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The indistinguishability of identical particles has profound effects at low temperatures and/or high
density where quantum mechanical wave packets overlap appreciably. The occupation representation is
used to study the statistical mechanics and thermodynamics of ideal quantum gases satisfying Fermi-
Dirac or Bose-Einstein statistics. This notebook concentrates on formal and conceptual developments,
liberally quoting more technical results obtained in the auxiliary notebooks occupy.nb, which presents
numerical methods for relating the chemical potential to density, and fermi.nb and bose.nb, which study
the mathematical properties of special functions defined for Ferm-Dirac and Bose-Einstein systems. The
auxiliary notebooks also contain a large number of exercises.

Indistinguishability

In classical mechanics identical particles remain distinguishable because it is possible, at least in principle, to label
them according to their trajectories. Once the initial position and momentum is determined for each particle with the
infinite precision available to classical mechanics, the swarm of classical phase points moves along trajectories which also
can in principle be determined with absolute certainty. Hence, the identity of the particle at any classical phase point is
connected by deterministic relationships to any initial condition and need not ever be confused with the label attached to
another trajectory. Therefore, in classical mechanics even identical particles are distinguishable, in principle, even though
we must admit that it is virtually impossible in practice to integrate the equations of motion for a many-body system with
sufficient accuracy.

Conversely, in quantum mechanics identical particles are absolutely indistinguishable from one another. Since the
particle labels have no dynamical significance, exchanging the coordinates or labels of two identical particles can change
the wave function by no more than an overall phase factor of unit magnitude. In this chapter we analyze the sometimes
quite profound consequences of permutation symmetry for systems of identical particles, but first we would like to provide
a qualitative explanation for the similarities and differences between the classical and quantum pictures. Perhaps the most
significant difference between these pictures is found in the inherent fuzziness of quantum trajectories. Contrary to
classical ideas, it is not possible even in principle to determine both the position and momentum of a particle simulta-
neously with arbitrary precision. The precisions with which conjugate variables can be determined simultaneously are
limited by the Heisenberg uncertainty relation Ax Ap, = g , whereby precise measurements of one variable cause the
uncertainty in its conjugate variable to be quite large. Therefore, the set of classical phase points cannot be determined
with absolute certainty; nor can the evolution of the system be confined to sharp trajectories through phase space. The
trajectory for each particle is initially broadened by the uncertainty product and it becomes fuzzier and more diffuse as it
evolves, much as a wave packet would spread as it propagates through a dispersive medium. However, a quantum wave
packet spreads naturally even without a dispersive medium.
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Under some circumstances these two apparently conflicting pictures can in fact become quite similar. When the
wave packets are sufficiently compact and the density of the system is sufficiently small that different wave packets rarely
overlap, we can again distinguish particles by the trajectories followed by their wave packets. Small corrections may be
necessary for quantum effects that might occur when a pair of wave packets does overlap, but otherwise the classical
description can be quite accurate under appropriate conditions. As we argued when developing semiclassical statistical
mechanics, the applicability of the classical picture is governed by the thermal wavelength
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corresponding to the de Broglie wavelength for a particle with typical thermal momentum pp. From dimensional argu-
ments alone it is clear that the width of the wave packet is inversely proportional to the momentum of the particle and is
similar to the wavelength for the dominant component of the wave packet. The typical momentum must be proportional to
the mass and to the typical velocity near the peak of the Maxwell-Boltzmann distribution. Therefore, large mass or high
temperature produce small Az where the classical approximation becomes useful. Small mass or low temperature result in
large Ap, which increases the overlap between wave packets and requires a quantum description. Thus, the relative
importance of fundamentally quantum mechanical behavior is gauged by the quantum concentration
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which compares the volume occupied by wave packets to the volume available to each particle. Here we use g to repre-
sent the multiplicity factor for a point in phase space. This factor typically takes the values 2 s + 1 where s is the intrinsic
angular momentum, but may be larger if there are other internal degrees of freedom. The classical picture may be appropri-
ate when np < 1, but as np approaches unity nonclassical behavior is expected.

It is important to recognize that even when the classical description is useful, the quantum mechanical indistinguish-
ability of identical particles continues to have important consequences. One must still consider indistinguishability when
enumerating classical states in order to resolve the Gibbs paradox and to obtain extensive thermodynamic potentials.
Similarly, the granularity of phase space is needed to establish the scale for entropy.

Permutation symmetry

An N -body system is described by a wave function of the form ¥[q, ---, gy] where g; denotes the full set of
coordinates belonging to particle i. Suppose that the N particles are identical and hence indistinguishable from one
another. The Hamiltonian must then be invariant with respect to interchange of any pair of identical particles. Consider
the action of the particle exchange operator X; ; defined by

)(i,_j\P["-ql----qj...] = S\P[-..qj...qi...]

which exchanges the coordinates of particles i and j. A second application of the exchange operator
X/ ¥ =s¥=Y¥

must restore the wave function to its original state. The symmetry of the Hamiltonian under particle exchange requires X
to be unitary and hence s> = 1. Therefore, the wave function must be either symmetric (s = 1) or antisymmetric (s = —1)
with respect to particle exchange.
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Experimentally, the exchange symmetry of many-body systems is found to be intimately related to the intrinsic
angular momentum (spin) of their constituents. Particles with half-integral spin live in antisymmetric wave functions and
are called fermions; particles with integer spin live in wave functions symmetric under particle exchange and are called
bosons. Although these relationships can be derived using relativistic quantum field theory, for our purposes it is sufficient
to regard this distinction as an experimental fact. We shall soon find that the statistical properties of fermion and boson
systems are profoundly different at low temperatures. Fermions obey Fermi-Dirac (FD) statistics, whereas boson obey
Bose-Einstein (BE) statistics. In the classical limit, both distributions reduce to the Maxwell-Boltzmann (MB) distribution.

The indistinguishability of identical particles affects the number of distinct states very strongly. Consider a system
of two identical noninteracting fermions. The wave function must be antisymmetric wrt exchange of the coordinates of the
two particles. Hence, the two-particle wave function takes the form

1
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where ¢ and g, are particle coordinates and i, and ¥, are single-particle wave functions. Notice that the two-particle
wave function vanishes if one attempts to place both particles in exactly the same state. Therefore, the Pauli exclusion
principle states that it is not possible for more than one fermion to occupy any particular state; occupancy by one fermion
blocks occupancy by others.

Consider a system of 2 identical particles for which 3 single-particle states are available. If, as in classical mechan-
ics, the particles are considered distinguishable, they may be labeled as 4 and B. On the other hand, both particles must
have the same label, say 4, if they are considered indistinguishable. The tables below enumerate all distinct states for
distinguishable classical particles or for indistinguishable fermions and bosons. Classically, 3> = 9 distinct microstates are
available, but only 3 are available to fermions or 6 to bosons. Also notice that the ratio between the probability that the
two particles occupy the same state to the probability that they occupy different states is 0.5 classically, 1.0 for bosons, and
0 for fermions. Therefore, the requirements of permutation symmetry severely limit the number of states, especially for
fermions.

classical fermions bosons
1 2 3 1 2 3 1 2 3
AB AA
AB AA
AB AA
A B A A A A
B 4
A B A A A A
B A
A B A A A A
B A4
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N-body wave functions

Consider a system of N identical particles confined to volume V. Let g = {q,, -, gy} represent a complete set of
coordinates. The wave function for a many-body state labeled ¥, , where @ = {@1, ---, ay} denotes a complete set of
quantum numbers, will then have the form

@1 qn | o) = Yalgr - qn] = ¥olq]

Let P denote a particular permutation operator and let s[P] = =1 represent the signature for an even (+) or odd (-) permuta-
tion. For example, P>13{q1, 92, 93} = {¢2, q1, q3} would be an odd permutation with s[P,3] = —1, while

P31 {q1, 92, 93} = {q2, 93, q1} would be an even permutation with s[P,3;] = +1. Any permutation of the coordinates or
labels changes the wave function by at most a phase factor; it matters not whether we choose to permute coordinates or
labels. Bosons are symmetric with respect to particle exchange, such that

bosons = PY,[{g:}] = Y[P{g:}] = ¥pullgi}] = ¥olgl

whereas fermions are antisymmetric with respect to particle change, such that the phase of a permutation is even or odd
according to the signature of the permutation

fermions = P ¥,[{g:}] = ¥[P{g:}] = ¥rallgi}] = (=) ¥,[q]

It will be useful to define

bosons: dp = +1
fermions: dp = (_)SfPl

It is useful to introduce a complete orthonormal set of single-particle wave functions ¢,[g], such that
(do | #g) = 04,5. Unsymmetrized product wave functions for the N-body systems can then be defined by

N
Yolq] = 60, [91] 60,921 - G lan] = | | @il
i=1

Properly symmetrized N -body wave functions can now be constructed by adding all possible permutations of the product
wave functions with appropriate phases, such that

1 1
Bolgl = —— > 6pYu[Pql = —— > 6pYpa
[q] WWZN’[ﬂ ﬁﬁgppm

Any @, constructed from single-particle eigenfunctions ¢,, will now represent a properly symmetrized eigenfunction for
system of N noninteracting identical particles. Wave functions for interacting systems can be constructed from superposi-
tions of product wave functions, which serve as basis vectors for the system. However, for bosons one must be careful to
properly normalize the product wave functions.
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Occupation representation

We begin our investigation of the thermodynamic consequences of permutation symmetry by studying ideal
quantum fluids composed of identical fermions or bosons under conditions where their mutual interactions may be
neglected. Under these circumstances the many-particle Hamiltonian may be expressed as a summation over N indepen-
dent identical single-particle contributions

N
H= Zhl
i=1

with eigenfunctions ®, represented by the set of occupation numbers v = {ny, ny, -+, o} such that
HO, = E, 9, E, = Z no[v] €4 N, = Z ny[v]
a=1 a=1

where 7, [v] is the number of particles in the single-particle orbital ¢, satisfying the eigenvalue problem

h ¢w = & ¢ar

The many-body wave function
N

®, = g @[ o
= i=1

may then be constructed from a properly symmetrized product of &, single-particle wave functions where here the index i
runs over all occupied orbitals and where the summation over P includes all permutations of the particle labels with
appropriate phases. Rather than specifying the coordinates or quantum numbers for each particle in the system, the
occupation representation specifies how many, but not which, particles occupy each single-particle orbital. This is the
most natural representation of the states for a system of identical particles and avoids the complications of enforcing the
permutation symmetry and evaluating degeneracy factors.

Although permutation symmetry can be enforced explicitly within the canonical ensemble or microcanonical
ensembles, the grand canonical ensemble provides a more efficient method. This method focuses upon the occupancy of a
particular orbital a as the relevant subsystem instead of treating the particles themselves as the subsystems. As a sub-
system the orbital exchanges energy and particles with a reservoir comprised of the particles occupying all other orbitals.
Because the number of particles occupying each orbital is indefinite, a statistical quantity, this approach naturally involves
the grand canonical ensemble. The properties of the reservoir establish a temperature and chemical potential which serve
as Lagrange multipliers that enforce constraints upon the energy and density of the entire system. The occupancy and its
dispersion can be deduced easily.

The probability P, for a state v = {n,} in the occupation representation can be expressed as
Pv = -Z_l EXP[_B (Ev —M Nv)]

where
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szinoz[v] Evzina[v]ga
a=1

a=1

are the total particle number and total energy and where
ZIT Vol = 3, 3 | [ Expl=Bra (@ - w]
N,=0 v a

is the grand partition function. The temperature and chemical potential are determined by the constraints upon energy and
density. The dependence upon volume is carried implicitly by the dependence of the single-particle energy levels &, upon
the size of the system. The separability of the energy allows the partition function for each state v to be expressed as a
product of partition functions for each orbital @. The restricted sum Y, indicates summation over all sets of occupation
numbers {rn,} with total particle number »N,. The grand partition function then sums over N, as well, weighted by the
factor Exp[S u N,]. The effect of this summation over N, is to remove the restriction upon sum over {n,}, such that

ZIT ¥, = ) | | Expl-Bra (s - 0]

{ne} «a

where each sum over n,, is now independent, only restricted by the Pauli exclusion principle for fermions. It is useful to
define

Eo=PBeg — 1)

as the energy of orbital @ relative to the chemical potential in units of the thermal energy kp T, such that

ZIr, Vo ul = ) | [ Expl-na &l

{ne} «

The summation and product can now be interchanged

2| [Expl-na o) = [ [ 3 Explona £u]

{no} «a @ ng

so that
z=]]z Zo= ) Expl-no &l

Ny

becomes a product of independent single-orbital grand partition functions. This result is quite analogous to the factoriza-
tion of an NV -element canonical partition function in terms of independent single-element factors, now applied to orbitals
rather than to particles. Note that there will normally be an infinite number of Z,, factors, but most will be unity. Simi-

larly, the probability P, also factors according to

P, = l—[Poz P, = -Za_l EXP[—na fa]

The mean particle number and total energy are now obtained as ensemble averages

Ny = Y PN, = ) Y Pymall = ) g

a

(E) = ZVPVEV = szapvna[v]ga = Zm‘ga

a

where
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g = ZPV ng[v]
v

is the mean occupancy of orbital @. Recognizing that each single-orbital probability distribution is normalized, such that

Zpoz[noz] =1,

Ny

the mean occupancy for each orbital can be evaluated independently using

Ny = Zpozna

where the relationship between the occupancies for various orbitals is governed by €, and y and where the total density is
governed by . Thus, the thermodynamic properties of the system are determined by the mean occupancies, which are
obtained from the grand partition function according to

0lnZ, _ (agw ) _ 0InZ,
T,V

g = kg T
" B 6/.1 6/.1 8‘_‘;‘:&

where G, = —kp T In Z, is the single-orbital contribution to the grand potential G = }, G,. The variance in occupancy
can also be obtained easily. Evaluating the mean square particle number in each orbital

>z 0Ga Y G G
2 -1 a [ o7 _2 [
oY = Za = — kg T =7y — kT
(ne™) = Z PP (au) 8T 50 RN
we find that the variance becomes
*nZ, G, ong
e oriPy = PT oy r(P8) 07
0&, ou f% 0&,

Therefore, the occupancy variance is related to the derivative with respect to chemical potential by

) 07y

oz = —
" I&a

Continuous approximation for uniform systems

If the system is sufficiently large and the spacing between single-particle energy levels sufficiently small, we can
replace discrete sums over states by integrals over energy weighted by the density of states. Thus, the total number of
particles becomes

N = Zm — N = md«‘;‘z)[b‘] ﬁ[gg ,8: /1]
= 0

and determines the dependence of the chemical potential on the temperature and density of the system. If the particle
density is specified, the chemical potential can be determined by numerical solution of this equation. However, we will
find that for the Bose-Einstein distribution care must be taken with the continuous approximation whenever one or more
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states develops macroscopic occupancy. Similarly, the equation of state is determined by the grand potential, which in the
continuous approximation takes the form

G=—ksT ) InZ, — ~kyT fo deDlel InZle. B 4]

where

Zle, , ] = (1 £ e7Fe)™
is the single-orbital partition function. Therefore, the grand potential becomes

G = FkzT f de Dle] Log[l + e PE M)
0

with upper or lower signs for fermions or bosons, respectively.

The density of states for a gas confined to a simple box of volume V' is related to the phase-space density by
d’k

Diclde = DIkld°k = gV —
(2m)

where g is the intrinsic degeneracy of a state in momentum space. For example, if the only degree of freedom that is
needed to describe the internal state of a particle is its spin s, then g = 2.5 + 1 represents the total number spin states which
are degenerate in the absence of an external magnetic field. If the system is spherically symmetric, we can use

k*dk

Dkl k y——
kld°k — g P

Assuming that nonrelativistic kinematics are applicable, the relationship between energy and momentum representations of
the density of states is given by

k) d 1, 2m\*?
s=( ) — L2, kzclkz—(—m) e de
2m dk k 2\ A2
such that
gV 2m\* |,
D[S] = _7'[2 (7) &

Systems with lower dimensionality, or with relativistic kinematics, or with harmonic oscillator rather than square-well
confinement potentials, are considered in the exercises.

Statistics of occupation numbers

The occupancy of single-particle states in a many-body system is a statistical quantity subject to thermodynamic
fluctuations. Since the number of particles occupying any state is indeterminate, each orbital can be visualized as a
subsystem in equilibrium with a reservoir of energy and particles. Therefore, the statistics of occupancy are susceptible to
analysis using the grand canonical ensemble. The probability distribution describing the occupancy of orbital @ with
single-particle energy &, in an ideal quantum fluid is
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Plne] = Z Zo = Z@—m,

where u is the chemical potential established by the reservoir and where it is very convenient to define a reduced energy
relative to the chemical potential as &, = B(g, — p). The grand partition function Z, sums over all possible values of the
occupancy n, for orbital @. The mean occupancy and its variance are given by

0InZ,
g = Zpanar = _%{;Z_

Ny
oy

0,

O-nuz = <(na - m)2> =

m Maxwell-Boltzmann distribution

Although the semiclassical Maxwell-Boltzmann (MB) distribution does not actually pertain to any real quantum
system, it is nevertheless instructive to compare the FD and BE distributions to this classical model. Classically, the
degeneracy for a state of N identical particles described by occupation numbers v = {n,} would be N!/[], n,!, but we
must divide by N! to resolve the Gibbs paradox so that g, = (], 7, !)”" becomes the proper statistical weight for the MB
distribution. The grand partition function can then be factored, such that

= e_nnfn £
zZ,= ) S~ Bole
Ny -+

n,=0

is recognized as an exponential function with a fancy argument. Therefore, the grand potential, mean occupancy, and
occupancy variance become

Gy = —-kgTe ™ = mg=et = 0',,”2 = 7y

]

The single-orbital occupancy probability distribution can now be expressed in a form
7N
_ g Na =
e b o = ¥ o
Ny ! ng!

Pln,] =

we recognize as the Poisson distribution, which is an approximation to the binomial distribution that applies to ensembles
consisting of many independent trials with low probability for success in each trial. Similarly, the MB distributions applies
when the total number of particles is large but the probability that any particular single-particle orbital is occupied, and
hence its mean occupancy, is small. Thus, the rms fluctuation in orbital occupancy

1|12

= (52)
o\

is characteristic of systems with statistical independence.

m Fermi-Dirac distribution

The exclusion principle restricts the occupancy n, for fermions to either 0 or 1. Thus, the grand partition function
and grand potential for the Fermi-Dirac (FD) distribution reduce to simply

Zyo=1+e* = G,=-kgTLog[l +e*]

where &, = B(e, — p). Therefore, the mean occupancy becomes
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for the FD distribution. Using

oo = 1T

— Z(z =1- Ny
N
the probability distribution P[n,] for occupation numbers can be expressed in the form

Pln,=0] = Z,” =1-7
Plng=1]= Zy, e =g

Therefore, we can interpret 77, for the FD distribution as the probability that orbital @ is occupied and 1 — 7 as the
probability that it is empty.

Similarly, the occupancy variance is
2 am e‘i:a
O-”a == = 2
9% (efa+1)

= 1, (1 -7g)

so that the relative rms fluctuation in occupancy is
12

On, (1_7TQ)

Ny Ny

Hence, the occupancy fluctuations are suppressed relative to a normal (uncorrelated) distribution by a factor of (1 — 7)"/?

due to the influence of quantum correlations arising from permutation symmetry.

m Bose-Einstein distribution

For bosons the occupancy of each orbital is unrestricted so that the sum over n, extends from zero to infinity. The
grand partition function

(e

Zo= S = a-ety”

n,=0

is thus an infinite geometric series. The grand potential and mean occupancy are then

Go=ksTLogll—e™] = 75 = (efr—1)"

The requirements that the orbital occupancies be positive definite and that Z converges necessitate u < &y where gy is the
lowest single-particle energy. Since by convention &y = 0, we require —oco < u < 0 for the Bose-Einstein (BE) distribution,
whereas u is unrestricted for the FD distribution. Using

1+ 7y
eé{i =

— Z(z:1+m
N

we find that the occupancy probability distribution

Pln,] = = = 7!
¢ Zs (1 + mg)"et] ¢

e—ﬂn & %nzy ( Ty )

is a geometric distribution with constant ratio
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Pln,+11 g
Pln,l  1+m,

between successive terms.

The occupancy variance is
5 6% efa
O’n = — = 5
0 (efe — 1)

= 1o (1 +715)

@

so that the rms fluctuation
12

On, _(1"'%)

Ny Ny

is enhanced by a factor of (1 + 7i3)"? compared with a normal (classical) system. Thus, fluctuations in the FD distribution
are suppressed and in the BE distribution enhanced by the occupancy of an orbital. These correlations arise from the
permutation symmetry of the many-body wave function even without interactions.

The BE occupancy distribution should be familiar from our studies of the Debye model and the Planck distribution.
For these models we found that the mean number of quanta in a mode with energy & was 71[e] = (e#* — 1)_1 , which has the
same form as the Bose-Einstein distribution with ¢ = 0. Recognizing that quanta of the electromagnetic field are photons,
an elementary particle with spin 1, we must treat photons with the same energy and polarization as indistinguishable
bosons satisfying Bose-Einstein statistics. However, because the number of photons is truly indeterminate, the chemical
potential for a photon gas vanishes. Although there is no elementary particle that corresponds to quantized lattice vibra-
tions of a crystal, these quanta behave identical spinless particles with vanishing chemical potential. In fact, there is a wide
variety of quantized excitations that are governed by BE statistics with £ = 0.

m Comparison between FD, BE, and MB occupancies

The mean occupancy 7i[e, 5, u] for an orbital with energy € in a system with inverse temperature 8 and chemical
potential ¢ can be expressed in the generic form

FD = y=+1
7le, Bl = @P€P +9)”" where MB= y= 0
BE = y=-1

where y = 0, + 1 governs the statistical properties of the distribution. Adopting the usual convention that the single-
particle energy spectrum starts at &y = 0, such that € = 0, the requirement that 77 be positive definite requires —co < 1 < 0
for the BE distribution, but 4 may assume either sign for the MB and FD distributions. These occupancy functions are
compared below.
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Mean Occupancy for FD, BE, MB Distributions

5

4

3 MB

|
5 BE
I \
FD — |
\
g_\
-3 -2 -1 0 1 2 3 4
Be—u)

These occupancy functions converge in the limit

T >1 = 7le Byl = ePEH

where the mean occupancy 77 < 1 is very small. Ordinarily one considers the classical limit to be synonymous with high
temperature, but this comparison demonstrates that a more rigorous description of the classical limit is "small single-orbital
occupancy", which is needed for the Gibbs resolution of the indistinguishability problem to become accurate. It is not
sufficient to require the temperature to be large, which is needed to approximate a discrete spectrum of energy states by a
continuous phase space, but one must also require the density to small enough for the chemical potential to be large and
negative such that

classical limit: y < & — kg T

As T increases, u must become increasingly negative to fulfill this condition for any fixed €. To gauge the accuracy of the
classical approximation, we relate the chemical potential for a classical ideal gas to its density by summing the mean
number of particles in each momentum state using the MB distribution.

N d*p P’ ) 5 (27rh2)
— = Exp|-B8| — - = A5 eP*  wh An =
v f(2nh)3 XP[ 'B(2m #} Boe e B ks T

12

Thus, we find that the chemical potential is closely related to the quantum concentration:

N
U = ky TLog[7 133] = kg T Log[ng]

This result applies to a nonrelativistic gas in three spatial dimensions. Clearly,

<0 = npx1

a large negative chemical potential requires a small quantum concentration to minimize the overlap between wave packets
associated with the characteristic thermal energy. The relationship between chemical potential and density is more compli-
cated for the FD and BE distributions, but reduces to the MB result in the classical limit np < 1.
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Degenerate Fermi gas

According to the FD distribution, the mean occupancy for a single-particle state with energy € is

ale, Boul = (P + 1)

At T = 0 the argument of the exponential is —oco for € < u or is +oo for £ > . Hence, the occupancy is unity for all states
with & below u and is zero for states with £ > u. Therefore, the completely degenerate Fermi gas at 7 = 0 is described by
a frozen distribution in which all orbitals below the chemical potential are occupied and all orbitals above u are vacant.
For a fixed density, the chemical potential is a function of temperature alone. By convention, we define the Fermi energy,
er, to be the chemical potential the system has at 7 = 0 for a given density. Similarly, the Fermi temperature, Tr, is
defined by

T=0= H=EF = kBTF

It is then useful to express € and y is units of &7 and to define the reduced temperature as 7 = 7/ Tr. Also notice that

e=ulT] = n =205

such that the chemical potential for finite temperature is equal to the energy for which the occupancy is one half.

The relationship between the chemical potential and temperature is determined by fixing the average density of the
system. At 7T =0, all states below &r have unit occupancy so that the total number of particles in a completely degenerate
nonrelativistic Fermi gas is given by

e gV 2m 3/2 i gV (2meF 32
N_f(;clg@[e]n[s]_—ﬂz—(h—z) e ds—rﬂz( 2 )

Solving for &7 in terms of the particle density p = N/ V', we find
#o(6m P (hkp?
&r = 5—|—p| = —F—

2m
krp =

|
—
o)
OQ‘>|
(i8]
he)
N

The fact that the Fermi momentum kx scales with p!/? is a consequence of the fact that the wave numbers for single-
particle states scale with "~1/3 . For later purposes it will be useful to observe that the density of states can also be
expressed in the forms

4 3 ¢gl”ae 4 £ \32
Dielde = =N ——75= = (g)
K dk k
DIkldk = 3N —~ = Na?(—-)
kF kF

by scaling according to either g or kg, as appropriate.

The average single-particle energy is
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| de Dlelale, p, T) &
Jy deDlelnle, u, T

€ =

which for a completely degenerate Fermi gas reduces to

fochl.sel/zs 3
r=0 = s="2__" =24
[ ‘dee!? 5

Hence, the total internal energy for a degenerate Fermi gas with N particles is simply

3
T=0 = U=¢Ner

Similarly, the pressure for any nonrelativistic ideal gas, classical or quantum, is simply two-thirds of the energy density.
Thus, we find that the pressure
2 w2 (6n2\"
T=0 = p=—per —(—) pB
5 g

5/3

is finite, scaling with p>°, evenat T = 0.

Contrary to the behavior of a classical ideal gas, for which the pressure vanishes at 7' = 0, a Fermi gas retains
substantial pressure at absolute zero. This additional pressure, which may be called degeneracy pressure, is due to the
exclusion principle which, by preventing more than g particles from occupying the same energy level, compels fermions to
occupy a distribution of energy levels above the ground state. Hence, the energy density is proportional to p° and the
pressure seeking to reduce that energy density can be quite large. Even without explicit interactions between particles,
correlations due to antisymmetrization of the wave function produce an effective repulsion between fermions. This is a
purely quantum effect with no classical counterpart.

m Example: conduction electrons

Conduction electrons in a metal move within an average potential that confines them to the volume of the material,
but mutual interactions can often be neglected. The dispersion relation for electrons moving within a uniform mean field
can then be expressed in the form

2
g = BB, UK

where U[k?] is a momentum-dependent potential describing the interaction with the lattice. It is convenient to express U
as a function of k> rather than k because it must be an even function to satisfy rotational and reflection symmetries.
Recognizing that momenta near the Fermi surface play a dominant role in the thermodynamics of a nearly degenerate
Fermi gas, it is useful to expand the potential about the Fermi momentum kg, such that

H (k% — kp?
UK ~ Uy + 2y I
2m
where

Uy = Ukl U =

2m (371[18] )
72 ok? k2=kp?

Combining the kinetic and potential terms, the dispersion relation now takes the form
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(hk)*
2 Megr

Ex &+

2
where gy = Uy — U, %—n— is an energy shift and

Meft

=1 +U)'

is the effective mass for electrons near the Fermi surface. Therefore, the primary effect of the mean field is to shift the
energy scale and alter the effective mass. In metals one usually finds that U; > 0 = mg > m such that the effective
mass for a conduction electron with momentum near kr appears to be increased by its attraction to the lattice.

Thus, one can treat conduction electrons as an ideal Fermi gas of particles with effective mass megr. Using
p =8.5%x10%2 cm™ and meg = 1.39 m,, we obtain a Fermi energy &7 = 5.07 ¢V for copper. The corresponding Fermi
temperature, Ty ~ 6 x 10* kelvin, is so large that the electron gas can be treated as almost completely degenerate at room
temperature. The corresponding pressure within this gas is then p ~ 2.7x 10° atmospheres! This large outward pressure
must be balanced by the attractive electrostatic forces binding the electrons to the lattice. The confinement of the electron
gas is accomplished by a nearly uniform potential rather than by walls at the boundaries of its volume. Nevertheless, since
the interactions with the lattice can be represented as a smooth mean field in which all of the electrons move more or less
independently of each other, the noninteracting Fermi gas model is still appropriate.

m Example: nuclear matter

The atomic nucleus consists of protons and neutrons, which are both spin % particles of equal mass. It is useful to
treat protons and neutrons as states of the same particle, the nucleon, differing only in an internal quantum number called
isospin. Nuclear matter is a theoretical system consisting of equal numbers of protons and neutrons with the Coulomb
interaction turned off. Thus, the intrinsic degeneracy factor for momentum states in nuclear matter is g = 4. The density
of nuclear matter is based upon the central density of large nuclei, which is approximately constant at 0.16 fm™, where 1
femtometer (fm) is 10™"° m. Using these values, one obtains g = 37 MeV, which corresponds to an enormous pressure of
4% 10?" atmospheres that must be balanced by the mean potential generated by the mutual interactions among nucleons.
Obviously the name strong force for the nucleon-nucleon interaction is well deserved! It was a major accomplishment of
nuclear physics in the 1950s to demonstrate that the Fermi gas model provides a reasonable starting point for studying
nuclear structure despite the strength of this interaction.

Thermodynamics of nearly degenerate Fermi gases

To develop the thermodynamics of nearly degenerate Fermi gases, we must determine the relationship between
chemical potential and density for arbitrary temperature. The total number of particles is obtained by integration of the
mean occupancy over the density of states, such that

00 B 3 3 00
N = deDlelnle, u, T] = e’* = 7 d
0 0

£l

8 S
eBlEe—w + 1

provides an equation that can be used to determine p given the temperature and €7, which depends only an density and
fundamental constants. It is useful to express energy and temperature in dimensionless form using v = 7/ Tr and to
introduce the fugacity z = eP*, such that
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o0 12
f dx L g 7732
0 zler+1 3

provides an equation that determines the temperature dependence of the fugacity. In chemistry fugacity is often called
absolute activity. The classical limit defined by large negative u corresponds to small z, while large z corresponds to the
low-temperature limit of a nearly degenerate Fermi gas. Recognizing that other thermodynamic functions depend upon
integrals of similar form, it is customary to define a family of Fermi functions using

XV 1

1 00
Ml = mfo dxz‘lex+l

where the normalization factor is chosen to ensure that f,[z] - z when z —» 0. Thus, the chemical potential is obtained
from the solution of the equation

F[ %] 2 fiplz] = 1

or

4
fiplzl = ——= 172

3vVn

It is important to recognize that T oc (N / V)z/ 3

is a function only of density, such that
N
5 o« T fipl]

represents the temperature dependence of density at constant z or the dependence of chemical potential on temperature and
density. Numerical methods for solution of the density equation are developed in fermi.nb.

Similarly, the internal energy can be expressed in terms of Fermi functions using

00 00 3/2
de Dlelnle, u, Te dx ——— II5/21 *
Uonse b kT b ST _ gy 15/ fonld
Jy deDlelnle, u, T NG AT I'3/2]1 fiplzl

such that the thermal equation of state becomes

U_ _ 3 fpll
NkBT 2 f3/2[z]

Next, the mechanical equation of state for a nonrelativistic ideal gas is simply p V' = % U, whereby

pV_ _ Sl
NkgT  faplz]

Thus, the pressure and energy density scale according to

U
p < 7 oC T5/2f5/2[Z]

Finally, the entropy
U+pV - N S 5
5= P Ko _ 5 fplal
T NkB 2 f3/2[2]

Log[z]

can be expressed in terms of z and N ; hence, isentropic processes at constant NV also require constant z. Therefore, using

5/2

constantz, N = ¥ T/ = constant, p "> = constant



IdealQuantumGases.nb 17

we find that adiabats for the nonrelativistic ideal Fermi gas take the familiar form

constantS, N = p V>3 = constant

The numerical and analytical properties of Fermi functions are studied in detail within the notebook fermi.nb; here
we summarize some of the results. These functions can be represented by a power series
(-2
kv

Hlz) = -

k=1

that converges for all z > 0, v > 0. There is a limiting value f,,[z] = z and a useful downward recursion relation

. 0
Sr-lzl = z a2 Szl

For large z, the asymptotic expansion known as Sommerfeld's lemma

Bw”

Bul -
St = v+ 1]

2 7 1
) 4
(1 +V(V—1)?(,3ﬂ) +V(V—1)(V—2)(V—3)%(ﬁﬂ) + )

can be derived by exploiting the fact that the mean occupancy for nearly degenerate systems has a sharp edge at the Fermi

energy. Representative Fermi functions are shown below for v = {%, 1, %, 2, %, 3, oo} with fi, lowest and f, highest.

Fermi—Dirac functions

2.5
2
15 |
= 1
0.5
1 2 3 4 5
fugacity, z

The temperature dependence of the chemical potential can be obtained by numerical solution of the equation

4
finlel = ——= "

3V

with the result plotted below.
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Chemical Potential

u/(kgTp)

05 1 15 2 25 3
T/Tr

The chemical potential is defined as the Fermi energy at 7 = 0, vanishes at the Fermi temperature, and is large and nega-
tive for high temperatures where the classical limit applies. For low temperatures we can approximate the chemical
potential as
T<Tr = (1 i ﬂ474)
X E -—
P RR e 12 80

The temperature and energy dependence of the occupation probability are illustrated below. For very low temperatures
one finds that states with € < g are filled while states above &7 are empty. As the temperature increases, the Fermi
surface becomes more diffuse as the population of energy levels above r are populated at the expense of states below &5 .

Occupation Number

g/(kpTF)

The thermal response of a nearly degenerate Fermi gas with small 7'/ TF is largely determined by orbitals in the
immediate vicinity of the Fermi energy. Particles lying deeper in the energy distribution cannot absorb small amounts of
energy because all nearby orbitals are already occupied by other particles and are blocked by the exclusion principle. Only
particles in the approximate energy range € + kg T can participate strongly in thermal processes. The shaded region in the
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figure below illustrates the fraction the of system that can be considered thermodynamically active, which is a rather small
fraction at low temperatures.

FD Occupancy for T=0.05 Tr

I T
0.8
0.6 |
N
0.4
0.2
0 02 04 06 08 1 12 14
elp
Thus, we might estimate the heat capacity for a nearly degenerate Fermi gas using
T<Tr = Cy ~ Dlsr]Qk T)(ik ) = Nk
F 4 F B 7 )= 5 N

where D[er] is the density of states near the Fermi surface, the next factor is the width of the active energy interval, and
the final factor is the heat capacity per participating particle. Therefore, we expect the heat capacity to be linear for low
temperature and to approach the classical limit from below. A more rigorous analysis based upon the large-z expansion of
Fermi function gives the similar result

3 2 3att Cy 2 3t

~ + R ~
NSF 5 4 80 NkB

T<xTr =

except that the coefficient % is replaced by ”72 . In fact, one does find that the contribution made by conduction electrons

to the heat capacity of metals for 7 << T is linear in temperature and that this model provides a good prediction for the
slope.

It is probably worthwhile to evaluate Cy explicitly in order to practice manipulation of fermi functions. Using the
chain rule, one obtains

3 Ssplz] 3 ( S5plz] 0z ( 0 fsplzl ))
U= =NkgT Cyr==Nk Tl—=| [=—=22=
PR = A Tl W= B (aT)V,N 9z finlzl

Then using the recursion relation z 9, f,[z] = f,-i[z], one soon finds

Cy = iNkB[ Splal Z(E) [1_ M])
2 fiplzl 2 \aT )y fiplz]

The isochoric temperature dependence of z is obtained by dimensional analysis of the density equation
312

F[—i—](%z) fiplzl =1 = % o« T fip[z]

Thus, constant ¥, N requires 7/ f; ,.2[z] to remain constant, such that

3 P
T°2 fiplz] = constant = — T'? fyp[z] + T°° Z_lfl/Z[Z](_Z) -0
2 oT )y x
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Therefore,

(&) --2: fiplz]
oT Jyn 2

Finally, substituting this result, we obtain
Cy 15 fsplzl 9 fipll

Nks 4 fiplzl 4 fiplz)

This result reduces to the classical limit for z — 0 or to the nearly degenerate result quoted above for large z or, equiva-
lently, T < Tr. Although it is often useful to express formal results in terms of the reduced temperature,
7=T/Tr = kg T /&r, we must always remember that £z depends upon density.

The temperature dependencies of the principal thermodynamic functions are illustrated below and are studied in
more detail in the notebook fermi.nb. The internal energy is greater than that of a classical ideal gas, shown by the dashed
line, because the Pauli exclusion principle forces particles into higher energy levels. Thus, the internal energy is % N egp at
T — 0 and approaches the classical limit from above. The corresponding degeneracy pressure produced by the effective
repulsion between identical fermions is much larger than the kinetic pressure would be for distinguishable particles. The
heat capacity is small at low temperatures because only the relatively small number of particles within about kg 7' of the
Fermi surface can participate in the thermodynamics. Similarly, the entropy is reduced at low temperature because a nearly
degenerate Fermi gas is highly ordered; permutation symmetry strongly reduces the number of states available to fermions.

Internal Energy Reduced Entropy
3 5 —
S 2.5 = . 4
2 = Q
6 o = 3
= 15 S
= g st & 2
= i
0.5—— /
0" 0
0 0.5 1 1.5 2 0 1 2 3 4 5
T/TF T/Tp
Isochoric Heat Capacity Reduced Free Energy
1.4 0
1.2 =25
R ~ =5
= 08/ S -73
< 06 < 10
S gqld = 125
0.2/ 13
: -17.5
0.5 1 15 2 25 3 0 1 2 3 4 5

T/TF T/TF
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Thermodynamics of nearly degenerate Bose gases

The relationship between chemical potential and density for an ideal Bose gas
1
N =
; z7VExp[Be,] -1

requires more care at low temperature because it is possible for the occupancy of the ground state to become an appreciable
fraction of the total number of particles, but the continuous approximation to the density of states for a uniform nonrelativis-
tic system, D[e] oc £'/2, gives no weight at all to the ground state. Under these conditions one cannot simply replace the
sum by an integral because it would be impossible to account for all the particles. A simple solution to this problem is to
separate the sum into two contributions, N = Ny + Ney., where the mean number of particles in the ground state with
energy & is given by

N 20

es — & 1—_23

where zg = Exp[B(u — &9)], while the mean number of particles found in excited states is approximated by the integral

. oV (2m 32 oo g2
Nexc=f0 deDlelnle, u. T = 5~ (55) fo‘“m

The requirement that the number of particles in excited states be positive limits the fugacity for Bose gases to the range

0 <z =<1 and the chemical potential to the range u < gy. However, if z approaches unity the ground-state occupancy
becomes macroscopically large. The accumulation of bosons in the ground state is a phenomenon, known as Bose-Einstein
condensation, that has profound consequences for the properties of an ideal Bose gas. Expressing zp in terms of Ngg,

_ N 8
g+ Ngs Ny

20

where the intrinsic degeneracy g is a number of order unity, one finds that zy is extremely close to unity whenever N,
reaches macroscopic size; in fact, z; is very close to unity even for as few as a thousand particles in the ground state and is
extremely close to unity if Ny, becomes a nonnegligible fraction of a total particle number of order 10%. Thus, the critical
temperature 7, for Bose-Einstein condensation is determined by the condition u[7.] == &y at the specified density. Ordi-
narily one shifts the energy scale so that £y » 0 and in the continuous approximation ignores the slight dependence of the
ground-state energy upon volume.

It is useful to define a family of Bose functions using

XV~ 1

1 00
d= —— [ d
&2l = 1 fo T Te

where the normalization factor was chosen to ensure that g, - z as z —» 0. Do not confuse the Bose function, g, , with the
intrinsic degeneracy of momentum states g; the notational similarity is unfortunate but traditional. The detailed analytical
and numerical properties of Bose functions are studied in bose.nb and here we summarize the salient results. The Bose
functions increase monotonically with z. For small z, power-series expansion of the integrand produces a series
representation
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Z 9
v>1 = gl = F &l =40 g-1lz] = ZEgV[Z]
k=1

that is convergent over the entire physical range 0 < z < 1 provided that v > 1. Thus, Bose functions with v > 1 are closely
related to the Riemann zeta function {[v]. More care is needed for v < 1 because the integrand for z = 1 is singular at
x = 0. Although a simple result with logarithmic divergence is obtained for v =1,

gilz] = —Log[1 - z]

more general methods are needed for arbitrary v. The derivation of an asymptotic expansion due to Robinson (Phys. Rev.
83,678 (1951))

zo1 = glz] =~ (-Inz2)" ' T[1 -v] _,_Z (n2)" [y —m]

|
=0 m:

is outlined in hose.nb. Note that this expansion can be used for all v because the singularities for positive integers cancel

to all orders. Representative Bose functions are shown below for v = {%, 1, %, 2, %, 3, co} with gy, highest and

golz] = z lowest. Thus, we find that g, [z — 1] diverges for v < 1, converges with finite slope for v > % , while for v = %
the limiting value is finite even though the slope is infinite at z = 1.

Bose—Einstein functions
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After this mathematical interlude, we are now ready to determine the density dependence of the critical tempera-
ture. The number of excited particles in a three-dimensional nonrelativistic Bose gas can be expressed in terms of Bose
functions as

Nexe A
no =
0 gV

= g3plz]

where A is the thermal wavelength. Recognizing that g3,[1] = ¢ [%] is finite, the maximum number of particles that can be
placed in excited states is limited to

Neos 2243

where ¢ [%] ~ 2.61238. Any additional particles must be found in the ground-state. Therefore, the temperature
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T, = 2" (N )2/3 " 33125( al )2/3 i
c {[%]2/3 gV mky gV mkg

at which the maximum number of particles in excited states becomes equal to the total number of particles represents a
critical temperature below which the ground-state begins to receive macroscopic occupancy. Below the critical tempera-
ture the occupation of the ground state becomes

7 \32

T<T, = ]j?:l"(f)

whereas for higher temperatures the fraction of the total number of particles found exactly at the ground-state energy is
negligible. Although all particles occupy the same volume, below 7, it is useful to describe the system in terms of coexist-
ence between two phases, the normal phase consisting of particles in excited states and a condensed phase consisting of
particles in the ground state. For this system the condensation occurs in momentum space rather than configuration space,
so that the two phases coexist in the same volume but have distinctly different properties. Most notably, we will find that
the energy and pressure contributed by the condensed phase are negligible. Nor does the highly ordered condensed phase
contribute to entropy. Therefore, the thermodynamic functions are determined by the fraction that is in the normal phase.

The ground-state fraction Ny / N, illustrated below, serves as the order parameter characterizing the phase
transition.

Ground—State Population

0 02 04 06 08 I 1.2 14
T/T,
The chemical potential and fugacity obtained by numerical solution of the equation

T2 gyplz] = 5[%]

for T > T, are shown below; both are constant below the critical temperature. Details of the numerical solution of this
equation are provided in bose.nb.
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Chemical Potential Fugacity
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The grand potential can be separated into ground-state and excited-state contributions using

S _ gLog[l —z] +f de D[] Log[l — ze P?]
kg T 0

The second term can be integrated by parts, whereby

gV 2m\? r 12 pey &V 2mky TP [ x3?
e R e

Recognizing the coefficient from the equation for z in terms of NV, we find

T>=T, = G _ glog[l—z] = N gsplzl
ks T g3plz]

above the critical temperature. Next, using the relationship between z and Ny,
Ngs

z =
g+ Ngs

= Log[l -z] = Log{ ] ~ —Log[Ng]

gs

we find that for large NV the first term is negligible in comparison with the second and may be omitted except perhaps for
very small systems. Hence, in this approximation the energy, pressure, and entropy contributed by the ground state are
negligible compared with the contributions of excited states. Therefore, the equation of state becomes

pV  gsplzl

T=7T, = =
NkgT g3plz]

for temperatures above the phase transition. Below the phase transition we require z = 1 such that the contribution of the
normal phase reduces to

v T\ 23]
o= sy - (7)o
NkgT T, 5]
while the condensed phase is neglected because Log[N,s] << N. Therefore, the pressure on an isotherm is actually indepen-
dent of density for 7' < T, because T, o (N / V)* . Thus, upon evaluation of the numerical factors, the transition line
2 )5/3 2 {3 G

T=T — pc(— = ~ 3.402 —
/3 53 23
N mer 13 mg
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relates the critical pressure to the critical density. Notice that the equation for the transition line, p. o (N/V.)*?, has the
same form as isentropes for an ideal gas; indeed, the entropy reaches its minimum value and is constant on the transition

line.
The figure below shows isotherms for a nonrelativistic ideal Bose gas, where both condensed and normal phases
coexist under the dashed transition line.
Isotherms for ideal Bose systems

Q,
4 —
2 \
0 == _—

In the coexistence region wavepackets with dimensions characterized by the thermal wavelength overlap sufficiently
strongly for quantum correlations to strongly enhance the population of the ground state. As the temperature increases this
phase transition requires increasing density (decreasing V' for fixed V) to compensate for the decreasing thermal wave-
length. Recognizing that the density of the normal phase in the coexistence region depends only upon temperature,

Nexe N [T \P kg T\ ;3
(7) = e(55) 5]

T,

T<T, = = — —
4 Vv 2 nh? 2

we find that the energy density and pressure for the normal phase remain constant during isothermal compression. There-
fore, the primary effect of isothermal compression is to push more particles into the condensed phase for which the energy

density and pressure are negligible.

The temperature dependencies of the principal thermodynamic functions,derived in the notebook bose.nb, are
tabulated below assuming that £y = 0.

T<T. Tr=T.
New| (&) N N
U |Nocks T3 fé NksT 5 228
Cr | Mawn 2 S [ a2 22— 3 2
s Nm@%ﬁi Nhs(5 8545~ nz
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~Nkp T(gW +1Inz)

Z

Fo| ~Newhs T ‘

~|,a

These functions are plotted in reduced form below using 7 =7/T,.
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Internal Energy Reduced Entropy
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The energy, entropy, and free energy for the condensed phase are negligible, leaving the normal phase to carry the burden
of thermodynamic activity. Thus, the internal energy approaches the classical limit from below because quantum correla-
tions between bosons enhance the relative population of the ground state and low-lying excited states relative to classical
expectations based upon statistical independence. Similarly, the difference in the entropy per particle in the normal and
condensed phases demonstrates that the latent heat for this first-order phase transition is
5
IcAS kp T, >4l § ] ~ 1.284ky T,
N 24051

Furthermore, although the isochoric heat capacity is continuous at the phase transition, its slope is not. However, the
isobaric heat capacity is undefined for 7 < T, because one cannot vary the temperature without also varying the pressure
which in the transition region depends only upon temperature.

Many presentations of Bose-Einstein condensation claim that the energy and pressure vanish for the condensed
phase, often saying that the ground state has no kinetic energy. However, this is not exactly true because the energy of a
particle does depend upon the volume to which it is confined, even in the ground state. Nevertheless, because the ground-
state contribution to the grand potential scales with Log[Nys] = Log[N(1 — 7¥/)] while the contribution of excited states
scales with Noy. = N 72, dominance of the normal phase is ensured by the condition

Log[N (1-7%%)]  Log[N] Log[N]\*?
T = (=)

<]l = >

Provided that this condition is satisfied, we may safely neglect the ground-state energy density and pressure. Even for a
system as small as 10* particles, this condition is satisfied well for 7' > 0.1 7., while for a system with 10%° particles we
need only require 7 > 107! 7., which is hardly very restrictive. Furthermore, the present analysis is based upon a uniform
system in which particles are confined by a square-well potential. Recent experiments that have finally achieved Bose-
Einstein condensation are better described in terms of confinement by a harmonic-oscillator potential and usually contain
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relatively small numbers of trapped particles, typically of order 10° — 10!°. Continuous approximations to the density of
states for harmonic potentials are developed in the exercises, but for a small number of particles one should also consider
the ground-state contribution and the discreteness of the energy spectrum more carefully. These technical developments
provide better accuracy, but the essential features of the thermodynamic behavior of ideal systems are unchanged. Current
research is investigating the effects of additional correlations produced by interactions.

Problems

Vv White dwarf star

The electrons in a white dwarf star form a completely degenerate Fermi gas whose pressure opposes further
gravitational collapse of the star. Under what conditions is this pressure sufficient to arrest the collapse and stabilize
the system? To answer this question, we must extend our treatment of the Fermi gas to the relativistic regime.

a) Evaluate the density of energy states, D[], for an ultrarelativistic gas for whiche =#kc.
b) Calculate the Fermi energy, £, and the mean single-particle energy, €.

¢) The simplest model of a white dwarf stipulates that all of the hydrogen has been converted into helium and that
the helium is completely ionized, such that there are 0.5 free electrons per nucleon. If we assume that the star has
uniform density within radius R, the gravitational potential energy is U, = — % GTMZ where M = N m,, is the mass
of N nucleons of mass m, and G is the gravitational constant. By combining the internal energy, U, , of the
degenerate electron gas with the gravitational energy, estimate the mass for which U = U, + U, vanishes.

Compare with the solar mass of approximately 2 x 10°° kg. If the mass is larger, the gain in gravitational potential
energy due to a decrease in stellar radius overcomes the electron pressure and the star will continue to collapse.
More accurate calculations yield the Chrandrasekhar limit of 1.44 solar masses beyond which degeneracy pressure is
insufficient to arrest gravitational collapse. [What are some of the refinements of the present model that are

needed?]

v Ratio of principal heat capacities

Show that

C,  (02/97),
Cy  (02/9D),

where v = V' / N and evaluate y for a nonrelativistic ideal Fermi gas. [Hint: express S as a function of z and N .]
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v Two-dimensional Fermi gas

The phenomenon of high-temperature superconductivity in copper oxides of the perovskite type is related to the
confinement of electron motion to sheets within the planar crystal structure. Hence, consider a degenerate Fermi gas
in two dimensions.

a) Find expressions for the density of states, Fermi energy, and Fermi temperature for a two-dimensional Fermi gas.
Estimate the Fermi temperature for conduction electrons in a typical perovskite.

b) Under what conditions does it make good physical sense to neglect the third spatial dimension?

c¢) Develop an expression that relates the chemical potential to the density and temperature of a two-dimensional
Fermi gas and plot u[7/Tr]. Compare your result with the corresponding solution for a three-dimensional system.

Vv Ideal Fermi gas with & o p* in d dimensions

Consider an ideal Fermi gas with single-particle energy spectrum € « p* in d spatial dimensions. Let V' represent
the "volume" in d dimensions and define an index r =d /s.

a) Use dimensional analysis to demonstrate that p V' = U/ r.

b) Express the Fermi momentum &z and energy & in terms of particle density. Then show that D[k] oc K9~/ de
and D[e] « &~ /" and determine the constants of proportionality. Finally, show that z[r] at finite temperature is
determined by

Ir+117 filz] =1
where 7 = kg T'/ e and f,[z] is a fermi function of order 7.

¢) Find expressions for U, p, and S in terms of fermi functions of appropriate order and check that the familiar
results for a three-dimensional nonrelativistic Fermi gas are recovered.

d) Show that adiabats satisfy p /'* and evaluate x in terms of d and s.

e) Evaluate Cy, C,, and y = C, / Cy in terms of fermi functions and check that familiar results are obtained for a
three-dimensional nonrelativistic system.

f) Find an expansion for C,, / Cy for low temperatures up to order (1'/ T F)2 .
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v Intrinsic semiconductor

The states available to electrons in a perfect crystal are organized into energy bands separated by gaps in which no
states exist. For an intrinsic semiconductor, all possible states within the valence band are occupied at absolute zero
temperature whereas all states in the conduction band are empty. Let £ represent the energy gap between the top
of the valence band and the bottom of the conduction band. At finite temperature there will be an equilibrium
concentration, n,, of conduction electrons and an equal concentration, 7y, of holes in the valence band. The holes
may be considered to be quasiparticles with positive charge. Since both the conduction electrons and the holes are
free to move in response to an applied electric field, the semiconductor has a finite temperature-dependent electrical
conductivity at finite temperature. Hence, we describe the conduction electrons and the holes in the valence band as
current carriers. Assume that both electrons and holes move as free particles with effective masses m, and my,
respectively, and that kp Tp > Eg > kg T.

a) Show that the carrier densities are approximately

WkBT]3/2EX [ Eg ]

e = :2 -
e =1 ( 2 i PI" 2k,

Compare the carrier density in a semiconductor with that of a typical metal.

b) Show that the chemical potential is given by

LEe+ k7L [Z4]
= — + — 0
H 5 HG Tt B g m,
relative to the top of the valence band. Indicate the position of the chemical potential on an energy-level diagram
(energy vs. momentum for valence and conduction electrons).

c) The states available to electrons in the conduction band can be represented by a sphere in momentum space.
Similarly, the states available to holes can also be represented by a momentum sphere. In the absence of an applied
electric field, both of these spheres are centered upon zero momentum, but an electric field acting for time ¢ imparts
a finite net momentum to the center of each momentum distribution. The electrons in the valence band are bound to
the lattice and do not acquire a drift velocity. Assuming that the drift velocities remain small and that collisions
between current carriers and the lattice randomize the momentum distribution, the net drift reaches a steady state
determined by the average time between collisions. Use this model to estimate the electrical conductivity of an
intrinsic semiconductor.

d) Assuming that the band gap for silicon is approximately 1.14 eV, estimate the electrical conductivity of pure
(intrinsic) silicon at room temperature. Compare with the electrical conductivity of a typical metal. Assume that ¢ is
similar for both materials and that m, ~ my,.

v Magnetic susceptibility of Fermi gas

a) Suppose that N electrons are confined to a box of volume /' and are subject to an external magnetic field B.
Evaluate the magnetization in the low-temperature limit assuming that uB <« gr. You may neglect interactions
between electrons and the magnetic field produced by them. [Hint: spin-up and spin-down electrons can be treated
as two Fermi gases in equilibrium with each other.]
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b) Evaluate the magnetization of N spin—% particles arranged on a lattice subject to an external magnetic field in the
low-temperature limit. Compare this result with that for an electron gas and provide a physical explanation for any
differences.

v Magnetization for systems with up to 2 electrons per site

Suppose that a system contains N noninteracting sites which can each bind 0 < n < 2 electrons in the same orbital
state. This system can exchange electrons with a reservoir with chemical potential u. Let [T, u, B] represent the
average number of bound electrons per site and €[7, u, B] represent the average energy per site. In the absence of a
magnetic field, the energy is £, for one electron in a site, &, for two electrons, or zero for an empty site. The
electrons, with magnetic moment m, also interact with an external magnetic field B, such that the average magnetic

moment per site is 7.
a) Write general expressions for the average electron number, energy, and magnetic moment per site.

b) Evaluate 77[T, u, 0] for the special case B = 0 and &, = 2 ;. Sketch and explain the dependence of 77 on u for
both low and high temperatures.

c¢) Express 77 in terms of 77 and 7 assuming m B < €] < kg T and &, =2 &;. Sketch this function and explain its
important features.

v Absence of Bose condensation in 1 or 2 dimensions

Consider an ideal nonrelativistic Bose gas in one or two spatial dimensions.
a) Demonstrate that Bose condensation does not occur in one- or two-dimensional systems.

b) Plot u[T] for a two-dimensional Bose gas. What is the relevant temperature scale? Compare your result with the

corresponding solution for a three dimensional system.

v Bose-Einstein condensation for € «c k* in d dimensions

Consider an ideal Bose gas with single-particle energy spectrum € « &° confined to a box in d spatial dimensions.

a) Under what conditions (a relationship between s and d) does one expect Bose condensation?

b) Show that if Bose condensation does occur the critical temperature is proportional to a power of density, such that
T, o ( % )a , and deduce the exponent in terms of s and d.

c) Show that if Bose condensation does occur then Cy o (Tl)y for T < T, and deduce the exponent in terms of s and
d.

v Bose condensation in harmonic trap

Consider an ideal Bose gas confined by an isotropic harmonic potential, Ugy[r] = % mw?r.
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a) Show that when kg T > 7w, a continuous approximation to the density of states takes the form D[] « &> and
evaluate the constant of proportionality. Study the accuracy of this approximation.

b) Using this approximate density of states, express the number of particles in excited states in terms of an
appropriate Bose function.

c) Evaluate the critical temperature for Bose-Einstein condensation as a function of N and w. Compare with the
critical temperature for a box whose dimensions are similar to the spatial extent of the gas in a harmonic well. [Hint:
use a virial theorem argument to relate w and T to an effective volume V'.]

d) A typical experiment uses spin-polarized ’Li atoms (g = 1) in a trap with v ~ 150 Hz. Evaluate 7, as a function
of N for this experiment. [Reference: C.C. Bradley et al., Phys. Rev. Lett, 75 (1995) 1687.]

e) Evaluate and plot the temperature dependence of the chemical potential, internal energy, and heat capacity for a
nonrelativistic ideal gas of bosons in a harmonic trap, with special care to discontinuities across the critical
temperature. For this purpose the heat capacity is defined as C = (g—LT/) N [Hint: modification of the numerical

techniques developed in bose.nb will be helpful.]

v Bose condensation in anisotropic trap
Consider an ideal Bose gas confined by an anisotropic harmonic potential with single-particle energy levels of the
3
_ 1
form g[ny, ny, n3] = Zi:l (n + 5)hw;.

82
w] Wy W3

and evaluate the

a) Show that a continuous approximation to the density of states takes the form D[e] «

constant of proportionality. Under what conditions is this approximation accurate?

b) Evaluate the critical temperature for Bose-Einstein condensation as a function of N and the parameters of the
confining potential.

¢) Suppose that w; ~ w; but that w3 > w;,. Use this system to provide a physical explanation for the oft-quoted
theorem that Bose-Einstein condensation does not occur in two-dimensional systems.

v Roton contribution using Bose-Einstein statistics

The Landau theory of superfluid helium includes a class of excitations, known as rotons, satisfying the dispersion
relation

(p—po)*
2m0

e=A+

where € and p are the energy and momentum of a single roton and where A, mg, and p, are positive constants.
Assume that rotons obey Bose-Einstein statistics. [Notes: p is the magnitude of the momentum vector in three
dimensions and both p and p, are scalars.]

Po’
2my *

a) Determine the average number of rotons per unit volume as a function of temperature assuming that kz T <

Justify your approximations.

b) Compute the roton contribution to the heat capacity for low temperatures and explain the temperature dependence.
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¥ Quark-gluon plasma

Scientists working at CERN recently announced that they believe a new state of matter, known as a quark-gluon
plasma (QGP), has been observed. Although the evidence remains controversial, the search for QGP is a very hot
topic. The basic idea is that nucleons consist of quarks bound together by the exchange of gluons. If sufficiently
high density and temperature can be achieved by colliding energetic beams of nuclei, it might be possible to recreate
a state of the early universe, immediately after the Big Bang, in which quarks and gluons form a plasma. As this
system expands and cools, the quarks condense into nucleons with 3 quarks each. Here we develop a simple model
of the phase boundary between QGP and ordinary nuclear matter. Quarks are fermions with degeneracy factor gp,
while gluons are massless bosons (like photons) with degeneracy factor gg = 16. Near the phase boundary we can
assume that heavy quarks do not participate and, hence, use go = 12 for u and d quarks.

a) Show that the chemical potential for an ultrarelativistic Fermi gas is related to density by

N T3 1 3

7= 7= (7))
where g¢ is the quark degeneracy factor. Note that we use natural units in which temperature is measured in energy
units and 7 = ¢ = 1. More familiar units can be obtained using #ic » 200 MeV fm, where a femtometer (fin) is 1071
m. [Hint: although the temperature is high, the density is also large; hence, the quark gas is highly degenerate. You

can use the approximation for large z developed in fermi.nb.]

b) Show that the equation of state for an ultrarelativistic quark gas can be expressed in the form

120 4 \T 8m2 \T

o= 5 (T (5 e )

while the equation of state for massless gluons with degeneracy factor gg is

1 Ug ®

= —_ — = ———T
y4e; 37 g090

¢) A nucleon can be visualized as a bubble containing 3 quarks whose surface is subject to a pressure B exerted by
the quantum-mechanical vacuum. Thus, balancing the internal and external pressures requires B = pp + pg. Use
these results to produce a plot of temperature versus density along the phase boundary given that B4 ~ 0.7 fm™".



