB 1.48
MHC II 0.62

Apoptosis BCAP29 1.82
DAP 0.75

FASL 1.68
IAP 3.58 IAP 2.33 IAP 2.43

PAK2 1.60
PDCD1 0.64

TGFB2 0.66
TGFB3 0.57

Calcium ion binding FAM20C 0.67
Cell adhesion CTNNA1 0.76

MSLN 0.56
SDC4 0.65

SDC4 2.13
Cell division SGOL1 0.67
Cell proliferation PBEF1 2.70 PBEF1 2.25

PCNA 0.71 PCNA 0.65
PDL1 3.42 PDL1 2.66

PDPN 0.54 PDPN 0.64 PDPN 0.47
TPX2 0.61 TPX2 0.56

Chemotaxis and cytokine activity CCLi7 2.81
CCRL1 2.05
IL18 3.06

Complement C1QB 2.52
C1S 1.52

C3AR1 1.87
Defense response BPI 1.44
Development IFITM5 1.66
Inflammatory response MYD88 1.93

TLR1 1.88
TLR3 2.11

Innate immune response CMAP27 1.52
Intracellular signalling DGKE 2.99

SOCS1 6.68
Mannose binding BSG 1.53
Protein aa dephosphorylation DUSP1 0.62
Protein binding FLN29 2.46

FLN29 2.54 FLN29 1.82
PHF11 3.43 PHF11 2.82 PHF11 2.60

SH3YL1 0.64
Protein folding DNAJA1 2.06

HSC70 2.38 HSC70 1.70
HSP60 1.85 HSP60 1.59
HSPA4L 1.75 HSPA4L 1.44

Protein modification OASL 7.58 OASL 7.89 OASL 5.17
Proteolysis CTSL 1.56

MMP2 0.54 MMP2 0.49
Respiratory burst NCF1 2.23
Response to DNA damage FANCL 0.70 FANCL 0.73 FANCL 0.65
Response to stress HSP105 1.78 HSP105 1.63

HSP25 3.61 HSP25 4.65
Response to virus IFI35 2.51 IFI35 2.81 IFI35 1.86

ISG12-2 5.52 ISG12-2 6.64
MDA5 3.93 MDA5 2.78 MDA5 3.20
MX 3.86 MX 5.79

RNA binding RALY 0.69
Signal transduction LEPR 2.54 LEPR 2.84 LEPR 2.28

LY6E 1.91
LY96 3.30

RGS18 1.88
SIRP-B1 1.39
SPRY3 0.71
TNFRSF11B 0.66 TNFRSF11B 2.08

Sugar binding Galectin CG-16 0.67
Transcription IRF1 2.85 IRF1 2.39 IRF1 2.23

IRF10 3.29 IRF10 2.59
IRF2 1.61
IRF3 1.49

IRF8 1.75 IRF8 1.83
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Table 1 ( Continued ).

Functional group 1-wk-old 4-wk-old

8 h.p.i. 16 h.p.i. 24 h.p.i. 8 h.p.i. 16 h.p.i. 24 h.p.i.

Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio

NMI 2.59 NMI 2.50 NMI 1.86
STAT4 4.88 STAT4 4.25

Transport LAPTM5 1.58
Ubiquitin-dep catabolic process USP18 3.20 USP18 3.07 USP18 2.14
Miscellaneous BRI3BP 0.74

MHC B-G 0.31
TNIP3 1.85

TRAF3IP3 3.04

Immune related genes significantly differentially induced after H9N2 inoculation in the lung of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i. were determined using MAANOVA.
A p-value < 0.05 was considered significant. Ratio represents the fold change expression rate in H9N2 inoculated birds compared to age and time matched control birds.
Genes are divided into functional groups based on GO analysis using DAVID.

Fig. 2. (A) The number of global and immune related genes significantly differentially expressed after H9N2 inoculation in the lung and trachea. Gene expression of H9N2
inoculated birds were compared to age and time matched control birds (n = 4) using microarray analysis and significance was determined with MAANOVA (p < 0.05). (B)
Overlap between age related and H9N2 related gene expression in the trachea and lung of both age groups depicted in venn diagrams. The age related gene set consists of
genes significantly differentially expressed between 1- and 4-wk-old birds within a time point and treatment group in the lung and trachea (comparison A + B; n = 4). The
H9N2 related gene set consists of genes significantly differentially expressed between control and H9N2 inoculated birds within a time point and age group in the lung and
trachea (comparison C or D; n = 4). Gene sets were obtained with microarray analysis and significance was determined using MAANOVA (p < 0.05).
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Table 2
Immune related genes induced after H9N2 inoculation in the trachea of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i.

Functional group 1-wk-old 4-wk-old

8 h.p.i 16 h.p.i. 24 h.p.i. 8 h.p.i 16 h.p.i. 24 h.p.i.

Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio Gene Ratio

Activation of MAPK activity C1QTNF2 0.58
Anti-apoptosis HSP70 2.26 HSP70 2.05

HSP90B1 1.70
HSPA5 2.34 HSPA5 2.89

Apoptosis BCL2A1 1.81
CIDEA 0.51

TRAIL 1.70
B cell marker Bu-1 1.50
Calcium ion binding PCP4 0.69

PRVT 0.25
Cell adhesion CD34 0.60

CD47 1.34
CDH28 0.57
LGALS3BP 1.70

SDC4 1.83
TINAG 0.55

Cell proliferation BTG1 1.34
PBEF1 1.56 PBEF1 2.26

PDPN 0.61
Chemotaxis and cytokine activity CCLi7 8.07 CCLi7 2.45

CMTM3 0.61
TRAIL-like 0.67

Complement C1S 1.58
Defense response LYG 2.35
Development IFITM5 2.95
Inflammatory response LY86 0.59

MYD88 1.93
TLR3 1.92

Intracellular signalling ASB9 0.67 ASB9 0.69
Lysozome organisation PSAP 1.40
Miscellaneous IGSF3 0.55
Protein binding PHF11 2.71 PHF11 2.41
Protein folding DNAJA1 1.83

DNAJB9 1.33
HSC70 2.04 HSC70 2.10

HSP60 1.76
HSPA4L 1.63

Protein modification OASL 7.88
Respiratory burst NCF1 1.82
Response to stress HSP105 1.61 HSP105 2.24

HSP25 3.22
RPS6KA 1.61

Response to virus IFI35 2.25
IRF3 1.43
MDA5 3.55 MDA5 2.70
MX 3.26

Signal transduction ASB2 0.63
LEPR 1.99 LEPR 1.69
LY6E 2.36

MARCO 1.59
SPRY2 0.71

Sugar binding CD69 1.69
T cell proliferation PDL2 0.64

TIMD4 1.37
Transcription IRF1 2.64

IRF10 2.29
NARG1 1.54

NMI 2.50
SOCS3 2.69 SOCS3 4.51

STAT4 4.20 STAT4 3.35
Ubiquitin-dep catabolic process USP18 3.32
Vesicle trafficking CLEC3B 0.57
Miscellaneous IGSF3 0.55

I in th
M chang
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I
H
f
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mmune related genes significantly differentially induced after H9N2 inoculation
AANOVA. A p-value < 0.05 was considered significant. Ratio represents the fold

irds. Genes are divided into functional groups based on GO analysis using DAVID.
mmune related genes significantly differentially expressed after
9N2 inoculation were depicted in Table 1 for the lung and Table 2

or the trachea. Since basal gene expression levels differed between
- and 4-wk-old birds in both the lung and trachea, a direct com-
e trachea of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i. were determined using
e expression rate in H9N2 inoculated compared to age and time matched control
parison between host responses to H9N2 inoculation could not
be performed. Instead we performed an indirect comparison by
comparing both gene lists. However, the comparison of gene lists
obtained from gene expression in H9N2 inoculated birds and age
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ge groups independent of H9N2 inoculation. There were few genes
ound in the overlap between H9N2 related and age related gene
xpression in both age groups and tissues. No genes were shared
etween the overlaps in the trachea and lung. The overlaps in 1-
nd 4-wk-old birds shared only 2 genes (PDPN, HSPA4L) in the
ung and 1 gene (STAT4) in the trachea. Genes within the overlaps

ere not part of similar functional groups. Thus differences found
n host responses after H9N2 inoculation between 1- and 4-wk-old
irds were more related to H9N2 inoculation and hardly affected
y differences in age related genes expression in control birds.

Therefore an indirect comparison of host responses between
he age groups by comparing the lists of genes significantly dif-
erentially expressed after H9N2 inoculation could be performed
Tables 1 and 2). In both the lung and trachea no large differences
n gene expression rates between both age groups were found, only

ore genes were significantly differentially expressed and rela-
ively more genes were down regulated in 4-wk-old birds after
9N2 inoculation. Furthermore, more genes involved in innate
esponse like complement and Toll-like receptors (TLRs) were
nduced in the lung of 4-wk-old birds after H9N2 inoculation. In
ontrast, in control birds more genes involved in innate response
ere expressed in 1-wk-old birds. The difference in number of

enes induced after H9N2 inoculation between the age groups
esponse to H9N2 inoculation. IL-1�, IL-8, IL-18 and IFN-� mRNA expression was
birds in the lung and trachea. Cytokine mRNA expression was determined using
with asterisk (*) indicating a significant difference (p < 0.05) in cytokine expression

is larger in the lung than in the trachea. In the lung, functional
groups containing most genes in both infected groups were apop-
tosis, response to virus, transcription, signal transduction and
protein folding. Functional groups containing more than 1 gene
that were mainly expressed in 1-wk-old birds were antigen presen-
tation/binding at 8 h.p.i. and anti-apoptosis at 24 h.p.i. Functional
groups containing more than 1 gene that were mainly expressed
in 4-wk-old birds were cell proliferation from 8 to 24 h.p.i., and
chemotaxis and cytokine activity and inflammatory responses at
16 h.p.i.

In the trachea, functional groups containing most genes in both
1- and 4-wk-old birds were, anti-apoptosis, cell adhesion and sig-
nal transduction, but genes were expressed at different time points
(Table 2). A functional group containing more than 1 gene that
was mainly expressed in 1-wk-old birds was response to virus at
16 h.p.i. However, at 16 h.p.i. no genes were significantly differen-
tially expressed after H9N2 inoculation in 4-wk-old birds, which
seemed to be caused by large variation within this group. Up reg-
ulation of genes related to response to virus were seen at 16 h.p.i.,
but in individual birds and not consistent in the whole group. A
functional group containing more than 1 gene that was mainly
expressed in 4-wk-old birds was protein folding at 24 h.p.i. One
should be aware that gene ontology analysis in general does not
give any information about the direction in which respective pro-
cesses/pathways are altered.

3.4. Cytokine mRNA expression levels

Microarray analysis suggested IL-1�, IL-8 and IL-18 mRNA
expression was up regulated and IFN-� expression was not affected
after H9N2 inoculation in 1- and 4-wk-old birds. Although up regu-
lation of IL-1�, IL-8 and IL-18 genes was rarely significant because
of the very strict microarray statistics that was applied, we did see

an up regulation from 8 to 24 h.p.i. of up to 4-fold change compared
to age matched control birds. The qRT-PCR data did show a signif-
icant up regulation in H9N2 inoculated compared to control birds
for IL-1�, IL-8 and IL-18 in the lung and trachea of 1- and 4-wk-old
birds at several time points (Fig. 3). In both the lung and trachea
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Table 3
Significant correlations between viral RNA expression and cytokine mRNA expression in the lung and trachea of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i.

Tissue Age Time (h.p.i.) IL-1� IL-8 IL-18 IFN-�

r p r p r p r p

Lung 1 wk 8, 16, 24 0.95 1.92E−06 0.94 5.90E−06 0.87 2.40E−04 0.59 0.042
4 wk 16 – – – −0.96 0.034

Trachea 1 wk 8, 16, 24 0.58 0.047 0.65 0.023 – 0.61 0.036
0
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4 wk 24 0.99 0.014

orrelations between viral RNA and cytokine mRNA expression were based on the P
-tailed significance (p) < 0.05 was considered significant.

FN-� mRNA expression was not significantly different between
9N2 inoculated and control birds in both qRT-PCR and microar-

ay data. The difference in significances between microarray and
RT-PCR data are caused by differences in the statistics that were
sed. Based on qRT-PCR and microarray analysis, IL-1�, IL-8 and

L-18 mRNA expression in the lung and trachea was up regulated
n a pattern similar over time (data not shown). mRNA expression
n 1-wk-old birds peaked at 16 h.p.i., whereas it peaked in 4-wk-old
irds at 24 h.p.i.

To determine whether mRNA expression was related to viral
NA expression, correlation coefficients were calculated between
iral RNA expression and cytokine mRNA expression in both the
ung and trachea. We first determined this correlation for all
ytokines per age group over time, because if a correlation between
ytokine mRNA and viral RNA expression is found, this means they
orrelate at every time point. In 1-wk-old birds there was a sig-
ificant strong positive correlation between viral RNA expression
nd mRNA expression of IL-1�, IL-8, IL-18 and IFN-� in the lung and
RNA expression of IL-1�, IL-8 and IFN-� in the trachea (Table 3). In

-wk-old birds there was no correlation between viral RNA expres-
ion and expression of these cytokines mRNAs over time in both the
ung and trachea. Therefore we determined correlations within a
ime point. In 4-wk-old birds there was a significant strong positive
orrelation in the trachea at 24 h.p.i. between viral RNA expres-
ion and IL-1� and IL-8 mRNA expression. In the lung at 16 h.p.i. a
ignificant strong negative correlation was found for IFN-� mRNA
xpression (Table 3).

.5. Host gene expression hijacking by influenza

To determine the effect of H9N2 inoculation on mRNA expres-
ion of host factors that interact with viral factors we compared
heir gene expression rate in H9N2 inoculated with control birds
ithin a time point. Results were depicted in Table 4. Mini chro-
osome maintenance complex (MCM) related genes were down

egulated after H9N2 inoculation while other genes affected by
9N2 inoculation were up regulated. MCM2 and MCM4 were down

egulated after H9N2 inoculation at an early stage at 8–16 h.p.i. in
he lung of both 1- and 4-wk-old birds and the trachea of 1-wk-
ld birds. Interferon-induced GTP-binding protein Mx (MX) was
p regulated at 16 h.p.i. in the lung of 1- and 4-wk-old birds and

n the trachea of 1-wk-old birds. HSP70 and HSC70 were both up
egulated in a later stage after H9N2 inoculation at 24 h.p.i. in both
he lung and trachea of 1- and 4-wk-old birds. The effect of H9N2
noculation on expression of these genes was independent of age
nd organ. DEAD box helicase related genes DDX3, DDX18 and
DX50 were only up regulated in the trachea of 4-wk-old birds
t 24 h.p.i., while in 1-wk-old birds or in the lung expression of
DX genes were not affected by H9N2 inoculation. Expression of

ther genes coding for host factors known to bind to viral factors
nd being involved in influenza virus replication like importins (or
aryopherin), SFPQ/CPSF, core histones, RACK I and ERK were not
ignificantly differentially expressed. Genes coding for other host
actors that play a role in influenza virus replication like CRM1
.97 0.034 – –

n correlation coefficient (r) and determined using SPSS 15.0 software. A p-value for

(exportin-1), BAT1/UAP56 (DEAD box helicase), NXP-2, RanBP5,
eIF-4GI, PAB II, Tat-SF1 were not annotated on this microarray.

4. Discussion

Previous studies have shown age-dependent development of
resistance to infection in both mammals and birds (Hume et al.,
1998; Mukiibi-Muka and Jones, 1999; Velilla et al., 2006). In mam-
mals neonatal immune responses seem to be dominated by T helper
cell type 2 (Adkins, 1999), with for example reduced numbers of
dendritic cells and impaired antigen presenting cell (APC) function
(Velilla et al., 2006). In birds the genetic background also plays an
important role in susceptibility to pathogens like Salmonella enter-
ica. However, at young age both susceptible and resistant lines were
highly susceptible to infection (Beal et al., 2005). Here we describe
the differences in gene expression in early host responses to AIV
in the respiratory tract between 1- and 4-wk-old birds and inves-
tigated the effect of age on gene expression of cellular host factors
that interact with viral factors of which some are needed for viral
replication.

Before we compared virus-induced host responses between 1-
and 4-wk-old birds we determined the effect of age on gene expres-
sion in control birds. Differences in gene expression between 1-
and 4-wk-old control birds mainly related to tissue developmen-
tal processes and immune related functional groups. Most of these
immune related genes were expressed in a higher rate in 4- com-
pared to 1-wk-old control birds and most likely related to the higher
number of leukocytes present in the respiratory tract of 4-wk-old
birds. Genes expressed at higher rate in 1-wk-old birds are likely an
indication for the ongoing development of the respiratory immune
system, which results in differences in cellular composition of the
respiratory tract. Genes involved in innate immune responses were
also higher expressed in 1-wk-old control birds and may indicate
that protective responses in young birds are more dependent on
innate responses (Levy, 2007). In the trachea fewer genes were sig-
nificantly differentially expressed between 1- and 4-wk-old control
birds compared to the lung. For the trachea constitutive lymphoid
tissue has not been described unlike for the lung (Kothlow and
Kaspers, 2008), which would explain the lower number of differ-
entially expressed genes between 1- and 4-wk-old control birds.

Difference in virus deposition within the respiratory tract has
an influence on gene expression (Baas et al., 2006; Reemers et
al., 2009b). Since no significant differences in viral RNA expres-
sion were found between 1- and 4-wk-old birds, differences in
gene expression after H9N2 inoculation are caused by differences
in host response between the age groups. To emphasize that these
differences were not a direct effect of differences in cellular com-
position of the tissue alone, we showed that these differences
were not affected by differences in gene expression between the

age groups in control birds and therefore are directly related to
H9N2 inoculation. Although genes involved in innate responses
were expressed at higher rate in 1-wk-old control birds, after
H9N2 inoculation genes involved in innate responses were more
induced in 4-wk-old birds. In the lung, more genes related to
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Table 4
Effect of H9N2 inoculation on gene expression of proteins that can interact with influenza virus in the lung and trachea of 1- and 4-wk-old birds at 8, 16 and 24 h.p.i.

Host factor Interacting viral factor Proposed function Host factor chicken Lung Trachea Age

1 wk 4 wk 1 wk 4 wk h.p.i.

8 16 24 8 16 24 8 16 24 8 16 24

Karyopherin-� 2-� NP Nuclear import RNP KPNA2 – – – – – – – – – – – –
MxA NP Inhibit nuclear import RNP MX – ↑ – – ↑ – – ↑ – – – –
ERK M1 ERK – – - – – – – – – – - –
RACK1 M1 M1 phosphorylation RACK1 – – – – – – – – – – – –
Hsp70 NP/RNP Nuclear export RNP Hsp70 – – ↑ – – – – – ↑ –– - ↑
Hsc70 M1 Inhibit nuclear export, RNP, M1, NP Hsc70 –– – ↑ – – ↑ – – ↑ – – ↑
SFPQ/CPSF NS1 Inhibits nuclear export cellular mRNAs, not viral mRNAs CPSF4 – – – – – – – – – – – –

CPSF5 – – – – – – – – – – – –
CPSF6 – – – – – – – – – – – –

MCM PA Replication MCM2 ↓ – – ↓ ↓ – ↓ – – – – –
MCM3 – – – – – – – – – – – –
MCM4 – – – ↓ ↓ – ↓ – – – – –
MCM5 – – – – – – – – – – – –
MCM6 – –– – – – – – – – – – –

Histone proteins M1, RNP Nuclear export RNP H2AFZ – – – – – – – – – – – –
H2B-VIII – – – – – – – – – – – –
H2B-V – – – – – – – – – – – –
H3-IX – – – – – – – – – – – –
H4-I – – – – – – – – – – – –

DEAD box RNA helicase (DDX3, DDX5) Polymerase complex Nuclear export RNP DDX3 – – – – – – – – – – – ↑
DDX18 – – – – – – – – – – – ↑
DDX50 – – – – – – – – – – – ↑
DDXa – – – – – – – – – – – –

Differences in gene expression between control birds and H9N2 inoculated birds of proteins that can interact with influenza virus were identified using MAANOVA within time and age in the lung and trachea. A p-value < 0.05
was considered significant. Significant differential expression in H9N2 inoculated compared to control birds is indicated with (↑) for up regulation and (↓) for down regulation. Genes expression that did not differ significantly
after H9N2 inoculation was indicated with (–). DDXa stands for gene DDX10, DDX24, DDX25, DDX26, DDX29, DDX31, DDX32, DDX41, DDX42, DDX46, DDX55, and DDX59.
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ell proliferation, chemotaxis and cytokine activity, inflammatory
esponse and transcription were expressed in 4-wk-old birds. This
uggests a different host response at transcriptional level in 1-
ompared to 4-wk-old birds likely relating to age related differ-
nces in immune responses. APC play an important role during
nnate immune responses. Neonatal APC from mice and humans
ave been reported to be less effective in supporting proliferation
f T cells (Petty and Hunt, 1998) probably due to lower expression
f MHCI, MHCII and costimulatory molecules (Hunt et al., 1994).
urthermore, they are defective in cytokine production upon LPS
timulation or influenza virus infection (Chelvarajan et al., 2004;
hou et al., 2006) and require a higher level of activation than
dult APC (Petty and Hunt, 1998), which has been proposed to be
ue to defects in TLR signalling (De Wit et al., 2003; Velilla et al.,
006). In our study MHCI and MHCII were less expressed in 1-wk-
ld birds which suggest a similar immaturity of APC as found in
ice. Cytokine genes and TLR signalling related genes were more

xpressed in 4-wk-old birds, while MHCII was down regulated in
-wk-old birds after H9N2 inoculation likely relating to functional

mpairment described for mammalian APC.
In the trachea the largest and clearest differences between 1-

nd 4-wk-old birds were the time points of expression and the
umber of genes expressed, but no large differences between func-
ional groups were found, unlike in the lung. This possibly indicates
hat maturity of the respiratory immune system might have less
ffect on the trachea than on the lung which could correlate to the
ack of constitutive lymphoid tissue in the avian trachea.

Elevated expression levels of inflammatory cytokines and
hemokines due to influenza infection have been reported as early
s 6 h.p.i. depending on the influenza strain (Chan et al., 2005;
ulkunen et al., 2001). Also in this study up regulation of IL-1�, IL-8
nd IL-18 mRNA expression was found after H9N2 inoculation in
oth age groups. The level of viral RNA expression correlated with
he mRNA expression levels of IL-1�, IL-8, IL-18 and IFN-� over
ime in 1-wk-old birds, but for 4-wk-old birds a correlation was
nly seen at later time points after H9N2 inoculation. Although
he mean IFN-� mRNA expression was not significantly up regu-
ated, there were correlations between viral RNA en IFN-� mRNA
xpression for individual birds at both 1- and 4-wk of age. These
ata indicate that induction of gene expression of inflammatory
ytokines and chemokines after H9N2 inoculation is more related
o viral load in 1-wk-old birds compared to 4-wk-old birds.

Influenza viral proteins bind to several mammalian host pro-
eins which promote viral replication or induce host responses
Engelhardt and Fodor, 2006; Naffakh et al., 2008; Nagata et al.,
008). MCM2 and MCM4 are part of the minichromosome main-
enance complex which is proposed to activate virus genome
eplication at the early phase of infection when there is no newly
ynthesised viral nucleoprotein (NP) present (Nagata et al., 2008).
hese genes were down regulated early after H9N2 inoculation
hich may be an attempt of the host to block viral replication. At

6 h.p.i. blocking of viral replication is possibly enhanced by up reg-
lation of MX, which for humans binds to viral NP and this binding

ikely prevents nuclear import of incoming viral ribonucleopro-
ein (RNP) (Naffakh et al., 2008; Turan et al., 2004). In the chicken
ome MX proteins are found to have a similar inhibitory function
hile others do not depend on breed and virus strain, for which a
ossible explanation is the high polymorphism in the chicken MX
ene (Benfield et al., 2008; Ko et al., 2002). For chickens HSP70 and
SC70 were up regulated at 24 h.p.i. possibly preventing assembly
f new virions, since HSP70 prevents binding of viral matrix pro-

ein M1 to RNP (Hirayama et al., 2004) and HSC70 binds to viral

1 (Nagata et al., 2008) resulting in inhibition of nuclear export.
common response of the host to block viral replication seemed

o occur, because gene expression of MCMs, MX, HSP70 and HSC70
as regulated independent of age and tissue. Interestingly DDX3,
nology 47 (2010) 1675–1685

DDX18 and DDX50 were only up regulated in the trachea of 4-wk-
old birds at 24 h.p.i. when newly assembled RNPs are exported to be
packaged into progeny virions. The influenza polymerase complex
is known to interact with DDX3, which plays an important role
in RNA nuclear export and cytoplasmic mRNA localisation (Jorba
et al., 2008), promotes export of HIV-1 RNAs from the nucleus to
cytoplasm (Ishaq et al., 2008) and is required for HCV RNA repli-
cation (Ariumi et al., 2007). This possibly indicate that DDX is may
be needed for influenza virus replication at a later stage after virus
inoculation when newly assembled RNPs are exported to be pack-
aged into progeny virions and expression is possibly age and tissue
related.

In summary, gene expression in control birds and host responses
to AIV inoculation in the trachea and especially the lung indi-
cates correlation with the development and maturation of the
respiratory immune system. Differences in immune related gene
expression after H9N2 inoculation in the lung likely related to
the higher levels of stimulation needed to activate neonatal host
responses and age-dependent functionality of leukocytes. How-
ever, expression of most cellular host factors that block viral
replication by interacting with viral factors is independent of age.
These findings suggest that the strength of virus-induced host
responses is affected by maturation of the respiratory immune sys-
tem and may be a key factor in age-dependent host responses to
infection. However, the differences found at transcriptional level
were not yet translated to differences in viral load between the age
groups, due to the time frame in which we measured the responses.
This study shows multiple factors could be involved in neonatal
impaired response, such as functional impairment APC, NK cells
and T cells and more research into the contribution of these factors
is needed to get a better understanding of the functional capability
of the neonatal immune system and the relation to susceptibility.
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