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Abstract

To aid the achievement of "dual carbon" targets and high-quality agricultural development, by 
analyzing data from 30 provinces in China from 2011 to 2021, this study offers insights into green 
and low-carbon development. Through the application of fixed-effect, mediation, and moderation effect 
models, it empirically examines the impact and mechanisms of agricultural-industrial agglomeration 
on carbon emissions. The findings indicate: (1) an Inverted U-shaped relationship between agricultural-
industrial agglomeration and carbon emissions, with a positive slope at the agglomeration's minimum 
value and a negative slope at its maximum. (2) In heterogeneity analysis, the central and western, 
northern, major production, and major sales areas, as well as areas of high agglomeration, demonstrate 
a significant Inverted U-shaped relationship. (3) The progression of digital villages helps explain the 
complex, Inverted U-shaped link between agricultural-industrial concentration and carbon emissions, 
indirectly affecting the latter. (4) A substitution effect is present, wherein land use capability alters the 
overall impact of agricultural-industrial agglomeration on carbon emissions and adjusts the dynamic 
path of this impact with varying degrees of agglomeration. The study's conclusions provide meaningful 
implications for the government to optimize agricultural industry layouts for effective control of 
agricultural carbon emissions and the realization of green, sustainable development. Thus, this study 
suggests expediting the development of digital villages to enhance the carbon reduction efficiency of 
agricultural-industrial agglomeration.
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Introduction

In recent years, the extensive use of high-energy-
consuming resources such as coal has led to substantial 
emissions of carbon dioxide and other greenhouse 
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gases, catalyzing global warming and numerous 
environmental issues. One of the main contributors to 
increased carbon emissions is inefficient energy use, 
making the enhancement of energy efficiency crucial 
for sustainable environmental development [1-3]. Since 
economic reforms began, China has experienced rapid 
economic growth accompanied by escalating resource 
and environmental challenges, characterized by high 
consumption and low efficiency [4]. As a significant 
source of greenhouse gas emissions, agriculture 
accounts for approximately 17% of China's total carbon 
emissions, a figure significantly higher than the global 
average for the agricultural sector [5]. Moreover, 
agricultural activities contribute to ecological damage 
through deforestation and soil degradation, exacerbating 
the greenhouse effect globally.

In response to the challenge of global climate 
change, President Xi delivered remarks at the United 
Nations General Assembly's 75th session, highlighting 
the importance of accelerating the development of green 
modes of development and lifestyles. He promised to 
advance China's own environmental commitments to 
hit a carbon emissions peak by 2030 and attain carbon 
neutrality by 2060. Later, more than 100 countries 
pledged at COP28 to double the rate of energy efficiency 
improvement by 2030 and emphasized the crucial 
role of renewable energy in driving energy transition, 
establishing it as the primary choice for achieving 
sustainable development. Additionally, China has 
also promised at the international level to expedite 
the transition to renewable energy sources and zero-
emission technologies, striving for global net-zero 
emissions by 2050. Therefore, reducing emissions 
and enhancing carbon sequestration in agriculture are 
pivotal measures to achieve the dual carbon goals, with 
significant potential.

As the dividends of China's household contract 
responsibility system are gradually depleted, there is an 
urgent need for new organizational models to enhance 
agricultural efficiency. Agricultural industrial clusters, 
as an organizational innovation, are key to improving 
comprehensive agricultural capacities and productivity. 
Reducing fertilizer and pesticide use through economies 
of scale in agricultural production and industrial clusters 
effectively lowers the carbon footprint. Streamlining 
logistics and reducing transportation needs further 
diminish greenhouse gas emissions. Focused on 
innovation and sustainability, agricultural clusters 
harness renewable and waste-to-energy technologies to 
drive green economic development. They also facilitate 
the exchange of best practices in carbon management, 
aiding global efforts to mitigate climate change.

Driven by agricultural-industrial agglomeration, 
technological innovation has significantly advanced, 
optimizing agricultural production processes and 
contributing to low-carbon development goals. In 2023, 
China has particularly emphasized the application of 
"green low-carbon technology in agriculture" as an 
integral part of its national policy, highlighting the 

central role of industrial clusters in implementing 
the national green low-carbon development strategy. 
Through efficient and intensive operations, clusters 
do not only control agricultural carbon emissions 
effectively, but also alleviate the environmental impact 
of agricultural activities. Moreover, the development 
of industrial clusters drives the flow of agricultural 
production factors, especially capital and technology, 
into green innovation, steering these resources into 
carbon management and sustainable agricultural 
improvements. Thus, analyzing how agricultural-
industrial agglomeration affects China's agricultural 
carbon emissions and revealing the underlying 
mechanisms is of vital practical significance for 
advancing China's sustainable green transformation and 
providing important theoretical and practical support for 
global climate change response strategies.

The potential contributions of this study are: First, 
while existing research on agricultural-industrial 
agglomeration has mainly focused on aspects such 
as high-quality agricultural economic growth and 
productivity, often examining linear relationships, 
studies linking agricultural-industrial agglomeration 
with carbon emissions are less common. This study 
bridges this gap by exploring the non-linear relationship 
between the two; Second, it employs quantitative 
research methods to empirically analyze the role and 
mechanisms of agricultural-industrial agglomeration in 
green agricultural development, filling a gap in current 
literature; Third, the study confirms that agricultural-
industrial agglomeration indirectly reduces carbon 
emissions by enhancing the level of digital rural 
development. Fourth, a substitution effect is observed; 
the research reveals that land use capability not only 
changes the overall impact of agricultural-industrial 
agglomeration on carbon emissions but also adjusts the 
dynamic path of this impact as agglomeration levels 
vary, thus addressing a void in existing research.

Section two includes a literature review, research 
gaps, and limitations; section three presents theoretical 
analysis and research hypotheses; section four describes 
the research design, including methods, model settings, 
and data collection; section five discusses the empirical 
results and analyzes them; section six concludes and 
provides relevant recommendations.

Literature Review

Research on industrial agglomeration initially 
focused on its economic effects. Marshall was among 
the first to notice this phenomenon, proposing the 
"Industrial Districts Theory," which identified clusters of 
similar sectors within specific regions and explored the 
relationship between internal and external economies. 
Current studies analyze agglomeration effects from 
three perspectives: economic development, farmers' 
income, and sustainable development.
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Agricultural industrial clusters originate from local 
natural resource endowments, such as geographic 
conditions, climate, and soil and water resources 
[6]. According to the findings of He et al. (2020), the 
clustering of China's agricultural industry might create 
a siphoning effect that could dampen the economic 
status of farmers in adjacent areas, potentially widening 
the gap in rural economic development [7]. Setyowati 
observed significant rural economic growth driven by 
cassava industry clusters in Indonesia [8]. Kim and 
Scorsone noted that while agglomeration can stimulate 
rural economic growth during agriculture's expansion 
phase, it may lead to unemployment during its decline 
[9, 10].

Agglomeration also affects labor migration and 
regional income disparities. Zhang et al. (2023) found 
that industrial clustering initially exacerbates income 
inequality, but beyond a certain threshold, the degree of 
inequality diminishes [11]. Ding demonstrated through 
spatial panel models that agglomeration has a direct and 
indirect positive impact on farmers' incomes [12].

There is an Inverted U-shaped relationship between 
economic growth and environmental pollution, 
according to the Environmental Kuznets Curve (EKC) 
[13]. Hosoe argued that agricultural agglomerations 
could have positive environmental effects by reducing 
pollution and carbon emissions [14]. Guo et al. (2020) 
emphasized that moderate agglomeration can achieve 
sustainable agriculture through economies of scale, but 
excessive agglomeration might result in crowding-out 
effects [15]. Xue et al. (2020) believed that moderate 
agglomeration enhances land management scale 
and resource sharing, thus advancing agricultural 
development [16]. Liu et al. (2017) found that the 
negative externality effects of industrial agglomeration 
in China's new normal are gradually weakening, with 
FDI and environmental regulations indirectly reducing 
pollution through industrial agglomeration [17].

The scholarly work on carbon emissions from 
farming is often grouped into three strands: assessing 
emission levels, policy-making for emission mitigation, 
and thorough investigation of the elements that 
drive emissions. First, significant studies focus on 
the calculation of agricultural carbon emissions. 
Streimikiene et al. (2021) highlighted that methane 
release during livestock digestion and rice production, 
along with waste treatment, and nitrous oxide 
from synthetic fertilizer application and additional 
agricultural methods, constitute major factors of 
agricultural carbon emissions in China [18]. He et al. 
(2016) used econometric models and kernel density 
analysis to discuss the structural characteristics, 
spatiotemporal evolution, and driving mechanisms of 
China's agricultural carbon emissions, noting a rising 
trend and regional specificity in recent years [19]. 
Wu et al. (2024) proposed a new agricultural carbon 
emission efficiency (ACEE) framework integrating 
indices related to water, energy, and food stress from a 
green development perspective [20]. Based on Yadav et 

al.'s (2021) findings, agricultural carbon emissions are 
closely related to food production, water resources, and 
energy [21].

The second group encompasses China's policy 
measures concerning agricultural carbon emissions. 
Ge (2023) reported China's introduction of specific 
policies targeted at reducing agricultural emissions. Key 
initiatives include the “Thirteenth Five-Year Plan” for 
environmental and ecological protection and the “Rural 
Revitalization Strategy,” both aimed at promoting 
sustainable agricultural practices and reducing 
emissions [22]. García-García et al. (2020) speculated 
that the state of China’s agricultural carbon emissions 
might shift with the evolution of policies, practices, and 
technology [23]. Du et al. (2023) explored the effects 
of China’s 2018 sustainable agricultural development 
demonstration zones policy on agricultural carbon 
emissions reduction [24].

Finally, studies that delve into factors influencing 
carbon emissions. Li and Liu (2022)considered the 
impact of economic affluence on carbon emissions in the 
STIRPAT model, concluding that an increase in GDP 
per capita could lead to higher energy consumption 
and carbon emissions [25]. Wang et al. (2022) found 
that agricultural specialization leads to the overuse of 
chemical fertilizers, thus positively affecting carbon 
emissions [26]. Continual changes in the application of 
land, the overconsumption of resources, and substandard 
management of waste are all activities that result in 
the emission of carbon [27]. Moreover, factors such as 
urban-rural integrated development have been identified 
as influencing agricultural carbon emissions [28]. 
The trend of emissions with rising integration levels 
shows a cycle of initial decrease, subsequent increase, 
and final decrease. Zhang et al. (2022) in the context 
of sustainable agricultural development, observed a 
significant threshold effect between the agglomeration of 
agricultural industries and sustainable development [29]. 
Wang (2021) suggested that agglomerating agricultural 
industries can enhance the allocation of agricultural 
science and technology resources, promote innovation 
among micro entities, and increase the efficiency 
of fertilizers, while also supporting growth in food 
production [30].

Yet, inquiries into the consequences of agricultural 
industry agglomeration on carbon emissions remain at 
an early stage, with few studies existing, particularly 
concerning the mechanisms behind their Inverted 
U-shaped relationship. Therefore, this investigation 
works with panel data from 30 provinces in China, 
covering the years 2011 to 2021, to analyze the 
repercussions of agricultural-industrial agglomeration 
on the carbon emissions stemming from agriculture. 
With a particular emphasis on the digital evolution 
of the countryside, the study aims to unravel the core 
mechanisms and apply mediation and moderation 
effect analyses to explore the influencing factors 
on agricultural carbon emissions, endeavoring to 
supplement the existing research void.
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However, there are some limitations to this study. 
Firstly, data availability is limited to the provincial level 
due to missing data from many prefectures. Second, this 
study only considered six major aspects of measuring 
agricultural carbon emissions, including pesticides, 
agricultural films, diesel fuel, fertilizer use, irrigation, 
and tillage. However, factors such as crop selection 
and cultivation methods as well as agricultural waste 
disposal may also affect agricultural carbon emissions 
and deserve further exploration. Thirdly, some studies 
have analyzed the impacts of energy policies, and 
industrialization on sustainable development and 
environmental quality [31-33]. However, this paper does 
not consider the impacts triggered by energy policies as 
well as industrialization in this context, which can be 
analyzed in future studies.

Theoretical Analysis and Hypotheses

Direct Effects of Agricultural-Industrial 
Agglomeration on Carbon Emissions

Fig. 1 is  the logical framework for theoretical 
analysis. The relationship between agricultural-
industrial agglomeration, economic development, and 
environmental protection is complex. In the early stages 
of agglomeration, economies of scale, increased resource 
efficiency, and accelerated technological innovation 
effectively reduce carbon emissions. However, as 
agglomeration intensifies, excessive resource use 
and environmental carrying capacity pressures may 
lead to increased carbon emissions, which forms an 
Inverted U-shaped relationship. According to a study 
by Liu et al. (2022) at the provincial scale, there is a 
nonlinear relationship between agricultural-industrial 
agglomeration and sustainable development [34]. Studies 
by Shen (2020) and Chen (2020) indicate that industrial 
agglomeration beyond a certain inflection point can 
reduce pollution emissions and create positive spatial 
spillover effects [35, 36]. The above findings suggest 
that the impact of agricultural-industrial agglomeration 
on environmental health is complex, and that early 
positive impacts may be overshadowed by later negative 
impacts. Therefore, it becomes crucial to assess the 
direct impact of agricultural-industrial agglomeration 
on carbon emissions, especially the Inverted U-shaped 
relationship, which not only helps to understand the 
complexity of the impact of industrial agglomeration 
on the environment but also provides a scientific basis 
for policy formulation. This can ensure that measures 
to control environmental pollution are combined with 
economic development to achieve sustainable growth. 
Based on the above understanding, this study proposes 
the following hypotheses:

H1: The impact of agricultural-industrial 
agglomeration on agricultural carbon emissions is not 
linear, but exhibits a nonlinear pattern.

The Intermediary Effect of Digital 
Rural Development Level

Agricultural-industrial agglomeration plays 
an important mediating role in promoting rural 
digitalization. The process and its outcomes generate a 
demand for digital villages. Agricultural agglomeration, 
as a special form of industrial agglomeration, 
necessitates extensive information exchange. The 
geographical proximity and business interactions of 
a cluster of enterprises and institutions [37] drive 
agglomeration effects through economies of scale, 
reduced transportation costs, and the synergistic 
movement of factors [38, 39]. The essence of any 
industrial agglomeration is the orderly flow of elements 
such as land, capital, and labor, which move within 
specific patterns and spatial-temporal scopes. To 
prevent disorder in agricultural factor flows and ensure 
alignment with agricultural development, operators 
must address information asymmetry. Therefore, 
agricultural agglomeration involves not only material 
exchange but also information flows, creating a demand 
for information on land size and quality, planting scale 
and crop types, agricultural inputs, labor sources, and 
wage levels.

The application of digital tools and technologies plays 
a crucial role in this process. With big data and artificial 
intelligence, it is possible to precisely assess and monitor 
farmland resources, scientifically plan plantings, 
intelligently manage inputs, and efficiently coordinate 
labor. This not only enhances the efficiency and benefits 
of agricultural production, but also significantly 
reduces resource wastage and environmental pollution. 
Moreover, informatization strengthens the connection 
between agricultural enterprises and markets, 
opening new sales channels and optimizing supply 
chain management. The application of digitalization 
in agricultural agglomeration also raises the overall 
level of rural development. E-commerce platforms 
facilitate market access for agricultural products and 
better sales prices; the use of smart farming machinery 
lightens manual labor and increases productivity; and 
IoT technologies make agricultural processes more 
transparent and traceable, enhancing product quality 
and safety.

Thus, agricultural agglomeration at both material 
and informational levels promotes the optimization of 
resources and industrial development, driving rural 
digitalization. The demand for and application of 
digitalization not only solves the problem of information 
asymmetry but also promotes the modernization and 
intelligent development of the agricultural industry 
chain.

Digital rural construction enhances agricultural 
production efficiency through information technology, 
deepens understanding of the agricultural industry 
chain and rural society, modernizes production methods 
and farmer skills, and fosters rural development and 
revitalization, while also serving as an intrinsic driver 
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of carbon reduction in agriculture [40]. Agricultural 
producers use mobile communications devices and 
the internet to rapidly access knowledge of green 
agriculture, lowering information costs and overcoming 
technical barriers. As digital technology becomes 
more widespread and infrastructure improves, the 
agricultural production chain undergoes transformation 
and operational monitoring optimization, propelling a 
green shift in agriculture and reducing carbon emissions 
[41]. Based on these findings, the study proposes the 
following hypothesis:

H2: Agricultural-industrial agglomeration reduces 
agricultural carbon emissions by enhancing the 
development level of digital villages.

Analysis of the Moderating Effect

As modern agriculture develops and agricultural-
industrial agglomeration deepens, agriculture's role as a 
major source of carbon emissions and its environmental 
impact attracts widespread attention. Agricultural-
industrial agglomeration, a complex economic activity, 
not only boosts production efficiency and regional 
economic growth but also poses new environmental 
challenges. In this process, land quality becomes a 
key factor in moderating the relationship between 
agricultural-industrial agglomeration and carbon 
emissions. Utilizing national and provincial data, 
research by Lai (2016) and Chuai (2013) reveals the 
potential to increase carbon storage by optimizing 
land use structures, suggesting that appropriate policy 
measures can significantly reduce overall carbon 
emissions [42, 43]. High-quality land resources during 
the early stages of agricultural-industrial agglomeration 
help reduce carbon emissions through improved 
production efficiency and resource management, 
providing an initial buffer for carbon emission 
control. As agglomeration deepens, high-quality land 
continues to play a role, supporting the adoption of 
environmentally friendly technologies and the spread 

of sustainable agricultural practices, slowing the rate of 
carbon emission reduction. This implies that improving 
land quality can extend environmental benefits into 
the later stages of agglomeration, thereby adjusting 
the overall trend of agricultural carbon emissions. 
Therefore, the study posits the following hypothesis:

H3: Improving land quality helps reduce the growth 
of agricultural carbon emissions.

Research Design

Model Specification

Baseline Regression Model

This study employs a fixed effects model to test 
Hypothesis 1, as illustrated in Equation (1):

  (1)

Equation (1) represents the direct effect of 
agricultural-industrial agglomeration on agricultural 
carbon emissions. Here, i denotes the province or city, 
t represents the time period, CEit stands for agricultural 
carbon emissions, LQit indicates agricultural-industrial 
agglomeration, and LQ²it is the squared term of 
agricultural-industrial agglomeration. Control accounts 
for various control variables that could potentially affect 
the results. β0 is the intercept term, while β1 to β3 are the 
regression coefficients corresponding to the respective 
variables. μi signifies the fixed effect for the province, γt 
denotes the fixed effect for the year, and εit is the random 
error term.

Mediation Models

To empirically examine the impact mechanism of 
agricultural-industrial agglomeration on agricultural 

Fig. 1. Logical framework for theoretical analysis.
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carbon emissions, the following mediating model is 
established:

  (2)

  (3)

  (4)

DCit stands for the mediating variable, which is the 
level of digital rural development. The coefficients are 
represented by α, β, and δ, while μi and γt signify the 
fixed effects for years and provinces, respectively. εit is 
the random error term.

Moderation Effects Model

This research develops a model to examine the 
moderating effect of land quality (Land) on the 
relationships under study.

  (5)

To verify the Inverted U-shaped curve's moderating 
effect, this study multiplies the moderating variable 
with both the linear and quadratic terms of the 
independent variable (LQ) [44]. This allows us to 
assess the moderating impact on the curve's inflection 
point through the linear term, and on the steepness, 
shallowness, or the direction of opening or closing of the 
curve through the quadratic term.

Variable Selection

Dependent Variable: Total Carbon Emissions from 
Agriculture (CE). This research begins by estimating the 
carbon emissions from each input factor in agriculture. 

According to the IPCC calculating method, there are 
six main sources of agricultural carbon emissions: 
pesticides, agricultural film, irrigation, diesel, fertilizer, 
and farming [45]. The calculation formula is as follows:

  (6)

In equation (6), CE denotes the total carbon 
emissions, while Sijt and Fijt represent the carbon 
emissions and input quantities from the j-th carbon 
source in the i-th province (city) in year t. Q j indicates 
the corresponding carbon emission coefficients for these 
sources. Specific details are provided in Table 1.

Independent variable: Agricultural Industry 
Agglomeration (LQ). This study chose the agricultural 
location entropy index to measure this indicator. The 
quotient is obtained by dividing the ratio of agricultural 
output value to GDP of a province (city) by the ratio of 
national agricultural output value to GDP. The larger 
the location entropy index, the higher the degree of 
agricultural industry agglomeration. The specific 
formula is as follows:

  (7)

In equation (7), LQ is the level of agro-industrial 
agglomeration, Tij represents the agricultural output of 
the i-th province (city), Mij denotes the total production 
value of the i-th province (city), Nj is the national total 
agricultural output, and Mj is the national gross domestic 
product (GDP).

Mediating variable: (1) Level of Rural Digital 
Development (DC), measured by the ratio of rural 
broadband access to the rural population. A higher ratio 
suggests better development of digital villages.

Moderating variable: Land Quality (Land), assessed 
by the proportion of effective irrigated area to total crop 
sown area.

Control variables: (1) The intensity of financial 
inputs to agriculture (Agrfi) is measured using the ratio 
of agriculture, forestry, and water expenditures to total 
government expenditures. (2) Economic Development 
Level (GDP), measured by the per capita GDP of the 
region. (3) Per Capita Consumer Spending of Rural 
Residents (Conru). In assessing the scale of cropland 
management (Lscale), the ratio of the total area of 
cropland to the number of people in the agricultural 
labor force is used. (5) Disastered area ratio (Disa) is 
derived from the proportion of the affected area to the 
total sown area.

Data Source

In view of data availability and observability of 
research results, this study takes panel data from 30 
provinces in China (excluding Hong Kong, Macao, 
Taiwan, and Tibet) from 2011 to 2021. Among them, 
the data on agricultural carbon emissions come from 
the China Agricultural Yearbook and the China Rural 

Carbon Source Carbon Emission 
Coefficients Sources

Pesticides 4.93 kg/kg ORNL, USA

Agricultural 
films 5.18 kg/kg IAREE, NAU

Irrigation 266.48 kg/hm2 Ding et al.[41]

Diesel 0.59 kg/kg IPCC2013

Fertilisers 0.89 kg/kg ORNL, USA

Ploughing 312.60 kg/hm2 CBT, CAU

Table 1. Sources of agricultural carbon emissions and coefficients.
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Statistics Yearbook; the data on agricultural-industrial 
agglomeration come from the National Bureau of 
Statistics, the China Statistical Yearbook, and the China 
Agricultural Statistical Yearbook; and the data involved 
in the mediating, moderating, and controlling variables 
come from the China Agricultural Statistical Yearbook, 
China Economic Network statistical database, the 
China Rural Business Management Statistics Annual 
Report, National Bureau of Statistics, China Provincial 
Statistical Yearbook, Wind database and EPS database. 
Descriptive statistics of all variables are shown in Table 
2. Table 3 shows the full variable annotation table.

Empirical Results 

Benchmark Regression 

Table 4 presents the results of the baseline 
regression of this study, which examines the impact of 
agricultural-industrial agglomeration on agricultural 
carbon emissions. The original hypothesis was 
strongly rejected by the Hausman test, indicating that 
the fixed effects model should be used. The empirical 
results show that the coefficient of the linear term of 
agricultural industry agglomeration is significantly 
positive, while its squared term is significantly negative. 
The u-test identifies a turning point at 3.546 within 
the range of agricultural production agglomeration 
[0.042, 4.364]. At the minimum agglomeration value 
of 0.042, the curve's slope is positive at 0.679, whereas 
at the maximum value of 4.364, the slope is negative at 

Variable Obs Mean Std. Dev. Min Max

CE 330 3.389 2.3 0.144 9.957

LQ 330 1.229 0.742 0.042 4.364

Agrfi 330 11.405 3.327 4.11 20.384

GDP 330 1.276 0.808 0.513 4.807

Conru 330 1.079 0.418 0.386 2.720

Lscale 330 7.650 4.142 2.088 29.196

Disa 330 3.504 3.652 0.02 18.96

DC 330 0.148 0.121 0.007 0.509

Land 330 0.433 0.172 0.172 1.233

Lp 330 4.085 2.201 1.167 13.557

Variable Full name of the variable Variable Meaning

CE Agricultural carbon emissions Calculation of agricultural carbon emissions by region based on 
the ipcc land release coefficient

LQ Agro-industrial agglomeration The text uses locational entropy to represent

Agrfi The intensity of financial inputs to agriculture Using the ratio of agriculture, forestry and water expenditures to 
total government expenditures

GDP Economic Development Level Measured by the per capita GDP of the region

Conru Per Capita Consumer Spending of Rural Residents Per Capita Consumer Spending of Rural Residents

Lscale The scale of cropland management The ratio of the total area of cropland to the number of people in 
the agricultural labour force is used

Disa Disastered area ratio The proportion of the affected area to the total sown area.

DC Level of Rural Digital Development The ratio of rural broadband access to the rural population. 

Land Land Quality Assessed by the proportion of effective irrigated area to total crop 
sown area.

Lp Land productivity Expressed as the ratio of gross agricultural output to the area 
sown to crops.

Table 2. Descriptive statistics.

Table 3. Variable comment table.
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-0.159. These results confirm that the slope is positive 
at the minimum agglomeration level and negative at 
the maximum, aligning with the characteristics of an 
Inverted U-shaped curve [46]. These test outcomes 
support Hypothesis H1. This finding corroborates the 
Environmental Kuznets Curve (EKC) hypothesis, 
positing that environmental pollution, here represented 
by agricultural carbon emissions, initially increases 
with economic development (manifested through 
agricultural industry agglomeration), but eventually 
decreases following advancements in technology and 
the optimization of industrial structures. Specifically, 
in the initial stages, agricultural industry agglomeration 
leads to an increase in carbon emissions. However, 
as the degree of agglomeration intensifies, the effect 
on increasing carbon emissions weakens, eventually 
transitioning to a reduction in emissions. This may 
be attributed to the initial phase of agricultural 
agglomeration where increased production activities 
elevate energy consumption and carbon emissions; 
yet, as agglomeration effects deepen, technological 
advancements, efficiency improvements, and the 

adoption of cleaner energy sources reduce the energy 
consumption per unit of output, thereby lowering 
agricultural carbon emissions.

After considering the control variables, the 
direct positive relationship of agricultural industry 
concentration on agricultural carbon emissions 
remains unchanged, as does the negative effect of 
its quadratic term, which suggests that the Inverted 
U-shaped relationship of the main regression is still 
robust even after gradually adding other control 
variables. Moreover, agricultural fiscal input exhibits 
a consistently positive effect on carbon emissions in 
the baseline regression, potentially reflecting that 
increased fiscal input boosts agricultural production 
activities, indirectly fostering energy consumption and 
emissions. The level of economic development and 
the scale of farmland operation also have a significant 
positive impact on emissions, likely due to enhanced 
production efficiency associated with economic growth 
and scaled operations, albeit with a concurrent rise in 
energy demand. Per capita consumption expenditure 
by rural residents significantly reduces agricultural 

Variables (1) (2) (3) (4) (5) (6)

LQ 0.666*** 0.493*** 0.630*** 0.556*** 0.673*** 0.687***

(0.162) (0.139) (0.156) (0.162) (0.171) (0.164)

LQ2 -0.070** -0.059** -0.076*** -0.063** -0.096*** -0.097***

(0.028) (0.024) (0.025) (0.026) (0.028) (0.028)

Agrfi 0.065*** 0.064*** 0.058*** 0.055*** 0.052***

(0.012) (0.012) (0.012) (0.011) (0.011)

GDP 0.255** 0.376*** 0.518*** 0.522***

(0.1051) (0.122) (0.155) (0.152)

Conru -0.434** -0.378** -0.398**

(0.178) (0.170) (0.166)

Lscale 0.044*** 0.044***

(0.013) (0.013)

Disa 0.011**

(0.005)

Province FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

_cons 2.715*** 2.164*** 1.712*** 2.163*** 1.545*** 1.542***

(0.144) (0.173) (0.286) (0.341) (0.411) (0.400)

N 330 330 330 330 330 330

F 20.565 23.035 17.239 14.192 12.370 10.882

R-Squared 0.093 0.199 0.216 0.234 0.267 0.280

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Table 4. Benchmark regression result.
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carbon emissions, indirectly affecting emissions through 
improved living standards. On the other hand, an 
increase in the proportion of areas affected by disasters 
can also significantly increase carbon emissions, which 
illustrates the potential impact of natural disasters on 
agricultural production activities.

Heterogeneity Analysis

Test of Regional Heterogeneity

In this study, 30 provinces and cities in China 
are divided into two regional sub-samples of eastern 
and central-western regions, Beyond recognizing the 
regional development disparities, the study examines 
the dissimilar effects of agricultural-industrial 
agglomeration on agricultural carbon emissions in 
the northern and southern parts of China. The data, 
displayed in Table 5, suggests that the link between 
agricultural-industrial agglomeration and agricultural 
carbon emissions shows significant regional differences. 
Firstly, the eastern region does not show a significant 
linear relationship between agricultural-industrial 
agglomeration and agricultural carbon emissions, 
which may be due to the fact that the eastern region is 
more economically developed, has more modernized 
agricultural production methods, uses more advanced 
technologies, and has higher energy efficiency, 
and therefore an increase in agricultural-industrial 
agglomeration does not directly lead to a significant 
increase in agricultural carbon emissions. Additionally, 
the lack of significance in the squared term of 
agricultural-industrial agglomeration could mean that 
the eastern region's agglomeration hasn't arrived at a 

level that reduces agricultural carbon emissions. In the 
central and western regions, there's an inverted U-shape 
connection. At first, the agglomeration's coefficient 
is positive and significant at the 10% level, which 
relates to an increase in emissions. But with continued 
agglomeration, this effect reverses, as indicated by a 
significantly negative squared term at the 10% level, 
suggesting an eventual decrease in emissions potentially 
due to the central and western regions embracing better 
production techniques for energy saving and emission 
reduction in agricultural industry changes. 

For the northern region, the analysis reveals that the 
agglomeration of the agricultural industry significantly 
boosts carbon emissions, with a positive coefficient 
at the 1% significance level. Moreover, the squared 
coefficient is significantly negative at the 1% level, 
indicating a clear inverted U-shaped trend. Initially, the 
vast farmland and concentrated agricultural activities in 
the north might have caused a rise in both production 
and carbon emissions due to agglomeration. But later, 
thanks to scaling and technological progress, this 
production began reducing carbon emissions per unit. 
Meanwhile, in the south, the effects of agricultural 
agglomeration on carbon emissions are less evident. 
This could be attributed to the region's moderate weather 
and diverse agricultural practices, which may dilute the 
agglomeration's impact on emissions.

Test of the Heterogeneity of Food Distribution

In this study, samples were categorized into three 
types based on the “National Medium and Long-term 
Plan for Food Security (2008–2020)”: areas primarily 
for grain production, main marketing regions, and 

(1) (2) (3) (4)

Variables Eastern Midwestern Northern Southern

LQ 0.392 0.260* 1.252*** 0.310

(0.568) (0.139) (0.319) (0.349)

LQ2 0.137 -0.048* -0.183*** -0.017

(0.173) (0.025) (0.047) (0.096)

Control YES YES YES YES

Province FE YES YES YES YES

Year FE YES YES YES YES

_cons 0.820 3.594*** 1.225* 2.935***

(0.726) (0.361) (0.639) (0.410)

N 121 209 165 165

R-Squared 0.356 0.355 0.418 0.145

F 4.885 12.383 7.267 3.191

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Table 5. Heterogeneity test: Regional division.
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zones maintaining a balance between production and 
marketing. The outcomes of the regression analyses for 
these groups are shown in Table 6.

Analyses of the relationship between agro-
industrial agglomeration and carbon emissions in 
China show that there are significant differences 
between different grain distributions. In major grain-
producing areas, the relationship between agricultural 
industry agglomeration and carbon emissions shows 
a significant positive effect, while the squared term of 
agglomeration presents a significant negative effect, 
suggesting an Inverted U-shaped relationship. Initially, 
carbon emissions increase with agglomeration, but 
after reaching a certain level, the agglomeration effect 
reduces emissions by enhancing agricultural efficiency 
and technological progress. This suggests the potential 
for major grain-producing areas to transition towards 
more sustainable agricultural production through 
optimizing industry structures and technology levels. 
In major marketing areas, the positive impact of 
agricultural industry agglomeration on carbon emissions 
is more pronounced, and the threshold for its negative 
effect is higher, possibly due to rapid initial emission 
increases caused by high logistics and processing 
demands. When agglomeration reaches a critical point, 
it triggers technological advancements and efficiency 
improvements that contribute to a decrease in carbon 
emissions per unit of output. Conversely, in balanced 
production and marketing areas, agricultural industry 
agglomeration initially exerts a negative impact on 
carbon emissions. As agglomeration increases, this 
negative effect diminishes and ultimately turns positive. 
This suggests that balanced areas may already possess 
higher production efficiency and lower levels of carbon 

emissions, with further agglomeration leading to 
additional emissions.

Industrial Agglomeration of the 
Level of Heterogeneity Test

By using the median agglomeration level as a 
benchmark, this research differentiates between stronger 
and weaker agglomeration to examine their different 
effects on carbon emissions from agriculture. It turns out 
that the intensity of agricultural industry agglomeration 
has a marked impact on its carbon emissions. In 
less concentrated areas, the effect of agglomeration 
on carbon emissions appears to be minimal, with 
the squared term of agglomeration also showing an 
insignificant positive relationship. This may be because 
in regions with lower industrial agglomeration, the 
direct impact on carbon emissions is minimal, and 
increases in agglomeration do not significantly enhance 
production efficiency or prompt technological innovation 
to reduce emissions. Additionally, in low agglomeration 
areas, because of the relative lack of technology and 
information, the positive impact of agglomeration may 
not be sufficient to offset the carbon emissions from 
increased production. However, in areas where there is 
a significant agglomeration of the agricultural industry, 
there is initially a significant positive impact on carbon 
emissions, but this becomes negative as agglomeration 
increases, creating a clear inverted U-shaped curve. 
This suggests that with increasing agglomeration, initial 
carbon emissions may rise due to increased scale and 
production concentration. However, once agglomeration 
reaches a certain threshold, the effects of economies of 
scale and technological advancements can effectively 

(1) (2) (3)

Major production area Main sales area Production-sales balanced area

LQ 1.068*** 1.357*** -1.076*

(0.293) (0.382) (0.621)

LQ2 -0.152*** -0.328*** 0.335**

(0.045) (0.109) (0.157)

Control YES YES YES

Province FE YES YES YES

Year FE YES YES YES

_cons 1.963** 0.863*** 3.340***

(0.813) (0.236) (0.785)

N 143 77 110

R-Squared 0.382 0.433 0.398

F 7.941 13.519 3.351

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Table 6. Heterogeneity test: Food distribution.
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reduce carbon emissions per unit of output. In high 
agglomeration areas, due to the more concentrated 
resources and information, it is easier to achieve 
technological innovation and efficiency improvements, 
thus reducing carbon emissions through enhanced 
production efficiency at higher levels of agglomeration. 
The test results are shown in Table 7.

Influence Mechanism Test 

In examining the relationship between the degree 
of agricultural agglomeration, rural digital progress, 
and agricultural carbon emissions, this study uses 
a mediated effects model, the results of which are 
presented in parts (1) to (3) of Table 8. Part (1) shows 
the main regression results consistent with the previous 
discussion. In part (2), a significant negative effect of 
agricultural agglomeration on rural digitization can be 
observed, while the square of the agglomeration term 
shows a significant positive effect. Viewing agricultural 
industry agglomeration as a resource input, suggests that 
as the degree of agglomeration increases, its negative 
effect on digital rural development may gradually 
diminish or even become positive. This could be due 
to the scale effects of moderate agglomeration, which 
fully utilizes resources and promotes the development 
of digital rural areas. In the analysis shown in part (3), 
we see that the digitization level of villages acts as an 
intermediary variable. For agricultural industry clusters, 
the initial impact on carbon emissions is strongly 
positive—confirmed at the 1% significance level. As the 

clusters grow, indicated by the negative coefficient of 
the squared term, this impact loses strength. This trend 
implies that the more advanced the digital framework 
of a village, the more it can affect the greenhouse gas 
output from agricultural practices, indirectly confirming 
the H2 hypothesis.

Moderation Effect Test 

Table 9 presents the results of the moderation effect 
test in this study. By incorporating land quality as a 
moderating variable into the main effect of agricultural 
industry agglomeration on carbon emissions, land 
quality is multiplied by both the linear and squared 
terms of agglomeration to test its moderating role 
on the main effect. Findings indicate a significant 
positive moderation by land quality on the inverted 
U-shaped curve's main effect, and the moderation is also 
significant for the squared term, suggesting that this 
moderating variable influences both the shape and the 
direction of the curve's opening. Firstly, the interaction 
coefficient between land quality and the linear term of 
agricultural industry agglomeration is negative and 
remains significant at the 1% level, indicating that 
improved land quality can mitigate the initial positive 
impact of agricultural industry agglomeration on 
carbon emissions. This could be due to high-quality 
land supporting more efficient agricultural techniques 
and optimized resource management, thereby reducing 
carbon emissions from the outset. Secondly, the 
coefficient for the interaction between land quality 
and the squared term of agglomeration is positive and 

Table 7. Heterogeneity test: High and low levels of industrial 
agglomeration.

Table 8. Influence mechanism test.

(1) (2)

Variable Low industrial 
clustering

High industrial 
clustering

LQ -0.992 0.709**

(1.000) (0.291)

LQ2 0.774 -0.080*

(0.588) (0.048)

Control YES YES

Province 
FE YES YES

Year FE YES YES

_cons 1.601*** 2.930***

(0.548) (0.744)

N 165 165

R-Squared 0.273 0.337

F 6.369 5.722

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, 
*** p < 0.01

(1) (2) (3)

VARIABLE CE DC CE

LQ 0.687*** -0.155*** 0.626***

(0.164) (0.047) (0.158)

LQ2 -0.097*** 0.018* -0.090***

(0.028) (0.009) (0.027)

DC -0.397*

(0.204)

Control YES YES YES

Province FE YES YES YES

Year FE YES YES YES

_cons 1.542*** 0.414*** 1.707***

(0.400) (0.091) (0.405)

N 330 330 330

R-Squared 0.280 0.166 0.286

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, 
*** p < 0.01
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significant at the 1% level. This suggests that at higher 
stages of agglomeration, enhanced land quality can 
slow down the decrease in carbon emissions, possibly 
because high-quality land allows for wider application 
of positive environmental technologies and sustainable 
practices within the agglomeration effect, thus 
controlling and reducing carbon emissions effectively 
in later stages of agglomeration. These findings lend 
support to hypothesis H3.

The results underscore that land quality not only 
alters the overall impact of agricultural industry 
agglomeration on carbon emissions but also adjusts 
the dynamic path of this impact as the degree of 
agglomeration changes. Therefore, improving land 
quality, particularly through effective land management 
and continuous improvement of its productive 
capacity, can be considered a policy tool to optimize 
the environmental benefits of agricultural industry 
agglomeration and achieve sustainable agricultural 
production.

Sensibility Analysis

Replace the Explanatory Variable

Considering the potential lag effect of agricultural 
industry agglomeration on carbon emissions, this study 
conducts regression analyses with one-period and two-
period lags for agglomeration and its squared term to 
ensure accuracy in the test results. In the data in columns 
(1) and (2) of Table 10, the correlation coefficient of the 
first-order lagged term is 0.667 and that of its squared 
term is -0.092, which both show significant effects. 
The lagged term positively affects the results, while 
the squared term negatively affects them. The second-
order lag term with a coefficient of 0.639 and its squared 
term with a coefficient of -0.090 also show significant 
positive and negative effects, respectively. This confirms 
Hypothesis 1.

Add Control Variables

Additional control variables are introduced to 
mitigate bias from omitted variables: by incorporating 
land productivity (Lp) as a new control variable, The 
findings from column (3) of Table 10 indicate that the 
coefficient for the primary term of agricultural industry 
agglomeration is significantly positive at 0.636, and the 
coefficient for the squared term is significantly negative 
at -0.092, further confirming the robustness of the 
baseline regression results.

Exclusion of Specific Areas

In order to accurately assess the impact of agro-
industrial agglomeration on carbon emissions, four 
cities with special administrative divisions, namely 
Beijing, Tianjin, Shanghai and Chongqing, are excluded 
from this study. The data in column (4) of Table 10 show 
that the linear term coefficient of agricultural industry 
density is 0.731, a significant positive correlation, while 
the squared term coefficient is -0.101, a significant 
negative correlation, which further confirms our basic 
conclusion.

Removing Interference from Extreme Values

The study also addresses the influence of outliers 
by truncating 1% of the tail from all variables in the 
baseline regression. After truncation, the analysis 
results, as shown in column (5) of Table 10, reveal a 
significant positive coefficient for the primary term at 
0.600 and a negative coefficient for the squared term at 
-0.071, thereby further validating the robustness of the 
baseline regression.

Overall, these robustness checks consistently support 
the conclusion of an inverted U-shaped relationship 
between agricultural industry agglomeration and carbon 
emissions.

Table 9. Moderating effects estimation.

(1) (2)

Variable CE CE

LQ 0.687*** 1.627***

(0.164) (0.323)

LQ2 -0.097*** -0.446***

(0.028) (0.124)

Land 0.477*

(0.288)

LQ*Land -2.230***

(0.738)

LQ²*Land 0.823***

(0.274)

Control YES YES

Province FE YES YES

Year FE YES YES

_cons 1.542*** 1.443***

(0.400) (0.445)

N 330 330

R-squared 0.280 0.330

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, 
*** p < 0.01
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Endogeneity Test

Endogeneity issues primarily arise from three areas: 
omitted variable bias, measurement error in data, and 
reverse causality. To mitigate the impact of omitted 
variable bias, this study incorporates a comprehensive 
set of factors influencing agricultural carbon emissions, 
thereby addressing potential endogeneity concerns to 
an extent. However, to counteract endogeneity arising 
from other sources, an instrumental variable (IV) 
approach is employed. The IV chosen is the lagged term 
of agricultural industry agglomeration and its squared 
term, with the Two-Stage Least Squares (2SLS) method 
applied for model validation. The IV tests indicate 
significant positive correlations between agricultural 
industry agglomeration and its squared term with their 
instruments at the 1% level. The second-stage regression 
yields a Kleibergen-Paap rk LM statistic of 55.951 
(P-value = 0.000) and a Cragg-Donald Wald F statistic 
of 205.553, well above the threshold of 10, confirming 

the IV's validity and the model's identifiability. The 
second-stage IV regression results demonstrate a 
significant positive coefficient for agricultural industry 
agglomeration and a significant negative coefficient for 
its squared term at the 1% level, reaffirming a U-shaped 
impact on agricultural carbon emissions. This evidence 
supports the existence of a U-curve linking agricultural 
industry agglomeration to carbon emissions, even after 
accounting for endogeneity.

Considering the inertia of changes in agricultural 
carbon emissions, namely that the historical level 
of development may affect the current effect, a 
dynamic panel model incorporating the lagged term 
of agricultural carbon emissions is developed based 
on Equation (1). This addition aims to alleviate the 
impact of potential omitted variables and reduce model 
specification errors. The endogeneity concern related to 
the lagged term is addressed using the System GMM 
approach. The non-existence of autocorrelation as 
proven by AR(1) and AR(2) tests and the validity of all 

(1) (2) (3) (4) (5)

VARIABLE CE CE CE CE CE

L.LQ 0.667***

(0.182)

L.LQ2 -0.092***

(0.032)

L2.LQ 0.639***

(0.191)

L2.LQ2 -0.090**

(0.035)

LQ 0.636*** 0.731*** 0.600***

(0.165) (0.196) (0.166)

LQ2 -0.092*** -0.101*** -0.071**

(0.029) (0.032) (0.028)

Lp 0.024*

(0.012)

Control YES YES YES YES YES

Province FE YES YES YES YES YES

Year FE YES YES YES YES YES

_cons 1.717*** 2.037*** 1.513*** 1.717*** 1.721***

(0.409) (0.405) (0.410) (0.571) (0.424)

N 300 270 330 286 330

R-squared 0.259 0.231 0.286 0.317 0.273

F 7.601 5.741 9.509 11.610 10.754

Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Table 10. Robustness test results.
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instruments as confirmed by the Hansen test establish the 
appropriateness of the model and analytical approach. 
The relationship between the effects of agricultural-
industrial agglomeration and carbon emissions is 
consistent with the original regression results, indicating 
that the effect of endogeneity is small, which enhances 
the reliability of the model. The endogeneity test results 
are shown in Table 11.

Conclusions

This study explores the dynamic impact of 
agricultural-industrial agglomeration on agricultural 
carbon emissions through the panel data of 30 provinces 
in China from 2011 to 2021. The results of the study are 
summarized as follows: (1) The impact of agricultural-
industrial agglomeration on agricultural carbon 
emissions shows a significant inverted U-shape rather 
than a linear pattern, and the impact is more obvious in 
the central-western and northern regions. The analysis 
of food distribution shows that the inverted U-shaped 
influence is significant in the main production and 
marketing areas, and the inverted U-shaped pattern is 

significant in the areas with balanced production and 
marketing. Under the high and low levels of industrial 
agglomeration, the agglomeration of high agglomeration 
areas also shows a significant inverted U-shaped 
relationship. (2) Agricultural-industrial agglomeration 
plays a role in reducing agricultural carbon emissions 
by influencing the digital development of rural areas. 
(3) The found substitution effects suggest that better 
land quality helps to mitigate the growth of agricultural 
carbon emissions. (4) Various robustness tests strengthen 
the reliability of these findings.

Based on the above conclusions, this study makes 
the following recommendations. On the one hand, the 
government should set up a special fund to support 
scientific research projects related to low-carbon 
agriculture, especially in nitrogen fertilizer management, 
soil carbon sequestration, and water-saving irrigation 
technology. By introducing international advanced 
technologies and experiences, agricultural productivity 
can be effectively improved and carbon emissions 
per unit of output can be reduced, thus promoting the 
green transformation and sustainable development of 
agriculture. On the other hand, the government should 
promote agricultural informatization and establish a 

Firststage Secondstage SYS-GMM
Variable LQ LQ² CE CE

L.LQ 0.839***

(0.051)
L.LQ2 0.939***

(0.051)
L.CE 1.114***

(0.073)
LQ 0.872*** 1.069*

(0.220) (0.554)
LQ2 -0.115*** -0.150*

(0.035) (0.088)
Cragg-Donald Wald F statistic 205.553

Kleibergen-Paap rk Wald F statistic 139.255
Kleibergen-Paap rk LM statistic 55.951***

AR(1) 0.024
AR(2) 0.536
Hansen 0.856
Control YES YES YES YES

Province FE YES YES YES YES
Year FE YES YES YES YES
_cons 0.246 -0.165 -2.245*** -2.607***

(0.172) (0.621) (0.670) (0.836)
N 300 300 300 300

R-squared 0.788 0.826 0.994 /
Note: Standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Table 11. Endogeneity test.
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nationwide agricultural big data platform. At the same 
time, it should help farmers purchase and use digital 
agricultural equipment, and conduct regular training 
on digital agriculture to improve their knowledge and 
application of new technologies. Optimizing resource 
allocation and improving management accuracy through 
digital technology will reduce agricultural carbon 
emissions. This is similar to the research viewpoint of 
some scholars [47]. Finally, the key is to fundamentally 
improve land productivity. The government should 
promote conservation tillage and crop rotation systems 
to enhance soil fertility while supporting the research, 
development, and application of organic farming and 
bio-fertilizers to reduce reliance on chemical fertilizers. 
Additionally, demonstration farms should be set up to 
promote efficient and eco-friendly agricultural models to 
increase agricultural production and income at a lower 
environmental cost. 
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