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Abstract 

This paper addresses temporal characteristics, decoupling relationships, and performance evaluation 
concerning agricultural carbon emissions in China, providing a basis for achieving the “dual carbon” 
goals and strengthening the construction of an agricultural powerhouse. A comprehensive index 
system for agricultural carbon emissions and their performance evaluation is constructed. Based on 
the systematic measurement index of provincial agricultural carbon emissions in China from 2007 
to 2020, the Tapio model is employed to investigate the decoupling relationship between agricultural 
carbon emissions and economic growth. Additionally, a super-efficiency SBM model is constructed 
to report the performance and decomposition efficiency of agricultural carbon emissions in China.  
The results indicate that, from 2007 to 2020, the overall trend of agricultural carbon emissions in China 
follows an inverted “U-shaped” curve, with significant regional disparities and stable grade distribution.  
The decoupling relationship between agricultural carbon emissions and agricultural economic 
development in China has shifted from weak decoupling to strong decoupling, divided into two 
stages: a steady period (2007-2016) and a breakthrough period (2017-2020). The performance  
of agricultural carbon emissions shows a trend of “rapid increase-slow decrease-steady improvement,” 
with agricultural production technology change (TC) contributing more prominently than technical 
efficiency change (EC). It is concluded that since 2017, China’s agricultural carbon emissions have 
shown an overall downward trend, and agricultural economic development has gradually reduced  
its reliance on agricultural carbon emissions.
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Introduction

In recent years, China’s agricultural economy 
has rapidly advanced, continuously accelerating its 
transition from an agricultural giant to an agricultural 
powerhouse [1]. In 2021, the agricultural sector and 
its related output reached 1.84×1013 yuan, contributing 
16.05% to the GDP. The deepening implementation of 
China’s rural revitalization strategy, coupled with the 
comprehensive advancement of the construction of an 
agricultural powerhouse, has yielded significant strides 
in low-carbon development within agriculture and rural 
areas. Central to this strategy is the promotion of green, 
low-carbon, and circular development, which fosters 
the transition of the agricultural industry towards high-
quality development [2-4]. Through the promotion of 
low-carbon technologies and policy incentives, there 
has been a notable reduction in agricultural carbon 
emissions. Presently, global climate change stands as 
a formidable challenge confronting nations worldwide, 
engendering a consensus within the international 
community to curtail greenhouse gas emissions and 
mitigate climate change effects [5, 6]. As one of the 
world’s largest greenhouse gas emitters, China shoulders 
significant responsibilities in combating climate change. 
Consequently, global emission reduction targets exert 
a profound influence on China’s agricultural carbon 
emissions, impelling the nation to adopt more proactive 
measures in this regard. Agricultural carbon emissions, 
as a significant source of greenhouse gases, have become 
a focal point for exploration, necessitating a pathway 
tailored to China’s national conditions and realities 
to achieve low carbon emissions in agriculture [7, 8]. 
Agricultural carbon emissions refer to the greenhouse 
gases emitted during agricultural production, including 
carbon dioxide, methane, and nitrous oxide, accounting 
for 20% of the global greenhouse gas emissions [9]. In 
recent years, China has actively implemented measures 
to combat climate change, notably achieving remarkable 
results in advancing the “dual carbon” voluntary 
contributions while promoting the green transformation 
of the social economy [10, 11]. Nevertheless, as 
agricultural production expands, it inevitably leads to 
increased agricultural energy intensity, enhanced public 
investment in agriculture, and structural changes in 
the agricultural industry, posing significant challenges 
to agricultural carbon emissions [12]. On May 7, 2022, 
the Ministry of Agriculture and Rural Affairs, in 
conjunction with the National Development and Reform 
Commission, promulgated the “Implementation Plan 
for Agricultural and Rural Carbon Emission Reduction 
and Sequestration.” This initiative endeavors to advance 
carbon emission mitigation and sequestration within 
agricultural and rural domains through a comprehensive 
array of measures. Specifically, it delineates targets 
aimed at attaining the pinnacle of carbon emissions 
by 2030 and effecting carbon neutrality by 2060.  
By emphasizing the pivotal role of agricultural and 
rural carbon emission abatement and sequestration, 

the plan underscores their significance as fundamental 
avenues for combating climate change and fostering the 
establishment of an ecological civilization.

Foreign scholars have pioneered the 
conceptualization and calculation of agricultural carbon 
emissions. Early initiatives, such as those by West et 
al., constructed indicators for measuring agricultural 
carbon emissions based on inputs of agricultural 
materials and irrigation cultivation [13]. With China’s 
active participation in global climate governance, 
domestic scholars have made significant progress in the 
study of agricultural carbon emissions in recent years, 
revealing an increasing trend and significant regional 
disparities in China’s agricultural carbon emissions [14]. 
Our study focuses on the 31 provinces, municipalities, 
and autonomous regions in China, highlighting the 
current status of green agriculture development 
against the backdrop of the “dual carbon” initiative. 
It constructs an indicator system for agricultural 
carbon emissions from five dimensions: agricultural 
materials, agricultural irrigation, agricultural planting, 
livestock farming, and agricultural energy consumption. 
Furthermore, it analyzes the performance evaluation 
system of agricultural carbon emissions from three 
dimensions: input, expected output, and non-expected 
output. Key data elements, such as agricultural carbon 
emissions, population density index, decoupling 
elasticity, agricultural carbon emission performance, 
and decomposition efficiency, are accounted for.  
The paper explores the total volume, decoupling effects, 
and performance characteristics of China’s overall 
and regional agricultural carbon emissions from 2007 
to 2020, aiming to evaluate their evolution trends, 
their relationship with benchmarking and economic 
growth, and the sources of decomposition efficiency of 
agricultural carbon emissions. It strives to contribute to 
the promotion of coordinated regional development of 
China’s agricultural economy, the achievement of green, 
energy-saving, and emission-reduction goals, and the 
advancement of high-quality agricultural development.

Experimental Procedures

Methods

Measurement Methods for Agricultural 
Carbon Emissions

This study focuses on the direct carbon emissions 
generated during the process of agricultural production 
and consumption. We establish an index system and, 
considering the availability of data, calculate the total 
inter-provincial agricultural carbon emissions in China 
from 2007 to 2020 in order to maintain the relative 
completeness of the sample data (Table 1).

The specific categories include:
1. Carbon emissions from agricultural materials: 

These emissions arise from the production and use  
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of fertilizers, pesticides, agricultural films, and 
machinery.

2. Carbon source from water resource utilization 
in agricultural irrigation: This constitutes a significant 
carbon source.

3. Emissions of substances such as nitrous oxide 
resulting from rice planting and replanting within the 
agricultural planting category.

4. Examination of methane emissions from the three 
main livestock (pigs, sheep, and cattle) in livestock 
farming: We adjust the number of livestock based on 
the end-of-year inventory and slaughter numbers of 
pigs, sheep, and cattle. For livestock with a slaughter 
rate (slaughter number/end-of-year inventory) greater 
than 1, the feeding amount is estimated by dividing 
the slaughter number by 365 and then multiplying it by 
their production cycle. For livestock with a slaughter 
rate lower than 1, the end-of-year inventory is used to 
represent the population.

5. Agricultural energy consumption: This primarily 
includes coal, gasoline, diesel, and electricity. Other 
types of energy have minimal impact on carbon 
emissions and are therefore not included in the 
calculation of total carbon emissions in this study.

The specific calculation Equations are as follows:

	

where C is the total agricultural carbon emissions, ci 
is each type of specific carbon source, θi is the carbon 
emission coefficient, and n is the number of carbon 
sources.

Methodology for Measuring the Decoupling 
Effect of Agricultural Carbon Emissions

The theory of decoupling, proposed by the 
Organization for Economic Co-operation and 
Development (OECD) in 2002, has been extensively 
employed in the examination of the relationship between 
economic growth and the environment [16]. In the 
current realm of related research, decoupling assessment 
indicators primarily fall into two categories.

(1) OECD decoupling factor model. Decoupling 
occurs when the rate of economic growth diverges 
from the rate of environmental degradation or when 
their relationship is disrupted. The Organization  
for Economic Co-operation and Development  
(OECD) distinguishes between absolute decoupling 
and relative decoupling. Relative decoupling refers  
to a situation where the growth rate of energy 
consumption is positive but lower than the rate 
of economic growth. Absolute decoupling, on the 
other hand, occurs when the growth rate of energy 
consumption is zero or negative while economic growth 
persists, indicating a transition towards a more efficient 
economic growth model. The Equation for calculating 
decoupling is as follows:

	

Where R is the decoupling index, EP is the value of 
the environmental load indicator, DF is the economic 
driving force indicator, S represents the end year, and T 
represents the beginning year.

Table 1. Agricultural carbon emission index system.

Category Carbon source Emission coefficient Source of emission coefficient

Agricultural material

Chemical fertilizer (kg CE·kg-1) 0.896 Oak Ridge National Laboratory

Pesticide (kg CE·kg-1) 4.934 Oak Ridge National Laboratory

Agricultural film (kg CE·kg-1) 5.180 Nanjing Agricultural University

Agricultural machinery(kW·h) 0.180 West et al. [13]

Agricultural irrigation Irritate (kg CE·hm-2) 266.480 West et al. [13]

Agricultural cultivation
Rice planting (g CE·m-2·d-1) 3.136 Wang et al. [15]

Multiple cropping (kg CE·hm-2) 312.600 China Agricultural University

Animal husbandry

Per pig (kg CE·a-1) 34.091 IPCC

Per cattle (kg CE·a-1) 415.910 IPCC

Per sheep (kg CE·a-1) 35.182 IPCC

Agricultural energy 
consumption

Coal (kg CE·kg-1) 0.757 IPCC

Gasoline (kg CE·kg-1) 0.552 IPCC

Diesel oil (kg CE·kg-1) 0.593 IPCC

Electricity (kg CE·kg-1) 1.773 IPCC
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Using the OECD decoupling model, the following 
decoupling model is constructed using data from  
the reporting period and the base period:

	

Where Dn indicates the decoupling index in the nth 
year, Cn indicates the agricultural carbon emission 
index in the nth year, and AGRIn indicates the growth 
index of agricultural gross output value in the nth year.  
The significance of the decoupling index can be 
understood as follows: when D≥1, it means that the growth 
rate of agricultural carbon emission is synchronized with 
the growth rate of agricultural economy, or faster than the 
economic growth rate, at this time, it is said that it is not 
decoupled, or become absolutely linked; when 0<D<1, 
it means that the growth rate of agricultural carbon 
emission is slower than the growth rate of agricultural 
economy, and at this time, it is said to be relatively 
decoupled; when D = 0, it means that the growth rate 
of agricultural carbon emission is unchanged, but it can 
still maintain the growth rate of agricultural economy, 
that is, in the case of sustained agricultural economic 
growth, agricultural carbon emissions do not increase. 
In order to eliminate the influence of different units and 
orders of magnitude of agricultural gross output value 
and agricultural carbon emission, this paper adopts the 
dimensionless quantification of agricultural gross output 
value and agricultural carbon emission data to better 
analyze the decoupling relationship between China’s 
agricultural carbon emission and agricultural economic 
growth. Taking 2007 as the base period, the calculation 
Equation is as follows:

	

(2) Tapio decoupling model. In response to the 
ongoing evolution of the OECD decoupling model and 
the challenges it faces regarding base period selection, 
the Tapio decoupling model has emerged as the primary 
approach in current research on economic decoupling 

relationships. The Tapio model, alternatively referred to 
as the Tapio decoupling model or the Tapio decoupling 
index, serves as a pivotal analytical instrument designed 
to examine the intricate interplay between economic 
advancement and the concomitant pressures on resources 
and the environment. Originally formulated by Finnish 
economist Tapio in 2005, this model primarily facilitates 
investigations into the decoupling dynamics between 
economic expansion and environmental stressors, 
such as pollution, energy consumption, or material 
utilization. Its principal objective lies in determining 
whether a discernible dissociation, or decoupling, 
exists in the growth trajectories of these two domains. 
By introducing the concept of “elasticity,” this model 
facilitates the dynamic manifestation of decoupling 
relationships between variables. The term “decoupling 
elasticity” reflects the ratio of the impact of economic 
development changes on changes in carbon dioxide 
emissions, illustrating the sensitivity of carbon dioxide 
emission changes to changes in economic development 
conditions in our study. The Equation for calculation is 
as follows:

	

Where β is the decoupling index, EP is the 
environmental load indicator value, and DF is the 
economic driver indicator. According to the differences 
in the measured elasticity values, they can be subdivided 
into weak decoupling, strong decoupling, weak negative 
decoupling, strong negative decoupling, expansion 
negative decoupling, expansion connection, recession 
decoupling, and recession connection (Table 2).

Compared with the OECD decoupling model, the 
Tapio model is more reasonable for the combination 
of environmental loads and economic drivers, and can 
reflect the changes in the sensitivity of carbon emissions 
to economic growth [17], the following decoupling 
model is constructed:

	

Table 2. 8 levels of elasticity in Tapio.

Category State EP DF e

Negative decoupling

Expansion negative decoupling >0 >0 e>1.2

Strong negative decoupling >0 <0 E<0

Weak negative decoupling <0 <0 0≤e<0.8

Decoupling

Weak decoupling >0 >0 0≤e<0.8

 Strong decoupling <0 >0 e<0

 Recessive decoupling <0 <0 e>1.2

Coupling
Expansion coupling >0 >0 0.8≤e≤1.2

Recessive coupling <0 <0 0.8≤e≤1.2
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for non-desirable outputs. The model can be used to 
assess the efficiency of decision-making units. The 
main advantages of this model are the ability to deal 
with imperfect data and uncertainty, as well as the 
identification of room for improvement through the 
introduction of slack variables. Our study uses this model 
to construct a directional distance function from year t 
to year t+1 to measure agricultural carbon performance 
(AMCPI). Here, K, L, Y, and C represent capital input, 
labor input, desirable output, and non-desirable output, 
respectively. The measurement Equation is as follows:

According to the decomposition results above, 
Agricultural Carbon Emission Performance (AMCPI) 
comprises changes in agricultural technology efficiency 
(EC) and changes in agricultural production technology 
(TC). The former refers to the ability to coordinate and 
integrate agricultural production resources to maximize 
economic utility at a certain level of technology. EC>1 
indicates efficiency improvement, while the opposite 
suggests deterioration. The latter is the increase 
in output and profit brought about by advances in 
agricultural production technology. TC>1 indicates 
excellent performance of agricultural technology, 
whereas the opposite suggests poor performance.

Data Resources

Our study focuses on the spatiotemporal evolution, 
decoupling effects, and performance evaluation 

Where e is the decoupling elasticity, C is agricultural 
carbon emissions, and AGRI is the gross agricultural 
product.

Measurement Methods for Assessing Carbon 
Emission Performance in Agriculture

Agricultural carbon emission efficiency is a crucial 
indicator for measuring agricultural production 
efficiency and coordination. In this study, agricultural 
carbon emissions are considered as undesired outputs, 
and the global DEA (Data Envelopment Analysis) 
method is employed to evaluate the total factor 
productivity index. When constructing the evaluation 
system for agricultural carbon emission efficiency, both 
input and output processes of agricultural production 
and consumption are considered (Table 3).

(1) Input Indicators: These primarily include labor, 
capital, and land factors. The number of employees 
in the primary industry, the amount of fixed asset 
investment in the primary industry, and the total 
sown area of crops are used to measure these factors. 
Additionally, other elements, such as pesticide usage, 
plastic film usage, and the total power of agricultural 
machinery, are incorporated.

(2) Expected Output Indicators: Agricultural output 
is quantified using the total agricultural output value. 
Furthermore, the agricultural output value is adjusted 
to 2007 prices using the Consumer Price Index (CPI) to 
maintain comparability.

(3) Undesired Output Indicators: Agricultural 
carbon emissions are utilized to assess the undesired 
consumption within agricultural production inputs.

Our study draws upon the methodology proposed 
by Shestalova et al. [18] for measuring the total 
factor productivity index through Data Envelopment 
Analysis (DEA), employing the Malmquist-Luenberger 
(ML) productivity index. The ML index serves as a 
benchmark, with values exceeding 1 indicating an 
increase in agricultural carbon emission efficiency, 
and values below 1 indicating a decrease. Specifically, 
utilizing the directional distance function based on the 
super-efficiency Slack-Based Measure (SBM) model 

Table 3. Agricultural carbon emission performance evaluation system.

Level 1 indicator Level 2 indicator Variable

Input

Labor element Number of employees in primary industry (×104)

Capital element Primary industry fixed asset investment (×108 yuan)

Land element Total planting area of crops (×103 hm2)

Other element

Pesticide usage (t)

Agricultural film usage (t)

Total power of agricultural machinery (×104 kW·h)

Desirable output Gross value of agricultural output (×108 yuan)

Undesirable output Agricultural carbon emission (×104 t)
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of agricultural carbon emissions at the provincial 
level in China from 2007 to 2020, examining the 
regional characteristics and disparities among 31 
provinces, municipalities, and autonomous regions 
in China. Agricultural carbon emission data are 
derived from various sources, including the China 
Statistical Yearbook, China Agricultural Yearbook, 
China Environmental Statistical Yearbook, China 
Energy Statistical Yearbook, etc. Additionally, we 
extensively consulted definitions of carbon emission 
coefficients from institutions such as Oak Ridge 
National Laboratory in the United States, the Institute 
of Agricultural Resources and Environment of Nanjing 
Agricultural University, and the Intergovernmental 
Panel on Climate Change (IPCC). The basic data for the 
performance evaluation of agricultural carbon emission 
are primarily sourced from official websites such as the 
Ministry of Agriculture and Rural Affairs of China, the 
State Forestry Administration, the Ministry of Water 
Resources, the China Meteorological Administration, 
and the General Administration of Customs.

Results

Changes in China’s Total Agricultural 
Carbon Emissions

The calculation results of agricultural carbon 
emissions in 31 provinces, municipalities, and 
autonomous regions of China from 2007 to 2020 were 
conducted in this study, and the change curve is depicted 
in Fig. 1. Overall, the total agricultural carbon emissions 
in China exhibited a “reverse U-shaped” curve, 

consistent with the Environmental Kuznets Curve under 
the context of a low-carbon economy [19]. The turning 
point from an increasing to a decreasing trend in carbon 
emissions occurred in 2017. Prior to 2017, the growth 
rate of agricultural carbon emissions had shown a trend 
of slowing down, and thereafter, a decline in carbon 
emissions was achieved, with the total carbon emissions 
from agricultural products returning to the level before 
2013 by 2020.

Decoupling Analysis

Based on two decoupling evaluation indicators, 
this study calculates the decoupling types between 
agricultural carbon emissions and agricultural economic 
development in China from 2007 to 2020. The results 
of the OECD decoupling model are shown in Table 4, 
while the results of the Tapio decoupling model are 
presented in Table 5. A longitudinal trend chart of the 
decoupling ratio between agricultural carbon emissions 
and agricultural economic growth in China, with 2007 
as the base year, is depicted in Fig. 2. It can be observed 
that from 2007 to 2016, the decoupling ratio exhibited 
 a declining trend. In 2017, there was a brief growth  
in the decoupling ratio, with the value approaching  
the level of 2015, followed by a stable decline  
thereafter.

According to the results calculated by the Tapio 
decoupling evaluation indicators in Table 6, it is evident 
that during the period from 2007 to 2020, the decoupling 
types between changes in agricultural carbon emissions 
and agricultural economic development in China are 
primarily weak decoupling and strong decoupling. 
Specifically, divided by 2017 as a dividing line, two 

Fig. 1. Total agricultural carbon emissions in China, 2007-2020.
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phases can be identified. In the first phase (2007-2016), 
both agricultural carbon emissions and agricultural 
economy maintained an upward trend. After reaching its 
first peak in 2009, the growth rate of agricultural carbon 
emissions gradually declined, dropping to a low point of 
0.003 in 2016. Although the growth rate of agricultural 
economy also showed a similarly gentle decline during 
this period, it still far exceeded the growth rate of 
carbon emissions, demonstrating the characteristic trend 
of weak decoupling of agricultural carbon emissions. 

In the second phase (2017-2020), there was a strong 
negative decoupling feature in China’s agricultural 
carbon emissions in 2017, meaning that while the growth 
rate of agricultural carbon emissions was positive, the 
growth rate of agricultural economy was negative. Over 
the following three years, agricultural carbon emissions 
continued to decline annually, while agricultural 
economy grew steadily, with an accelerating growth rate 
each year, indicating the characteristic trend of strong 
decoupling of agricultural carbon emissions.

Table 4. The decoupling relationship between agricultural carbon emission and agricultural economic development in China from 2007 
to 2020: based on OECD decoupling evaluation index.

Year Agricultural carbon 
emission index

Total Agricultural output value 
(×108 yuan)

Agricultural economic 
growth index Decoupling index

2007 1.000 24658.091 1.000 1.000

2008 1.014 28044.152 1.137 0.891

2009 1.051 30611.073 1.241 0.846

2010 1.073 36941.111 1.498 0.716

2011 1.092 41988.638 1.703 0.642

2012 1.111 46940.458 1.904 0.584

2013 1.129 51497.369 2.088 0.541

2014 1.147 54771.600 2.221 0.516

2015 1.157 57635.797 2.337 0.495

2016 1.160 59287.782 2.404 0.482

2017 1.168 58059.758 2.355 0.496

2018 1.147 61452.595 2.492 0.460

2019 1.122 66066.451 2.679 0.419

2020 1.117 71748.100 2.910 0.384

Fig. 2. Run chart of the decoupling ratio between China’s agricultural carbon emissions and agricultural economic growth.
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Performance Assessment of 
Agricultural Carbon Emissions

Table 6 illustrates the overall performance of 
agricultural carbon emissions efficiency in China from 
2007 to 2020. It demonstrates a generally increasing 
trend with fluctuations, with only the AMCPI value 
being less than 1 in 2016. The assessment reveals that 
the agricultural carbon emissions efficiency peaked 
in 2009, with a value of 1.176, and hit its lowest point 
in 2016, standing at only 0.997. Further analysis of 
the decomposition results indicates that technological 
change (TC) played a crucial role in improving China’s 
agricultural carbon emissions efficiency from 2007 to 
2020. It experienced subpar performance in promoting 
agricultural technological progress only in 2008 and 
2016, while witnessing a growth rate of technological 
progress of 20.604% in 2017, subsequently aiding in 
the gradual recovery of China’s agricultural carbon 
emissions efficiency from its trough. The contribution 
of technological efficiency change (EC), however, was 
significant but relatively weaker. In 2013 and 2014, there 
were consecutive years of weakening technological 
efficiency effects, with the EC value plummeting to 
0.933 in 2014. Although there was some alleviation 
afterward, it remained unstable.

It is noteworthy that the rate of change in China’s 
agricultural carbon emissions efficiency has been 
continuously declining since 2009, with only slight 
mitigation in 2015, until it reached its lowest point 
in 14 years in 2016, indicating a significant decline in 
assessment efficiency. A deeper examination of this 
phenomenon reveals several factors: Firstly, frequent 

adjustments to agricultural product structure across 
regions, such as the implementation of policies like 
“rice to beans,” “dry to wet,” and “grain to feed,” have 
led to contradictions in grain supply and demand. 
According to publicly available data from the National 
Bureau of Statistics, China’s grain output decreased 
year-on-year for the first time in 13 years in 2016. 
Secondly, while agricultural scale continues to expand, 
rising agricultural input prices, convoluted paths to 

Table 5. The decoupling relationship between agricultural carbon emission and economic development in China from 2007 to 2020: 
based on Tapio decoupling evaluation index.

Year ΔC/C ΔAGRI/AGRI e Carbon emission characteristic

2007 0.013 0.133 0.098 Weak decoupling

2008 0.014 0.121 0.112 Weak decoupling

2009 0.035 0.084 0.421 Weak decoupling

2010 0.020 0.171 0.119 Weak decoupling

2011 0.018 0.120 0.150 Weak decoupling

2012 0.017 0.105 0.158 Weak decoupling

2013 0.016 0.088 0.180 Weak decoupling

2014 0.016 0.060 0.262 Weak decoupling

2015 0.009 0.050 0.175 Weak decoupling

2016 0.003 0.028 0.091 Weak decoupling

2017 0.007 -0.021 -0.333 Expansion negative decoupling 

2018 -0.019 0.055 -0.341 Strong decoupling

2019 -0.022 0.070 -0.311 Strong decoupling

2020 -0.005 0.079 -0.064 Strong decoupling

Table 6. Performance evaluation and decomposition of China’s 
agricultural carbon emissions in 2007-2020.

Year AMCPI EC TC

2007-2008 1.017 0.922 1.068

2008-2009 1.006 1.044 0.995

2009-2010 1.176 1.052 1.185

2010-2011 1.117 1.040 1.125

2011-2012 1.027 0.999 1.120

2012-2013 1.027 1.003 1.103

2013-2014 1.011 0.990 1.072

2014-2015 1.008 0.933 1.093

2015-2016 1.020 1.094 1.012

2016-2017 0.997 1.087 0.927

2017-2018 1.035 1.029 1.118

2018-2019 1.136 1.115 1.349

2019-2020 1.045 1.011 1.073
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agricultural mechanization, and low enthusiasm for 
rural productivity have increased production costs, 
limiting income growth and quality improvement. 
Thirdly, frequent natural disasters in agriculture, such 
as severe flooding in the north in 2012 and frequent 
extreme convective weather in 2016, have exacerbated 
the situation.

Discussion

Most of the current unified measurements of China’s 
agricultural carbon emissions focus on planting or 
livestock farming respectively, while few analyses of 
carbon emissions from agriculture as a whole have been 
carried out. Our study on the spatiotemporal evolution 
characteristics of agricultural carbon emissions in 
China revealed an overall “inverted U-shaped” trend 
in total agricultural carbon emissions from 2007 to 
2020. Starting from 2017, there was a downward trend 
in the “inverted U-shaped” curve, with total emissions 
in 2020 dropping to levels seen before 2013, indicating 
certain positive effects of emission reduction and 
carbon reduction efforts in agriculture. It is noteworthy 
that at the end of 2016, China formally implemented 
environmental protection taxes, marking a transition 
from “fees” to “taxes”. This tax imposition played  
a proactive role in pollution control, emission reduction, 
and ecological environment protection. The intensity 
of environmental taxation was in line with the overall 
carbon emissions, exhibiting an “inverted U-shaped” 
curve. With strengthened tax administration and refined 
environmental taxation, the pressure to reduce carbon 
emissions has driven agricultural product merchants 
and enterprises towards green transformation, actively 
reducing pollution emissions and pollution control [20-
22]. While the spatial pattern of agricultural carbon 
emissions among provinces remains relatively stable, 
the path and difficulty of achieving “dual carbon” vary 
significantly due to differences in industrial foundations 
and resource endowments across regions [23-26]. Over 
the years, China’s agricultural production has developed 
distinct regional agricultural development models. 
Therefore, when optimizing the agricultural production 
structure, it is essential to make reasonable plans based 
on local economic conditions, resource endowments, 
climate conditions, and cultural traditions [27]. It is 
necessary to fully unleash the vitality of innovative 
elements such as knowledge, technology, talents, and 
information in the agricultural field within and between 
regions to achieve complementary advantages and win-
win cooperation. The total amount and performance level 
of agricultural carbon emissions may generate spillover 
effects between regions. Therefore, adhering solely 
to the concept of “who pollutes, who controls” should 
be avoided to prevent the vicious cycle of “pollution 
in one place, transfer to another”. Moreover, reducing 
agricultural public investment and regional assistance 
due to limited agricultural carbon reduction effects in 

specific areas should also be avoided. Provinces and 
regional blocs should share low-carbon technologies, 
leverage policy demonstration effects between adjacent 
regions, and foster a virtuous interactive community 
of technological exchange within regions, ultimately 
radiating to all parts of the country. 

Currently, most scholars adopt two models, the 
OECD model and the Tapio model, to select decoupling 
indicators [18, 28]. Among them, more scholars use 
the Tapio model, which incorporates the concept of 
elasticity, to study the decoupling types between China’s 
agricultural carbon emissions and agricultural economic 
development. Our study calculates the decoupling types 
of China’s agricultural carbon emissions and agricultural 
economic growth based on both models. According to 
the decoupling evaluation indicators of the OECD model, 
the decoupling ratio trend from 2007 to 2020 shows a 
downward trend overall. It fluctuated around 0.5 from 
2014 to 2017 and further decreased to 0.396 in 2020. 
Based on the Tapio decoupling evaluation indicators, 
the decoupling type results from 2007 to 2020 show 
weak decoupling between China’s agricultural carbon 
emissions and agricultural economic growth from 
2007 to 2016, turning into strong negative decoupling 
in 2017, and reaching strong decoupling from 2018 to 
2020. In 2016, the State Council issued the “National 
Agricultural Modernization Plan (2016-2020)”, pointing 
out the significant structural imbalance between supply 
and demand in some areas of China’s agricultural 
products. In this context, China urgently needs to 
seize favorable conditions for existing agricultural 
modernization and inject new driving forces into 
agricultural transformation and upgrading. However, to 
promote green agricultural development, there may be 
a slowdown or even a decline in economic development 
speed and continuous difficulty in increasing farmers’ 
income during the initial stage of construction. This 
could lead to an increase in agricultural carbon 
emissions as agricultural practitioners increase inputs 
such as fertilizers to boost income, which aligns with the 
strong negative decoupling between agricultural carbon 
emissions and agricultural economic development in 
China in 2017. To prevent further deterioration of soil 
pollution on agricultural land in China and promote 
ecological civilization construction, the “Law of the 
People’s Republic of China on Prevention and Control of 
Soil Pollution” was enacted in 2018. This law clarifies the 
accountability system for soil pollution, filling the legal 
gap in soil pollution prevention and control in China. 
While improving China’s environmental protection legal 
system, it also contributes policy wisdom to agricultural 
carbon reduction and the achievement of strong 
decoupling between agricultural carbon emissions and 
agricultural economic development.

From 2007 to 2020, China’s agricultural carbon 
emissions performance showed a trend of “rapid rise-slow 
decline-stable improvement”. Analyzing the intrinsic 
reasons for the improvement in China’s agricultural 
carbon emissions performance and decomposition 
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changes, we find that, on the one hand, technological 
progress and efficiency improvement in agricultural 
production are key driving forces for improving China’s 
agricultural carbon emissions performance [7]. While 
factors such as increased agricultural capital, improved 
labor quality, and ecological environment improvement 
are important guarantees for improving agricultural 
carbon emissions performance, technological progress 
and efficiency improvement are the main driving 
forces for advancing rural revitalization and achieving 
agricultural modernization [29, 30]. Agricultural 
technology encompasses new categories, equipment, 
technologies, and models that promote agricultural 
development, such as scientific control of pesticide and 
fertilizer ratios, promotion of water-saving irrigation 
technology, application of unmanned aerial vehicle 
pest control systems, and construction of digital 
farm intelligent platforms, all of which play a role in 
promoting sustainable green agricultural development 
[31]. On the other hand, while developing and utilizing 
new agricultural technologies and dynamics, attention 
should also be paid to maintaining and improving 
technological efficiency, especially the changes in 
technological efficiency caused by scale efficiency [32, 
17]. China has a rapidly expanding market demand 
for agricultural products, and agricultural scientific 
and technological innovation is a long-term process. 
Accelerating the overall efficiency of agricultural 
technology to quickly catch up with the world’s advanced 
level is imminent. Guided by market demand, focusing 
on tracking agricultural foundational technologies and 
core areas, and emphasizing existing scale effects and 
technological efficiency are particularly important.

Nevertheless, our study is not devoid of limitations, 
with the most significant being its reliance on provincial 
data. This dataset may not comprehensively capture 
the local intricacies and variations in agricultural 
carbon emissions. However, we remain committed to 
delving into more granular data in forthcoming research 
endeavors. Such an approach will enable us to furnish 
a more precise analysis of the intricate relationship 
between agricultural carbon emissions and economic 
development, specifically within the context of China.

Conclusions

The spatiotemporal evolution characteristics of 
agricultural carbon emissions in China demonstrate 
an “inverted U-shaped” curve from 2007 to 2020, 
with an overall rise followed by a decline. Significant 
regional disparities are observed, while the distribution 
of emission levels remains stable. The eastern region 
exhibits the most optimal reduction in agricultural 
carbon emissions with the least regional variation. The 
central region has the highest number of provinces, with 
elevated levels of agricultural carbon emissions, leading 
to a “polarized” distribution. In the western region, 
carbon emissions are more dispersed, imposing greater 

pressure on overall emission reduction and carbon 
mitigation.

The decoupling analysis between changes in 
agricultural carbon emissions and agricultural economic 
development in China reveals a downward trend in 
the decoupling ratio, fluctuating at a low level around 
0.5 from 2014 to 2017, and declining to 0.396 in 
2020. Overall, the relationship between agricultural 
carbon emissions and agricultural economic growth 
in China has transitioned from weak decoupling to 
strong decoupling, characterized by a stable period of 
weak decoupling (2007-2017) and a transitional period 
maintaining strong decoupling (2018-2020). China’s 
agricultural economy is gradually reducing its reliance 
on agricultural carbon emissions.

The assessment of agricultural carbon emission 
performance and its decomposition results from 2007 to 
2020 depict a trend of “rapid increase, slow decrease, and 
steady improvement.” The Northwest Economic Zone 
and the Northern Coastal Economic Zone respectively 
rank highest and lowest, with agricultural production 
technology changes (TC) exhibiting a more prominent 
contribution compared to changes in technical efficiency 
(EC).
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