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The indistinguishability of identical particles has profound effects at low temperatures and/or high 
density where quantum mechanical wave packets overlap appreciably.  The occupation representation is 
used to study the statistical mechanics and thermodynamics of ideal quantum gases satisfying Fermi-
Dirac or Bose-Einstein statistics.  This notebook concentrates on formal and conceptual developments, 
liberally quoting more technical results obtained in the auxiliary notebooks occupy.nb, which presents 
numerical methods for relating the chemical potential to density, and fermi.nb and bose.nb, which study 
the mathematical properties of special functions defined for Ferm-Dirac and Bose-Einstein systems.  The 
auxiliary notebooks also contain a large number of exercises.

Indistinguishability

In classical mechanics identical particles remain distinguishable because it is possible, at least in principle, to label 
them according to their trajectories.  Once the initial position and momentum is determined for each particle with the 
infinite precision available to classical mechanics, the swarm of classical phase points moves along trajectories which also 
can in principle be determined with absolute certainty.  Hence, the identity of the particle at any classical phase point is 
connected by deterministic relationships to any initial condition and need not ever be confused with the label attached to 
another trajectory.  Therefore, in classical mechanics even identical particles are distinguishable, in principle, even though 
we must admit that it is virtually impossible in practice to integrate the equations of motion for a many-body system with 
sufficient accuracy.

Conversely, in quantum mechanics identical particles are absolutely indistinguishable from one another.  Since the 
particle labels have no dynamical significance, exchanging the coordinates or labels of two identical particles can change 
the wave function by no more than an overall phase factor of unit magnitude.  In this chapter we analyze the sometimes 
quite profound consequences of permutation symmetry for systems of identical particles, but first we would like to provide 
a qualitative explanation for the similarities and differences between the classical and quantum pictures.  Perhaps the most 
significant difference between these pictures is found in the inherent fuzziness of quantum trajectories.  Contrary to 
classical ideas, it is not possible even in principle to determine both the position and momentum of a particle simulta-
neously with arbitrary precision.  The precisions with which conjugate variables can be determined simultaneously are 
limited by the Heisenberg uncertainty relation Dx D px ¥ ÑÅÅÅÅ2 , whereby precise measurements of one variable cause the 
uncertainty in its conjugate variable to be quite large.  Therefore, the set of classical phase points cannot be determined 
with absolute certainty; nor can the evolution of the system be confined to sharp trajectories through phase space.  The 
trajectory for each particle is initially broadened by the uncertainty product and it becomes fuzzier and more diffuse as it 
evolves, much as a wave packet would spread as it propagates through a dispersive medium.  However, a quantum wave 
packet spreads naturally even without a dispersive medium.



Under some circumstances these two apparently conflicting pictures can in fact become quite similar.  When the 
wave packets are sufficiently compact and the density of the system is sufficiently small that different wave packets rarely 
overlap, we can again distinguish particles by the trajectories followed by their wave packets.  Small corrections may be 
necessary for quantum effects that might occur when a pair of wave packets does overlap, but otherwise the classical 
description can be quite accurate under appropriate conditions.  As we argued when developing semiclassical statistical 
mechanics, the applicability of the classical picture is governed by the thermal wavelength

lB =
h

ÅÅÅÅÅÅÅÅÅÅ
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=
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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pB = H2 p m kB TL1ê2

corresponding to the de Broglie wavelength for a particle with typical thermal momentum pB .  From dimensional argu-
ments alone it is clear that the width of the wave packet is inversely proportional to the momentum of the particle and is 
similar to the wavelength for the dominant component of the wave packet.  The typical momentum must be proportional to 
the mass and to the typical velocity near the peak of the Maxwell-Boltzmann distribution.  Therefore, large mass or high 
temperature produce small lB  where the classical approximation becomes useful.  Small mass or low temperature result in 
large lB , which increases the overlap between wave packets and requires a quantum description.  Thus, the relative 
importance of fundamentally quantum mechanical behavior is gauged by the quantum concentration

nQ =
N

ÅÅÅÅÅÅÅÅÅÅÅÅ
g V
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which compares the volume occupied by wave packets to the volume available to each particle.  Here we use g  to repre-
sent the multiplicity factor for a point in phase space.  This factor typically takes the values 2 s + 1 where s  is the intrinsic 
angular momentum, but may be larger if there are other internal degrees of freedom.  The classical picture may be appropri-
ate when nQ ` 1, but as nQ  approaches unity nonclassical behavior is expected.

It is important to recognize that even when the classical description is useful, the quantum mechanical indistinguish-
ability of identical particles continues to have important consequences.  One must still consider indistinguishability when 
enumerating classical states in order to resolve the Gibbs paradox and to obtain extensive thermodynamic potentials.  
Similarly, the granularity of phase space is needed to establish the scale for entropy.

Permutation symmetry

An N -body system is described by a wave function of the form Y@q1, ∫, qN D  where qi  denotes the full set of 
coordinates belonging to particle i .  Suppose that the N  particles are identical and hence indistinguishable from one 
another.  The Hamiltonian must then be invariant with respect to interchange of any pair of identical particles.  Consider 
the action of the particle exchange operator Xi, j  defined by

Xi, j Y@∫ qi ∫ q j ∫D = s Y@∫ q j ∫ qi ∫D
which exchanges the coordinates of particles i  and j .  A second application of the exchange operator 

Xi, j
2 Y = s2 Y = Y

must restore the wave function to its original state.  The symmetry of the Hamiltonian under particle exchange requires X  
to be unitary and hence s2 = 1.  Therefore, the wave function must be either symmetric (s = 1) or antisymmetric (s = -1) 
with respect to particle exchange.
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Experimentally, the exchange symmetry of many-body systems is found to be intimately related to the intrinsic 
angular momentum (spin) of their constituents.  Particles with half-integral spin live in antisymmetric wave functions and 
are called fermions; particles with integer spin live in wave functions symmetric under particle exchange and are called 
bosons.  Although these relationships can be derived using relativistic quantum field theory, for our purposes it is sufficient 
to regard this distinction as an experimental fact.  We shall soon find that the statistical properties of fermion and boson 
systems are profoundly different at low temperatures.  Fermions obey Fermi-Dirac (FD) statistics, whereas boson obey 
Bose-Einstein (BE) statistics.  In the classical limit, both distributions reduce to the Maxwell-Boltzmann (MB) distribution.

The indistinguishability of identical particles affects the number of distinct states very strongly.  Consider a system 
of two identical noninteracting fermions.  The wave function must be antisymmetric wrt exchange of the coordinates of the 
two particles.  Hence, the two-particle wave function takes the form

Yn,m@q1, q2D =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2  H yn@q1D ym@q2D - yn@q2D ym@q1D L
where q1 and q2  are particle coordinates and yn  and ym  are single-particle wave functions.  Notice that the two-particle 
wave function vanishes if one attempts to place both particles in exactly the same state.  Therefore, the Pauli exclusion 
principle states that it is not possible for more than one fermion to occupy any particular state; occupancy by one fermion 
blocks occupancy by others.

Consider a system of 2 identical particles for which 3 single-particle states are available.  If, as in classical mechan-
ics, the particles are considered distinguishable, they may be labeled as A  and B .  On the other hand, both particles must 
have the same label, say A , if they are considered indistinguishable.  The tables below enumerate all distinct states for 
distinguishable classical particles or for indistinguishable fermions and bosons.  Classically, 32 = 9 distinct microstates are 
available, but only 3 are available to fermions or 6 to bosons.  Also notice that the ratio between the probability that the 
two particles occupy the same state to the probability that they occupy different states is 0.5 classically, 1.0 for bosons, and 
0 for fermions.  Therefore, the requirements of permutation symmetry severely limit the number of states, especially for 
fermions.

1 2 3
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AB
AB

A B
B A
A B
B A

A B
B A

classical
1 2 3

A A

A A

A A

fermions
1 2 3

AA
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A A
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N-body wave functions

Consider a system of N  identical particles confined to volume V .  Let q = 8q1, ∫, qN <  represent a complete set of 
coordinates.  The wave function for a many-body state labeled Ya , where a = 8a1, ∫, aN <  denotes a complete set of 
quantum numbers, will then have the formXq1 ∫ qN » Ya\ = Ya@q1 ∫ qND = Ya@qD
Let P  denote a particular permutation operator and let s@PD = ≤1 represent the signature for an even (+) or odd (-) permuta-
tion.  For example, P213 8q1, q2, q3< = 8q2, q1, q3<  would be an odd permutation with s@P213D = -1, while 
P231 8q1, q2, q3< = 8q2, q3, q1<  would be an even permutation with s@P231D = +1.  Any permutation of the coordinates or 
labels changes the wave function by at most a phase factor; it matters not whether we choose to permute coordinates or 
labels.  Bosons are symmetric with respect to particle exchange, such that

bosons ï P Ya@8qi<D = Y@P 8qi<D = YPa@8qi<D = Ya@qD
whereas fermions are antisymmetric with respect to particle change, such that the phase of a permutation is even or odd 
according to the signature of the permutation

fermions ï P Ya@8qi<D = Y@P 8qi<D = YPa@8qi<D = H-Ls@PD Ya@qD
It will be useful to define 

bosons :    dP = +1
fermions :   dP = H-Ls@PD

It is useful to introduce a complete orthonormal set of single-particle wave functions fa@qD , such that Xfa » fb\ = da,b .  Unsymmetrized product wave functions for the N -body systems can then be defined by

Ua@qD = fa1 @q1D fa2@q2D ∫ faN @qND = ‰
i=1

N

fai @qiD
Properly symmetrized N -body wave functions can now be constructed by adding all possible permutations of the product 
wave functions with appropriate phases, such that

Fa@qD =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!N !
 ‚

P
dP Ua@PqD =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!N !

 ‚
P

dP UPa@qD
Any Fa  constructed from single-particle eigenfunctions fai  will now represent a properly symmetrized eigenfunction for 
system of N  noninteracting identical particles.  Wave functions for interacting systems can be constructed from superposi-
tions of product wave functions, which serve as basis vectors for the system.  However, for bosons one must be careful to 
properly normalize the product wave functions.
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Occupation representation

We begin our investigation of the thermodynamic consequences of permutation symmetry by studying ideal 
quantum fluids composed of identical fermions or bosons under conditions where their mutual interactions may be 
neglected.  Under these circumstances the many-particle Hamiltonian may be expressed as a summation over N  indepen-
dent identical single-particle contributions 

H = ‚
i=1

N

hi

with eigenfunctions Fn  represented by the set of occupation numbers n = 8n1, n2, ∫, n¶<  such that

H Fn = En Fn En = ‚
a=1

¶

na@nD ¶a Nn = ‚
a=1

¶

na@nD
where na@nD  is the number of particles in the single-particle orbital fa  satisfying the eigenvalue problem

h fa = ¶a fa

The many-body wave function

Fn = „
P

H≤ LP ‰
i=1

N

fi

may then be constructed from a properly symmetrized product of Nn  single-particle wave functions where here the index i  
runs over all occupied orbitals and where the summation over P  includes all permutations of the particle labels with 
appropriate phases.  Rather than specifying the coordinates or quantum numbers for each particle in the system, the 
occupation representation specifies how many, but not which, particles occupy each single-particle orbital.  This is the 
most natural representation of the states for a system of identical particles and avoids the complications of enforcing the 
permutation symmetry and evaluating degeneracy factors. 

Although permutation symmetry can be enforced explicitly within the canonical ensemble or microcanonical 
ensembles, the grand canonical ensemble provides a more efficient method.  This method focuses upon the occupancy of a 
particular orbital a  as the relevant subsystem instead of treating the particles themselves as the subsystems.  As a sub-
system the orbital exchanges energy and particles with a reservoir comprised of the particles occupying all other orbitals.  
Because the number of particles occupying each orbital is indefinite, a statistical quantity, this approach naturally involves 
the grand canonical ensemble.  The properties of the reservoir establish a temperature and chemical potential which serve 
as Lagrange multipliers that enforce constraints upon the energy and density of the entire system.  The occupancy and its 
dispersion can be deduced easily.

The probability Pn  for a state n = 8na<  in the occupation representation can be expressed as

Pn = Z-1 Exp@- b HEn - m NnLD
where
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Nn = ‚
a=1

¶

na@nD En = ‚
a=1

¶

na@nD ¶a

are the total particle number and total energy and where

Z@T , V , mD = ‚
Nn=0

¶ ‚
n

£ ‰
a

Exp@- b na H¶a - mLD
is the grand partition function.  The temperature and chemical potential are determined by the constraints upon energy and 
density.  The dependence upon volume is carried implicitly by the dependence of the single-particle energy levels ¶a  upon 
the size of the system.  The separability of the energy allows the partition function for each state n  to be expressed as a 
product of partition functions for each orbital a .  The restricted sum ⁄n

£  indicates summation over all sets of occupation 
numbers 8na<  with total particle number Nn .    The grand partition function then sums over Nn  as well, weighted by the 
factor Exp@b m NnD .  The effect of this summation over Nn  is to remove the restriction upon sum over 8na< , such that

Z@T , V , mD = ‚8na< ‰a

Exp@- b na H¶a - mLD
where each sum over na  is now independent, only restricted by the Pauli exclusion principle for fermions.  It is useful to 
define

xa ª b H¶a - mL
as the energy of orbital a  relative to the chemical potential in units of the thermal energy kB T , such that  

Z@T , V , mD = ‚8na< ‰a

Exp@-na xaD
The summation and product can now be interchanged‚8na< ‰a

Exp@-na xaD = ‰
a

‚
na

Exp@-na xaD
so that

Z = ‰
a

Za Za = ‚
na

Exp@-na xaD
becomes a product of independent single-orbital grand partition functions.  This result is quite analogous to the factoriza-
tion of an N -element canonical partition function in terms of independent single-element factors, now applied to orbitals 
rather than to particles.  Note that there will normally be an infinite number of Za  factors, but most will be unity.  Simi-
larly, the probability Pn  also factors according to

Pn = ‰
a

Pa Pa = Za
-1 Exp@-na xaD

The mean particle number and total energy are now obtained as ensemble averagesXN\ = ‚
n

Pn Nn = ‚
n

‚
a

Pn na@nD = ‚
a

na
êêêêXE\ = ‚

n

Pn En = ‚
n

‚
a

Pn na@nD ¶a = ‚
a

na
êêêê ¶a

where
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na
êêêê = ‚

n

Pn na@nD
is the mean occupancy of orbital a .  Recognizing that each single-orbital probability distribution is normalized, such that ‚

na

Pa@naD = 1,

the mean occupancy for each orbital can be evaluated independently using

na
êêêê = ‚

na

Pa na

where the relationship between the occupancies for various orbitals is governed by ¶a  and m  and where the total density is 
governed by m .  Thus, the thermodynamic properties of the system are determined by the mean occupancies, which are 
obtained from the grand partition function according to

na
êêêê = kB T

∑ lnZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ m

= -ikjj ∑GaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ m

y{zzT ,V
= -

∑ lnZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

where Ga = -kB T lnZa  is the single-orbital contribution to the grand potential G = ⁄a Ga .  The variance in occupancy 
can also be obtained easily.  Evaluating the mean square particle number in each orbitalXna

2\ = Za
-1 ∑2ZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ xa
2 = ikjj ∑GaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ m
y{zz2

- kB T  
∑2GaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ m2 = na

êêêê2 - kB T  
∑2GaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ m2

we find that the variance becomes

sna
2 = XHna - na

êêêêL2\ =
∑2 lnZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ xa
2 = -kB T  

ikjjj ∑2GaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ m2

y{zzzT ,V
= -

∑na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

Therefore, the occupancy variance is related to the derivative with respect to chemical potential by

sna
2 = -

∑na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

Continuous approximation for uniform systems

If the system is sufficiently large and the spacing between single-particle energy levels sufficiently small, we can 
replace discrete sums over states by integrals over energy weighted by the density of states.  Thus, the total number of 
particles becomes

N = ‚
a

na
êêêê ö N ã ‡

0

¶

„¶D@¶D nêê@¶, b, mD
and determines the dependence of the chemical potential on the temperature and density of the system.  If the particle 
density is specified, the chemical potential can be determined by numerical solution of this equation.  However, we will 
find that for the Bose-Einstein distribution care must be taken with the continuous approximation whenever one or more 
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states develops macroscopic occupancy.  Similarly, the equation of state is determined by the grand potential, which in the 
continuous approximation takes the form

G = -kB T ‚
a

lnZa ö -kB T  ‡
0

¶

„¶D@¶D lnZ@¶, b, mD
where

Z@¶, b, mD = H1 ≤ ‰- b H¶-mLL≤1

is the single-orbital partition function.  Therefore, the grand potential becomes

G = ¡kB T  ‡
0

¶

„¶D@¶D Log@1 ≤ ‰- b H¶-mLD
with upper or lower signs for fermions or bosons, respectively. 

The density of states for a gas confined to a simple box of volume V  is related to the phase-space density by 

D@¶D „¶ = D@k”÷ D „3 k = g V  
„3 k

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL3

where g  is the intrinsic degeneracy of a state in momentum space.  For example, if the only degree of freedom that is 
needed to describe the internal state of a particle is its spin s , then g = 2 s + 1 represents the total number spin states which 
are degenerate in the absence of an external magnetic field.  If the system is spherically symmetric, we can use

D@k”÷ D „3 k ö g V
k2 „ k

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p2

Assuming that nonrelativistic kinematics are applicable, the relationship between energy and momentum representations of 
the density of states is given by

¶ =
HÑ kL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
ï

„¶
ÅÅÅÅÅÅÅÅÅÅ
„ k

= 2
¶
ÅÅÅÅÅ
k

ï k2 „ k =
1
ÅÅÅÅÅ
2

 J 2 m
ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 N3ê2

 ¶1ê2 „¶

such that

D@¶D =
g V

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p2  J 2 m

ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 N3ê2

 ¶1ê2
Systems with lower dimensionality, or with relativistic kinematics, or with harmonic oscillator rather than square-well 
confinement potentials, are considered in the exercises.  

Statistics of occupation numbers

The occupancy of single-particle states in a many-body system is a statistical quantity subject to thermodynamic 
fluctuations.  Since the number of particles occupying any state is indeterminate, each orbital can be visualized as a 
subsystem in equilibrium with a reservoir of energy and particles.  Therefore, the statistics of occupancy are susceptible to 
analysis using the grand canonical ensemble.  The probability distribution describing the occupancy of orbital a  with 
single-particle energy ¶a  in an ideal quantum fluid is
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P@naD =
‰-na xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅZa
Za = ‚

na

‰-na xa

where m  is the chemical potential established by the reservoir and where it is very convenient to define a reduced energy 
relative to the chemical potential as xa = bH¶a - mL .  The grand partition function  Za  sums over all possible values of the 
occupancy na  for orbital a .  The mean occupancy and its variance are given by

na
êêêê = ‚

na

Pa na = -
∑ lnZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ xa

sna
2 = XHna - na

êêêêL2\ = -
∑na

êêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

à Maxwell-Boltzmann distribution

Although the semiclassical Maxwell-Boltzmann (MB) distribution does not actually pertain to any real quantum 
system, it is nevertheless instructive to compare the FD and BE distributions to this classical model.  Classically, the 
degeneracy for a state of N  identical particles described by occupation numbers n = 8na<  would be N ! ê¤a na ! , but we 
must divide by N !  to resolve the Gibbs paradox so that gn = H¤a na !L-1  becomes the proper statistical weight for the MB 
distribution.  The grand partition function can then be factored, such that

Za = „
na=0

¶
‰-na xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
na !

= Exp@‰-xaD
is recognized as an exponential function with a fancy argument.  Therefore, the grand potential, mean occupancy, and 
occupancy variance become

Ga = -kB T ‰-xa ï na
êêêê = ‰-xa ï sna

2 = na
êêêê

The single-orbital occupancy probability distribution can now be expressed in a form

P@naD =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
na !

 ‰-na xa  ‰-‰-xa =
na
êêêêna

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
na !

 ‰-na
êêêê

we recognize as the Poisson distribution, which is an approximation to the binomial distribution that applies to ensembles 
consisting of many independent trials with low probability for success in each trial.  Similarly, the MB distributions applies 
when the total number of particles is large but the probability that any particular single-particle orbital is occupied, and 
hence its mean occupancy, is small.  Thus, the rms fluctuation in orbital occupancy 

snaÅÅÅÅÅÅÅÅÅÅÅÅ
na
êêêê = J 1

ÅÅÅÅÅÅÅÅÅÅ
na
êêêê N1ê2

is characteristic of systems with statistical independence.

à Fermi-Dirac distribution

The exclusion principle restricts the occupancy na  for fermions to either 0 or 1.  Thus, the grand partition function 
and grand potential for the Fermi-Dirac (FD) distribution reduce to simply

Za = 1 + ‰-xa ï Ga = -kB T Log@1 + ‰-xa D
where xa = bH¶a - mL .  Therefore, the mean occupancy becomes
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na
êêêê = -

∑ lnZaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

= H‰xa + 1L-1

for the FD distribution.  Using

‰xa =
1 - na

êêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

na
êêêê ï Za = 1 - na

êêêê

the probability distribution P@naD  for occupation numbers can be expressed in the form

P@na = 0D = Za
-1 = 1 - na

êêêê

P@na = 1D = Za
-1 ‰-xa = na

êêêê

Therefore, we can interpret na
êêêê  for the FD distribution as the probability that orbital a  is occupied and 1 - na

êêêê  as the 
probability that it is empty.

Similarly, the occupancy variance is

sna
2 = -

∑na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

=
‰xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH‰xa + 1L2 = na
êêêê H1 - na

êêêêL
so that the relative rms fluctuation in occupancy is

snaÅÅÅÅÅÅÅÅÅÅÅÅ
na
êêêê = J 1 - na

êêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

na
êêêê N1ê2

Hence, the occupancy fluctuations are suppressed relative to a normal (uncorrelated) distribution by a factor of H1 - na
êêêêL1ê2  

due to the influence of quantum correlations arising from permutation symmetry.

à Bose-Einstein distribution

For bosons the occupancy of each orbital is unrestricted so that the sum over na  extends from zero to infinity.  The 
grand partition function 

Za = ‚
na=0

¶

‰-na xa = H1 - ‰-xa L-1

is thus an infinite geometric series.  The grand potential and mean occupancy are then

Ga = kB T Log@1 - ‰-xaD ï na
êêêê = H‰xa - 1L-1

The requirements that the orbital occupancies be positive definite and that Z  converges necessitate m § ¶0  where ¶0  is the 
lowest single-particle energy.  Since by convention ¶0 = 0, we require -¶ § m § 0 for the Bose-Einstein (BE) distribution, 
whereas m  is unrestricted for the FD distribution.  Using

‰xa =
1 + na

êêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

na
êêêê ï Za = 1 + na

êêêê

we find that the occupancy probability distribution

P@naD =
‰-na xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅZa
=

na
êêêêna

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 + na
êêêêLna+1 = na

êêêê-1 J na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + na

êêêê Nna+1

is a geometric distribution with constant ratio
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P@na + 1D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

P@naD =
na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + na

êêêê

between successive terms.

The occupancy variance is

sna
2 = -

∑na
êêêê

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xa

=
‰xa

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH‰xa - 1L2 = na
êêêê H1 + na

êêêêL
so that the rms fluctuation

snaÅÅÅÅÅÅÅÅÅÅÅÅ
na
êêêê = J 1 + na

êêêê
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

na
êêêê N1ê2

is enhanced by a factor of H1 + na
êêêêL1ê2  compared with a normal (classical) system.  Thus, fluctuations in the FD distribution 

are suppressed and in the BE distribution enhanced by the occupancy of an orbital.  These correlations arise from the 
permutation symmetry of the many-body wave function even without interactions.

The BE occupancy distribution should be familiar from our studies of the Debye model and the Planck distribution.  
For these models we found that the mean number of quanta in a mode with energy ¶  was nêê@¶D = H‰b ¶ - 1L-1 , which has the 
same form as the Bose-Einstein distribution with m = 0.  Recognizing that quanta of the electromagnetic field are photons, 
an elementary particle with spin 1, we must treat photons with the same energy and polarization as indistinguishable 
bosons satisfying Bose-Einstein statistics.  However, because the number of photons is truly indeterminate, the chemical 
potential for a photon gas vanishes.  Although there is no elementary particle that corresponds to quantized lattice vibra-
tions of a crystal, these quanta behave identical spinless particles with vanishing chemical potential.  In fact, there is a wide 
variety of quantized excitations that are governed by BE statistics with m = 0.

à Comparison between FD, BE, and MB occupancies

The mean occupancy nêê@¶, b, mD  for an orbital with energy ¶  in a system with inverse temperature b  and chemical 
potential m  can be expressed in the generic form

nêê@¶, b, mD = H‰b H¶-mL + gL-1 where
FD ï g = +1
MB ï g = 0
BE ï g = -1

where g = 0, ≤1 governs the statistical properties of the distribution.  Adopting the usual convention that the single-
particle energy spectrum starts at ¶0 = 0, such that ¶ ¥ 0, the requirement that nêê  be positive definite requires -¶ § m § 0 
for the BE distribution, but m  may assume either sign for the MB and FD distributions.  These occupancy functions are 
compared below.
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These occupancy functions converge in the limit
¶ - m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

p 1 ï nêê@¶, b, mD = ‰- b H¶-mL
where the mean occupancy nêê ` 1 is very small.  Ordinarily one considers the classical limit to be synonymous with high 
temperature, but this comparison demonstrates that a more rigorous description of the classical limit is "small single-orbital 
occupancy", which is needed for the Gibbs resolution of the indistinguishability problem to become accurate.  It is not 
sufficient to require the temperature to be large, which is needed to approximate a discrete spectrum of energy states by a 
continuous phase space, but one must also require the density to small enough for the chemical potential to be large and 
negative such that 

classical limit : m ` ¶ - kB T

As T  increases, m must become increasingly negative to fulfill this condition for any fixed ¶ .  To gauge the accuracy of the 
classical approximation, we relate the chemical potential for a classical ideal gas to its density by summing the mean 
number of particles in each momentum state using the MB distribution.

N
ÅÅÅÅÅÅÅ
V

= ‡ „3 p
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 p ÑL3  Exp

ÄÇÅÅÅÅÅÅÅÅÅ- b
ikjjj p2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

- m
y{zzzÉÖÑÑÑÑÑÑÑÑÑ = lB

-3 ‰b m where lB =
ikjjj 2 p Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m kB T

y{zzz1ê2
Thus, we find that the chemical potential is closely related to the quantum concentration:

m = kB T LogB N
ÅÅÅÅÅÅÅ
V

 lB
3F = kB T Log@nQD

This result applies to a nonrelativistic gas in three spatial dimensions.  Clearly,

m ` 0 ï nQ ` 1

a large negative chemical potential requires a small quantum concentration to minimize the overlap between wave packets 
associated with the characteristic thermal energy.  The relationship between chemical potential and density is more compli-
cated for the FD and BE distributions, but reduces to the MB result in the classical limit nQ ` 1.

12 IdealQuantumGases.nb



Degenerate Fermi gas

According to the FD distribution, the mean occupancy for a single-particle state with energy ¶  is

nêê@¶, b, mD = H‰b H¶-mL + 1L-1

At T = 0 the argument of the exponential is -¶  for ¶ < m  or is +¶  for ¶ > m .  Hence, the occupancy is unity for all states 
with ¶  below m  and is zero for states with ¶ > m .  Therefore, the completely degenerate Fermi gas at T = 0 is described by 
a frozen distribution in which all orbitals below the chemical potential are occupied and all orbitals above m are vacant.  
For a fixed density, the chemical potential is a function of temperature alone.  By convention, we define the Fermi energy, 
¶F , to be the chemical potential the system has at T = 0 for a given density.  Similarly, the Fermi temperature, TF , is 
defined by

T = 0 ï m = ¶F = kB TF

It is then useful to express ¶  and m  is units of ¶F  and to define the reduced temperature as t = T ê TF .  Also notice that

¶ = m@TD ï nêê = 0.5

such that the chemical potential for finite temperature is equal to the energy for which the occupancy is one half.

The relationship between the chemical potential and temperature is determined by fixing the average density of the 
system.  At T = 0, all states below ¶F  have unit occupancy so that the total number of particles in a completely degenerate 
nonrelativistic Fermi gas is given by 

N = ‡
0

¶

„¶D@¶D nêê@¶D =
g V

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p2  J 2 m

ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 N3ê2 ‡

0

¶F

¶1ê2 „¶ =
g V

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
6 p2  J 2 m ¶FÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ñ2 N3ê2
Solving for ¶F  in terms of the particle density r = N êV , we find

¶F =
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

 
ikjjj 6 p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
g

 r
y{zzz2ê3

=
HÑ kFL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m

kF =
ikjjj 6 p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
g

 r
y{zzz1ê3

The fact that the Fermi momentum kF  scales with r1ê3  is a consequence of the fact that the wave numbers for single-
particle states scale with V -1ê3 .  For later purposes it will be useful to observe that the density of states can also be 
expressed in the forms

D@¶D „¶ =
3

ÅÅÅÅÅÅÅ
2

 N
¶1ê2 „¶
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶F 3ê2 = N „ J ¶ÅÅÅÅÅÅÅÅÅ

¶F
N3ê2

D@kD „ k = 3 N
k2 „ k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kF
3 = N „ ikjj k

ÅÅÅÅÅÅÅÅÅ
kF

y{zz3

by scaling according to either ¶F  or kF , as appropriate.

The average single-particle energy is
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¶êê =
Ÿ0

¶
„¶D@¶D nêê@¶, m, TD ¶

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ0
¶

„¶D@¶D nêê@¶, m, TD
which for a completely degenerate Fermi gas reduces to

T = 0 ï ¶êê =
Ÿ0
¶F „¶ ¶1ê2 ¶

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ0
¶F „¶ ¶1ê2 =

3
ÅÅÅÅÅ
5

 ¶F

Hence, the total internal energy for a degenerate Fermi gas with N  particles is simply

T = 0 ï U =
3
ÅÅÅÅÅ
5

 N ¶F

Similarly, the pressure for any nonrelativistic ideal gas, classical or quantum, is simply two-thirds of the energy density.  
Thus, we find that the pressure

T = 0 ï p =
2
ÅÅÅÅÅ
5

 r ¶F =
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅ
5 m

 
ikjjj 6 p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
g

y{zzz2ê3
 r5ê3

is finite, scaling with r5ê3 , even at T = 0.

Contrary to the behavior of a classical ideal gas, for which the pressure vanishes at T = 0, a Fermi gas retains 
substantial pressure at absolute zero.  This additional pressure, which may be called degeneracy pressure, is due to the 
exclusion principle which, by preventing more than g  particles from occupying the same energy level, compels fermions to 
occupy a distribution of energy levels above the ground state.  Hence, the energy density is proportional to r5ê3  and the 
pressure seeking to reduce that energy density can be quite large.  Even without explicit interactions between particles, 
correlations due to antisymmetrization of the wave function produce an effective repulsion between fermions.  This is a 
purely quantum effect with no classical counterpart.

à Example: conduction electrons

Conduction electrons in a metal move within an average potential that confines them to the volume of the material, 
but mutual interactions can often be neglected.  The dispersion relation for electrons moving within a uniform mean field 
can then be expressed in the form

¶ =
HÑ kL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
+ U@k2D

where U@k2D  is a momentum-dependent potential describing the interaction with the lattice.  It is convenient to express U  
as a function of k2  rather than k  because it must be an even function to satisfy rotational and reflection symmetries.  
Recognizing that momenta near the Fermi surface play a dominant role in the thermodynamics of a nearly degenerate 
Fermi gas, it is useful to expand the potential about the Fermi momentum kF , such that

U@k2D º U0 + U1 
Ñ2 Hk2 - kF

2L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m
+ ∫

where

U0 = U@kF
2D U1 =

2 m
ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2  

ikjjj ∑U@k2D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑k2
y{zzzk2=kF

2

Combining the kinetic and potential terms, the dispersion relation now takes the form
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¶ º ¶0 +
HÑ kL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 meff

where ¶0 = U0 - U1 kF
2

ÅÅÅÅÅÅÅÅÅ2 m  is an energy shift and
meffÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m

= H1 + U1L-1

is the effective mass for electrons near the Fermi surface.  Therefore, the primary effect of the mean field is to shift the 
energy scale and alter the effective mass.  In metals one usually finds that U1 > 0 ï meff > m  such that the effective 
mass for a conduction electron with momentum near kF  appears to be increased by its attraction to the lattice.

Thus, one can treat conduction electrons as an ideal Fermi gas of particles with effective mass meff .  Using 
r = 8.5 µ 1022 cm-3  and meff = 1.39 me , we obtain a Fermi energy ¶F = 5.07 eV for copper.  The corresponding Fermi 
temperature, TF º 6 µ 104  kelvin, is so large that the electron gas can be treated as almost completely degenerate at room 
temperature.  The corresponding pressure within this gas is then p º 2.7 µ 105  atmospheres!  This large outward pressure 
must be balanced by the attractive electrostatic forces binding the electrons to the lattice.  The confinement of the electron 
gas is accomplished by a nearly uniform potential rather than by walls at the boundaries of its volume.  Nevertheless, since 
the interactions with the lattice can be represented as a smooth mean field in which all of the electrons move more or less 
independently of each other, the noninteracting Fermi gas model is still appropriate.  

à Example: nuclear matter

The atomic nucleus consists of protons and neutrons, which are both spin 1ÅÅÅÅ2  particles of equal mass.  It is useful to 
treat protons and neutrons as states of the same particle, the nucleon, differing only in an internal quantum number called 
isospin.  Nuclear matter is a theoretical system consisting of equal numbers of protons and neutrons with the Coulomb 
interaction turned off.  Thus, the intrinsic degeneracy factor for momentum states in nuclear matter is g = 4.  The density 
of nuclear matter is based upon the central density of large nuclei, which is approximately constant at 0.16 fm-3 , where 1 
femtometer (fm) is 10-15  m.  Using these values, one obtains ¶F = 37 MeV, which corresponds to an enormous pressure of 
4 µ 1027  atmospheres that must be balanced by the mean potential generated by the mutual interactions among nucleons.  
Obviously the name strong force for the nucleon-nucleon interaction is well deserved!  It was a major accomplishment of 
nuclear physics in the 1950s to demonstrate that the Fermi gas model provides a reasonable starting point for studying 
nuclear structure despite the strength of this interaction.

Thermodynamics of nearly degenerate Fermi gases

To develop the thermodynamics of nearly degenerate Fermi gases, we must determine the relationship between 
chemical potential and density for arbitrary temperature.  The total number of particles is obtained by integration of the 
mean occupancy over the density of states, such that

N = ‡
0

¶

„¶D@¶D nêê@¶, m, TD ï ¶F
3ê2 =

3
ÅÅÅÅÅ
2

 ‡
0

¶

„¶
¶1ê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‰b H¶-mL + 1

provides an equation that can be used to determine m  given the temperature and ¶F , which depends only an density and 
fundamental constants.  It is useful to express energy and temperature in dimensionless form using t = T ê TF  and to 
introduce the fugacity z = ‰b m , such that
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‡
0

¶

„ x
x1ê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 ‰x + 1

ã
2
ÅÅÅÅÅ
3

 t-3ê2
provides an equation that determines the temperature dependence of the fugacity.  In chemistry fugacity is often called 
absolute activity.  The classical limit defined by large negative m  corresponds to small z , while large z  corresponds to the 
low-temperature limit of a nearly degenerate Fermi gas.  Recognizing that other thermodynamic functions depend upon 
integrals of similar form, it is customary to define a family of Fermi functions using

fn@zD =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@nD  ‡

0

¶

„ x
xn-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 ‰x + 1

where the normalization factor is chosen to ensure that fn@zD Ø z  when z Ø 0.  Thus, the chemical potential is obtained 
from the solution of the equation

GB 5
ÅÅÅÅÅ
2

F t3ê2 f3ê2@zD ã 1

or

f3ê2@zD ã
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 
è!!!!

p
 t-3ê2.

It is important to recognize that TF ∂ HN ê V L2ê3  is a function only of density, such that
N
ÅÅÅÅÅÅÅ
V

∂ T3ê2 f3ê2@zD
represents the temperature dependence of density at constant z  or the dependence of chemical potential on temperature and 
density.  Numerical methods for solution of the density equation are developed in fermi.nb.

Similarly, the internal energy can be expressed in terms of Fermi functions using

U = N  ¶êê =
Ÿ0

¶
„¶D@¶D nêê@¶, m, TD ¶

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ0
¶

„¶D@¶D nêê@¶, m, TD = N kB T  
Ÿ0

¶
„ x x3ê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅz-1  ‰x+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸ0
¶

„ x x1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅz-1  ‰x+1

= N kB T  
G@5 ê 2D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@3 ê 2D  

f5ê2@zD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD

such that the thermal equation of state becomes
U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB T

=
3
ÅÅÅÅÅ
2

 
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD

Next, the mechanical equation of state for a nonrelativistic ideal gas is simply p V = 2ÅÅÅÅ3  U , whereby
p V

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB T

=
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD

Thus, the pressure and energy density scale according to

p ∂
U
ÅÅÅÅÅÅÅÅ
V

∂ T5ê2 f5ê2@zD
Finally, the entropy 

S =
U + p V - N m
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T
ï

S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB

=
5
ÅÅÅÅÅ
2

 
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD - Log@zD

can be expressed in terms of z  and N ; hence, isentropic processes at constant N  also require constant z .  Therefore, using

constant z, N ï V T3ê2 = constant, p T-5ê2 = constant
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we find that adiabats for the nonrelativistic ideal Fermi gas take the familiar form

constant S, N ï p V 5ê3 = constant

The numerical and analytical properties of Fermi functions are studied in detail within the notebook fermi.nb; here 
we summarize some of the results.  These functions can be represented by a power series

fn@zD = -„
k=1

¶ H-zLk
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kn

that converges for all z > 0, n > 0.  There is a limiting value f¶@zD = z  and a useful downward recursion relation

fn-1@zD = z
∑

ÅÅÅÅÅÅÅÅÅ
∑ z

 fn@zD
For large z , the asymptotic expansion known as Sommerfeld's lemma 

fn@‰b mD > Hb mLn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@n + 1D  

ikjjj1 + n Hn - 1L p2
ÅÅÅÅÅÅÅÅ
6

 Hb mL-2 + n Hn - 1L Hn - 2L Hn - 3L 7 p4
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
360

 Hb mL-4 + ∫
y{zzz

can be derived by exploiting the fact that the mean occupancy for nearly degenerate systems has a sharp edge at the Fermi 
energy.  Representative Fermi functions are shown below for n = 8 1ÅÅÅÅ2 , 1, 3ÅÅÅÅ2 , 2, 5ÅÅÅÅ2 , 3, ¶<  with f1ê2  lowest and f¶  highest.

1 2 3 4 5
fugacity, z

0.5

1

1.5

2

2.5

f n
@zD

Fermi-Dirac functions

The temperature dependence of the chemical potential can be obtained by numerical solution of the equation

f3ê2@zD ã
4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 
è!!!!

p
 t-3ê2

with the result plotted below.  
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Chemical Potential

The chemical potential is defined as the Fermi energy at T = 0, vanishes at the Fermi temperature, and is large and nega-
tive for high temperatures where the classical limit applies.  For low temperatures we can approximate the chemical 
potential as

T ` TF ï m º ¶F  
ikjjj1 -

p2 t2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

12
-

p4 t4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

80
y{zzz

The temperature and energy dependence of the occupation probability are illustrated below.  For very low temperatures 
one finds that states with ¶ < ¶F  are filled while states above ¶F  are empty.  As the temperature increases, the Fermi 
surface becomes more diffuse as the population of energy levels above ¶F  are populated at the expense of states below ¶F .
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The thermal response of a nearly degenerate Fermi gas with small T ê TF  is largely determined by orbitals in the 

immediate vicinity of the Fermi energy.  Particles lying deeper in the energy distribution cannot absorb small amounts of 
energy because all nearby orbitals are already occupied by other particles and are blocked by the exclusion principle.  Only 
particles in the approximate energy range ¶ ≤ kB T  can participate strongly in thermal processes.  The shaded region in the 
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figure below illustrates the fraction the of system that can be considered thermodynamically active, which is a rather small 
fraction at low temperatures.  
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Thus, we might estimate the heat capacity for a nearly degenerate Fermi gas using

T ` TF ï CV ~ D@¶FD H2 kB TL J 3
ÅÅÅÅÅ
2

 kBN =
9
ÅÅÅÅÅ
2

 N kB 
T

ÅÅÅÅÅÅÅÅÅÅ
TF

where D@¶FD  is the density of states near the Fermi surface, the next factor is the width of the active energy interval, and 
the final factor is the heat capacity per participating particle.  Therefore, we expect the heat capacity to be linear for low 
temperature and to approach the classical limit from below.  A more rigorous analysis based upon the large-z  expansion of 
Fermi function gives the similar result

T ` TF ï
U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N ¶F

º
3
ÅÅÅÅÅ
5

+
p2 t2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
-

3 p4 t4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

80
+ ∫ ï

CVÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB

º
p2
ÅÅÅÅÅÅÅÅ
2

 t -
3 p4
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
20

 t3 + ∫

except that the coefficient 9ÅÅÅÅ2  is replaced by p2
ÅÅÅÅÅÅÅ2 .  In fact, one does find that the contribution made by conduction electrons 

to the heat capacity of metals for T ` TF  is linear in temperature and that this model provides a good prediction for the 
slope.

It is probably worthwhile to evaluate CV  explicitly in order to practice manipulation of fermi functions.  Using the 
chain rule, one obtains

U =
3
ÅÅÅÅÅ
2

 N kB T  
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD ï CV =

3
ÅÅÅÅÅ
2

 N kB
ikjjj f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD + T ikjj ∑ z

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV ,N
 
ikjjj ∑

ÅÅÅÅÅÅÅÅÅ
∑ z

 
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD y{zzz y{zzz

Then using the recursion relation z ∑z fn@zD = fn-1@zD , one soon finds

CV =
3
ÅÅÅÅÅ
2

 N kB
ikjjjj f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD +

T
ÅÅÅÅÅÅ
z

 ikjj ∑ z
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 
ikjjjj1 -

f5ê2@zD f1ê2@zD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

f3ê2@zD2

y{zzzz y{zzzz
The isochoric temperature dependence of z  is obtained by dimensional analysis of the density equation

GB 5
ÅÅÅÅÅ
2

F ikjj kB T
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶F

y{zz3ê2
 f3ê2@zD ã 1 ï

N
ÅÅÅÅÅÅÅ
V

∂ T3ê2 f3ê2@zD
Thus, constant V , N  requires T3ê2 f3ê2@zD  to remain constant, such that

T3ê2 f3ê2@zD = constant ï
3

ÅÅÅÅÅÅÅ
2

 T1ê2 f3ê2@zD + T3ê2 z-1 f1ê2@zD ikjj ∑ z
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV ,N
= 0
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Therefore, ikjj ∑ z
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV ,N
= -

3
ÅÅÅÅÅÅÅ
2

 
z

ÅÅÅÅÅÅ
T

 
f3ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f1ê2@zD

Finally, substituting this result, we obtain
CVÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

N kB
=

15
ÅÅÅÅÅÅÅÅÅ
4

 
f5ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f3ê2@zD -

9
ÅÅÅÅÅ
4

 
f3ê2@zD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f1ê2@zD

This result reduces to the classical limit for z Ø 0 or to the nearly degenerate result quoted above for large z  or, equiva-
lently, T ` TF .  Although it is often useful to express formal results in terms of the reduced temperature, 
t = T êTF = kB T ê ¶F , we must always remember that ¶F  depends upon density.

The temperature dependencies of the principal thermodynamic functions are illustrated below and are studied in 
more detail in the notebook fermi.nb.  The internal energy is greater than that of a classical ideal gas, shown by the dashed 
line, because the Pauli exclusion principle forces particles into higher energy levels.  Thus, the internal energy is 3ÅÅÅÅ5  N ¶F  at 
T Ø 0 and approaches the classical limit from above.  The corresponding degeneracy pressure produced by the effective 
repulsion between identical fermions is much larger than the kinetic pressure would be for distinguishable particles.  The 
heat capacity is small at low temperatures because only the relatively small number of particles within about kB T  of the 
Fermi surface can participate in the thermodynamics.  Similarly, the entropy is reduced at low temperature because a nearly 
degenerate Fermi gas is highly ordered; permutation symmetry strongly reduces the number of states available to fermions.  
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Thermodynamics of nearly degenerate Bose gases

The relationship between chemical potential and density for an ideal Bose gas 

N = ‚
a

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 Exp@b ¶aD - 1

requires more care at low temperature because it is possible for the occupancy of the ground state to become an appreciable 
fraction of the total number of particles, but the continuous approximation to the density of states for a uniform nonrelativis-
tic system, D@¶D ∂ ¶1ê2 , gives no weight at all to the ground state.  Under these conditions one cannot simply replace the 
sum by an integral because it would be impossible to account for all the particles.  A simple solution to this problem is to 
separate the sum into two contributions, N = Ngs + Nexc , where the mean number of particles in the ground state with 
energy ¶0  is given by

Ngs = g
z0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 - z0

where z0 = Exp@bHm - ¶0LD , while the mean number of particles found in excited states is approximated by the integral 

Nexc = ‡
0

¶

„¶D@¶D nêê@¶, m, TD =
g V

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p2  J 2 m

ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 N3ê2

 ‡
0

¶

„¶
¶1ê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 ‰b ¶ - 1

The requirement that the number of particles in excited states be positive limits the fugacity for Bose gases to the range 
0 § z § 1 and the chemical potential to the range m § ¶0 .  However, if z  approaches unity the ground-state occupancy 
becomes macroscopically large.  The accumulation of bosons in the ground state is a phenomenon, known as Bose-Einstein 
condensation, that has profound consequences for the properties of an ideal Bose gas.  Expressing z0  in terms of Ngs ,

z0 =
Ngs

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g + Ngs

º 1 -
g

ÅÅÅÅÅÅÅÅÅÅÅÅ
Ngs

where the intrinsic degeneracy g  is a number of order unity, one finds that z0  is extremely close to unity whenever Ngs  
reaches macroscopic size; in fact, z0  is very close to unity even for as few as a thousand particles in the ground state and is 
extremely close to unity if Ngs  becomes a nonnegligible fraction of a total particle number of order 1023 .  Thus, the critical 
temperature Tc  for Bose-Einstein condensation is determined by the condition m@TcD ã ¶0  at the specified density.  Ordi-
narily one shifts the energy scale so that ¶0 Ø 0 and in the continuous approximation ignores the slight dependence of the 
ground-state energy upon volume.

It is useful to define a family of Bose functions using

gn@zD =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
G@nD  ‡

0

¶

„ x
xn-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 ‰x - 1

where the normalization factor was chosen to ensure that gn Ø z  as z Ø 0.  Do not confuse the Bose function, gn , with the 
intrinsic degeneracy of momentum states g ; the notational similarity is unfortunate but traditional.  The detailed analytical 
and numerical properties of Bose functions are studied in bose.nb and here we summarize the salient results.  The Bose 
functions increase monotonically with z .  For small z , power-series expansion of the integrand produces a series 
representation
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n > 1 ï gn@zD = „
k=1

¶
zk
ÅÅÅÅÅÅÅÅ
kn

gn@1D = z@nD gn-1@zD = z
∑

ÅÅÅÅÅÅÅÅÅ
∑ z

 gn@zD
that is convergent over the entire physical range 0 § z § 1 provided that n > 1.  Thus, Bose functions with n > 1 are closely 
related to the Riemann zeta function z@nD .  More care is needed for n § 1 because the integrand for z = 1 is singular at 
x = 0.  Although a simple result with logarithmic divergence is obtained for n = 1,

g1@zD = -Log@1 - zD
more general methods are needed for arbitrary n .  The derivation of an asymptotic expansion due to Robinson (Phys. Rev. 
83, 678 (1951))

z Ø 1 ï gn@zD > H-ln zLn-1 G@1 - nD + ‚
m=0

¶ Hln zLm z@n - mD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m !

is outlined in bose.nb.  Note that this expansion can be used for all n  because the singularities for positive integers cancel 
to all orders.  Representative Bose functions are shown below for n = 8 1ÅÅÅÅ2 , 1, 3ÅÅÅÅ2 , 2, 5ÅÅÅÅ2 , 3, ¶<  with g1ê2  highest and 
g¶@zD = z  lowest.  Thus, we find that gn@z Ø 1D  diverges for n § 1, converges with finite slope for n > 3ÅÅÅÅ2 , while for n = 3ÅÅÅÅ2  
the limiting value is finite even though the slope is infinite at z = 1.    
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Bose-Einstein functions

After this mathematical interlude, we are now ready to determine the density dependence of the critical tempera-
ture.  The number of excited particles in a three-dimensional nonrelativistic Bose gas can be expressed in terms of Bose 
functions as

nQ =
Nexc l3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

g V
= g3ê2@zD

where l  is the thermal wavelength.  Recognizing that g3ê2@1D = z@ 3ÅÅÅÅ2 D  is finite, the maximum number of particles that can be 
placed in excited states is limited to

Nexc §
g V
ÅÅÅÅÅÅÅÅÅÅÅÅ
l3  zB 3

ÅÅÅÅÅ
2

F
where z@ 3ÅÅÅÅ2 D º 2.61238.  Any additional particles must be found in the ground-state.  Therefore, the temperature 
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Tc =
2 p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D2ê3  ikjj N

ÅÅÅÅÅÅÅÅÅÅÅÅ
g V

y{zz2ê3
 
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m kB

º 3.3125 ikjj N
ÅÅÅÅÅÅÅÅÅÅÅÅ
g V

y{zz2ê3
 
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m kB

at which the maximum number of particles in excited states becomes equal to the total number of particles represents a 
critical temperature below which the ground-state begins to receive macroscopic occupancy.  Below the critical tempera-
ture the occupation of the ground state becomes

T § Tc ï
Ngs
ÅÅÅÅÅÅÅÅÅÅÅÅ
N

= 1 - J T
ÅÅÅÅÅÅÅÅ
Tc

N3ê2
whereas for higher temperatures the fraction of the total number of particles found exactly at the ground-state energy is 
negligible.  Although all particles occupy the same volume, below Tc  it is useful to describe the system in terms of coexist-
ence between two phases, the normal phase consisting of particles in excited states and a condensed phase consisting of 
particles in the ground state.  For this system the condensation occurs in momentum space rather than configuration space, 
so that the two phases coexist in the same volume but have distinctly different properties.  Most notably, we will find that 
the energy and pressure contributed by the condensed phase are negligible.  Nor does the highly ordered condensed phase 
contribute to entropy.  Therefore, the thermodynamic functions are determined by the fraction that is in the normal phase.

The ground-state fraction Ngs ê N , illustrated below, serves as the order parameter characterizing the phase 
transition.
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The chemical potential and fugacity obtained by numerical solution of the equation

t3ê2 g3ê2@zD ã zB 3
ÅÅÅÅÅ
2

F
for T > Tc  are shown below; both are constant below the critical temperature.  Details of the numerical solution of this 
equation are provided in bose.nb.
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The grand potential can be separated into ground-state and excited-state contributions using
G

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

= g Log@1 - zD + ‡
0

¶

„¶D@¶D Log@1 - z ‰- b ¶D
The second term can be integrated by parts, whereby

g V
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p2  J 2 m

ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2 N3ê2

 ‡
0

¶

„¶ ¶1ê2 Log@1 - z ‰- b ¶D = -
g V

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
6 p2  ikjj 2 m kB T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2

y{zz3ê2
 ‡

0

¶

„ x
x3ê2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z-1 ‰x - 1

Recognizing the coefficient from the equation for z  in terms of N , we find

T ¥ Tc ï
G

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

= g Log@1 - zD - N
g5ê2@zD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g3ê2@zD

above the critical temperature.  Next, using the relationship between z  and Ngs ,

z =
Ngs

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g + Ngs

ï Log@1 - zD = Log
ÄÇÅÅÅÅÅÅÅÅ g

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g + Ngs

ÉÖÑÑÑÑÑÑÑÑ ~ -Log@NgsD
we find that for large N  the first term is negligible in comparison with the second and may be omitted except perhaps for 
very small systems.  Hence, in this approximation the energy, pressure, and entropy contributed by the ground state are 
negligible compared with the contributions of excited states.  Therefore, the equation of state becomes

T ¥ Tc ï
p V

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB T

=
g5ê2@zD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g3ê2@zD

for temperatures above the phase transition.  Below the phase transition we require z = 1 such that the contribution of the 
normal phase reduces to

T § Tc ï
p V

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N kB T

= J T
ÅÅÅÅÅÅÅÅ
Tc

N3ê2 z@ 5ÅÅÅÅ2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D

while the condensed phase is neglected because Log@NgsD` N .  Therefore, the pressure on an isotherm is actually indepen-
dent of density for T § Tc  because Tc ∂ HN ê V L2ê3 .  Thus, upon evaluation of the numerical factors, the transition line 

T = Tc ï pc J VcÅÅÅÅÅÅÅÅÅ
N

N5ê3
=

2 p Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m g2ê3  

z@ 5ÅÅÅÅ2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D5ê3 º 3.402 

Ñ2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m g2ê3
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relates the critical pressure to the critical density.  Notice that the equation for the transition line, pc ∂ HN êVcL5ê3 , has the 
same form as isentropes for an ideal gas; indeed, the entropy reaches its minimum value and is constant on the transition 
line.  

The figure below shows isotherms for a nonrelativistic ideal Bose gas, where both condensed and normal phases 
coexist under the dashed transition line.
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In the coexistence region wavepackets with dimensions characterized by the thermal wavelength overlap sufficiently 
strongly for quantum correlations to strongly enhance the population of the ground state.  As the temperature increases this 
phase transition requires increasing density (decreasing V  for fixed N ) to compensate for the decreasing thermal wave-
length.  Recognizing that the density of the normal phase in the coexistence region depends only upon temperature, 

T § Tc ï
NexcÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V

=
N
ÅÅÅÅÅÅÅ
V

 J T
ÅÅÅÅÅÅÅÅ
Tc

N3ê2
= g ikjj m kB T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p Ñ2

y{zz3ê2
 zB 3

ÅÅÅÅÅ
2

F
we find that the energy density and pressure for the normal phase remain constant during isothermal compression.  There-
fore, the primary effect of isothermal compression is to push more particles into the condensed phase for which the energy 
density and pressure are negligible.  

The temperature dependencies of the principal thermodynamic functions,derived in the notebook bose.nb, are 
tabulated below assuming that ¶0 = 0.  

T § Tc T ¥ Tc

Nexc I TÅÅÅÅÅÅÅTc
M3ê2

 N N

U Nexc kB T 3ÅÅÅÅ2  z@ 5ÅÅÅÅ2 DÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D N kB T  3ÅÅÅÅ2  g5ê2@zDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg3ê2@zD

CV Nexc kB 15ÅÅÅÅÅÅÅ4  z@ 5ÅÅÅÅ2 DÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D N kB I 15ÅÅÅÅÅÅÅ4  g5ê2@zDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg3ê2@zD - 9ÅÅÅÅ4  g3ê2@zDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg1ê2@zD M

S Nexc kB 5ÅÅÅÅ2  z@ 5ÅÅÅÅ2 DÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D N kB I 5ÅÅÅÅ2  g5ê2@zDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg3ê2@zD - ln z M

F -Nexc kB T  z@ 5ÅÅÅÅ2 DÅÅÅÅÅÅÅÅÅÅÅÅ
z@ 3ÅÅÅÅ2 D -N kB T  I g5ê2@zDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅg3ê2@zD + ln z M

These functions are plotted in reduced form below using t = T ê Tc .
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The energy, entropy, and free energy for the condensed phase are negligible, leaving the normal phase to carry the burden 
of thermodynamic activity.  Thus, the internal energy approaches the classical limit from below because quantum correla-
tions between bosons enhance the relative population of the ground state and low-lying excited states relative to classical 
expectations based upon statistical independence.  Similarly, the difference in the entropy per particle in the normal and 
condensed phases demonstrates that the latent heat for this first-order phase transition is

Tc DS
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

N
= kB Tc 

5 z@ 5ÅÅÅÅ2 D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 z@ 3ÅÅÅÅ2 D º 1.284 kB Tc

Furthermore, although the isochoric heat capacity is continuous at the phase transition, its slope is not.  However, the 
isobaric heat capacity is undefined for T < Tc  because one cannot vary the temperature without also varying the pressure 
which in the transition region depends only upon temperature.

Many presentations of Bose-Einstein condensation claim that the energy and pressure vanish for the condensed 
phase, often saying that the ground state has no kinetic energy.  However, this is not exactly true because the energy of a 
particle does depend upon the volume to which it is confined, even in the ground state.  Nevertheless, because the ground-
state contribution to the grand potential scales with Log@NgsD = Log@NH1 - t3ê2LD  while the contribution of excited states 
scales with Nexc = N t3ê2 , dominance of the normal phase is ensured by the condition

Log@N  H1 - t3ê2LD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

N t3ê2 º
Log@ND
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N t3ê2 ` 1 ï t p J Log@ND

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
N

N2ê3
Provided that this condition is satisfied, we may safely neglect the ground-state energy density and pressure.  Even for a 
system as small as 104  particles, this condition is satisfied well for T > 0.1 Tc , while for a system with 1020  particles we 
need only require T > 10-11 Tc , which is hardly very restrictive.  Furthermore, the present analysis is based upon a uniform 
system in which particles are confined by a square-well potential.  Recent experiments that have finally achieved Bose-
Einstein condensation are better described in terms of confinement by a harmonic-oscillator potential and usually contain 
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relatively small numbers of trapped particles, typically of order 106 - 1010 .  Continuous approximations to the density of 
states for harmonic potentials are developed in the exercises, but for a small number of particles one should also consider 
the ground-state contribution and the discreteness of the energy spectrum more carefully.  These technical developments 
provide better accuracy, but the essential features of the thermodynamic behavior of ideal systems are unchanged.  Current 
research is investigating the effects of additional correlations produced by interactions.

Problems

ô White dwarf star

The electrons in a white dwarf star form a completely degenerate Fermi gas whose pressure opposes further 
gravitational collapse of the star.  Under what conditions is this pressure sufficient to arrest the collapse and stabilize 
the system?  To answer this question, we must extend our treatment of the Fermi gas to the relativistic regime.

a) Evaluate the density of energy states, D@¶D , for an ultrarelativistic gas for which ¶ = Ñ k c .

b) Calculate the Fermi energy, ¶F , and the mean single-particle energy, ¶êê .

c) The simplest model of a white dwarf stipulates that all of the hydrogen has been converted into helium and that 
the helium is completely ionized, such that there are 0.5 free electrons per nucleon.  If we assume that the star has 
uniform density within radius R , the gravitational potential energy is Ug = - 3ÅÅÅÅ5

G M 2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅR  where M = N mp  is the mass 

of N  nucleons of mass mp  and G  is the gravitational constant.  By combining the internal energy, Ue  , of the 
degenerate electron gas with the gravitational energy, estimate the mass for which U = Ue + Ug  vanishes.  
Compare with the solar mass of approximately 2 µ 1030  kg.  If the mass is larger, the gain in gravitational potential 
energy due to a decrease in stellar radius overcomes the electron pressure and the star will continue to collapse.  
More accurate calculations yield the Chrandrasekhar limit of 1.44 solar masses beyond which degeneracy pressure is 
insufficient to arrest gravitational collapse.  [What are some of the refinements of the present model that are 
needed?]

ô Ratio of principal heat capacities

Show that

g =
Cp
ÅÅÅÅÅÅÅÅÅÅÅ
CV

=
H∑ z ê ∑TLp
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH∑ z ê ∑TLv

where v = V ê N  and evaluate g  for a nonrelativistic ideal Fermi gas.  [Hint: express S  as a function of z  and N .]
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ô Two-dimensional Fermi gas

The phenomenon of high-temperature superconductivity in copper oxides of the perovskite type is related to the 
confinement of electron motion to sheets within the planar crystal structure.  Hence, consider a degenerate Fermi gas 
in two dimensions.

a) Find expressions for the density of states, Fermi energy, and Fermi temperature for a two-dimensional Fermi gas.  
Estimate the Fermi temperature for conduction electrons in a typical perovskite.

b) Under what conditions does it make good physical sense to neglect the third spatial dimension?

c) Develop an expression that relates the chemical potential to the density and temperature of a two-dimensional 
Fermi gas and plot m@T ê TFD .  Compare your result with the corresponding solution for a three-dimensional system.

ô Ideal Fermi gas with ¶ µ ps  in d  dimensions

Consider an ideal Fermi gas with single-particle energy spectrum ¶ ∂ ps  in d  spatial dimensions.  Let V  represent 
the "volume" in d  dimensions and define an index r = d ê s .  

a) Use dimensional analysis to demonstrate that p V = U ê r .

b) Express the Fermi momentum kF  and energy ¶F  in terms of particle density.  Then show that D@kD ∂ kd-1 ê kF
d  

and D@¶D ∂ ¶r-1 ê ¶F
r  and determine the constants of proportionality.  Finally, show that z@tD  at finite temperature is 

determined by

G@r + 1D tr fr@zD ã 1

where t = kB T ê ¶F  and fr@zD  is a fermi function of order r .

c) Find expressions for U , p , and S  in terms of fermi functions of appropriate order and check that the familiar 
results for a three-dimensional nonrelativistic Fermi gas are recovered.

d) Show that adiabats satisfy p V x  and evaluate x  in terms of d  and s .

e) Evaluate CV , Cp , and g = Cp ê CV  in terms of fermi functions and check that familiar results are obtained for a 
three-dimensional nonrelativistic system.

f) Find an expansion for Cp ê CV  for low temperatures up to order HT ê TFL2 .
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ô Intrinsic semiconductor

The states available to electrons in a perfect crystal are organized into energy bands separated by gaps in which no 
states exist.  For an intrinsic semiconductor, all possible states within the valence band are occupied at absolute zero 
temperature whereas all states in the conduction band are empty.  Let EG  represent the energy gap between the top 
of the valence band and the bottom of the conduction band.  At finite temperature there will be an equilibrium 
concentration, ne , of conduction electrons and an equal concentration, nh , of holes in the valence band.  The holes 
may be considered to be quasiparticles with positive charge.  Since both the conduction electrons and the holes are 
free to move in response to an applied electric field, the semiconductor has a finite temperature-dependent electrical 
conductivity at finite temperature.  Hence, we describe the conduction electrons and the holes in the valence band as 
current carriers.  Assume that both electrons and holes move as free particles with effective masses me  and mh , 
respectively, and that kB TF p EG p kB T .

a) Show that the carrier densities are approximately

ne = nh = 2 
ikjjjjj è!!!!!!!!!!!!!me mh  kB T

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 pÑ2

y{zzzzz3ê2
ExpB-

EGÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 kB T

F
Compare the carrier density in a semiconductor with that of a typical metal.

b) Show that the chemical potential is given by

m =
1
ÅÅÅÅÅ
2

 EG +
3
ÅÅÅÅÅ
4

 kB T LogB mhÅÅÅÅÅÅÅÅÅÅ
me

F
relative to the top of the valence band.  Indicate the position of the chemical potential on an energy-level diagram 
(energy vs. momentum for valence and conduction electrons).

c) The states available to electrons in the conduction band can be represented by a sphere in momentum space.  
Similarly, the states available to holes can also be represented by a momentum sphere.  In the absence of an applied 
electric field, both of these spheres are centered upon zero momentum, but an electric field acting for time t  imparts 
a finite net momentum to the center of each momentum distribution.  The electrons in the valence band are bound to 
the lattice and do not acquire a drift velocity.  Assuming that the drift velocities remain small and that collisions 
between current carriers and the lattice randomize the momentum distribution, the net drift reaches a steady state 
determined by the average time between collisions.  Use this model to estimate the electrical conductivity of an 
intrinsic semiconductor.

d) Assuming that the band gap for silicon is approximately 1.14 eV, estimate the electrical conductivity of pure 
(intrinsic) silicon at room temperature.  Compare with the electrical conductivity of a typical metal.  Assume that t  is 
similar for both materials and that me º mh .

ô Magnetic susceptibility of Fermi gas

a) Suppose that N  electrons are confined to a box of volume V  and are subject to an external magnetic field B .  
Evaluate the magnetization in the low-temperature limit assuming that mB ` ¶F .  You may neglect interactions 
between electrons and the magnetic field produced by them.  [Hint: spin-up and spin-down electrons can be treated 
as two Fermi gases in equilibrium with each other.]
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b) Evaluate the magnetization of N  spin- 1ÅÅÅÅ2  particles arranged on a lattice subject to an external magnetic field in the 
low-temperature limit.  Compare this result with that for an electron gas and provide a physical explanation for any 
differences.

ô Magnetization for systems with up to 2 electrons per site

Suppose that a system contains N  noninteracting sites which can each bind 0 § n § 2 electrons in the same orbital 
state.  This system can exchange electrons with a reservoir with chemical potential m .  Let nêê@T , m, BD  represent the 
average number of bound electrons per site and ¶êê@T , m, BD  represent the average energy per site.  In the absence of a 
magnetic field, the energy is ¶1  for one electron in a site, ¶2  for two electrons, or zero for an empty site.  The 
electrons, with magnetic moment m , also interact with an external magnetic field B , such that the average magnetic 
moment per site is mêêê .

a) Write general expressions for the average electron number, energy, and magnetic moment per site.

b) Evaluate nêê@T , m, 0D  for the special case B = 0 and ¶2 = 2 ¶1 .  Sketch and explain the dependence of nêê  on m  for 
both low and high temperatures.

c) Express mêêê  in terms of nêê  and T  assuming m B ` ¶1 ` kB T  and ¶2 = 2 ¶1 .  Sketch this function and explain its 
important features.

ô Absence of Bose condensation in 1 or 2 dimensions

Consider an ideal nonrelativistic Bose gas in one or two spatial dimensions.

a) Demonstrate that Bose condensation does not occur in one- or two-dimensional systems.

b) Plot m@TD  for a two-dimensional Bose gas.  What is the relevant temperature scale?  Compare your result with the 
corresponding solution for a three dimensional system.

ô Bose-Einstein condensation for ¶ µ ks  in d  dimensions

Consider an ideal Bose gas with single-particle energy spectrum ¶ ∂ ks  confined to a box in d  spatial dimensions. 

a) Under what conditions (a relationship between s  and d ) does one expect Bose condensation?

b) Show that if Bose condensation does occur the critical temperature is proportional to a power of density, such that 
Tc ∂ H NÅÅÅÅÅÅV La

 , and deduce the exponent in terms of s  and d .

c) Show that if Bose condensation does occur then CV ∂ I TÅÅÅÅÅÅÅTc
Mg

 for T < Tc  and deduce the exponent in terms of s  and 
d .

ô Bose condensation in harmonic trap

Consider an ideal Bose gas confined by an isotropic harmonic potential, Uext@rD = 1ÅÅÅÅ2  m w2 r2 .
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a)  Show that when kB T p Ñw , a continuous approximation to the density of states takes the form D@¶D ∂ ¶2  and 
evaluate the constant of proportionality.  Study the accuracy of this approximation.

b) Using this approximate density of states, express the number of particles in excited states in terms of an 
appropriate Bose function.  

c) Evaluate the critical temperature for Bose-Einstein condensation as a function of N  and w .  Compare with the 
critical temperature for a box whose dimensions are similar to the spatial extent of the gas in a harmonic well.  [Hint: 
use a virial theorem argument to relate w  and T  to an effective volume V .]

d) A typical experiment uses spin-polarized 7Li atoms (g = 1) in a trap with n º 150 Hz.  Evaluate Tc  as a function 
of N  for this experiment.  [Reference: C.C. Bradley et al., Phys. Rev. Lett, 75 (1995) 1687.]

e) Evaluate and plot the temperature dependence of the chemical potential, internal energy, and heat capacity for a 
nonrelativistic ideal gas of bosons in a harmonic trap, with special care to discontinuities across the critical 
temperature.  For this purpose the heat capacity is defined as C = H ∑UÅÅÅÅÅÅÅÅÅ∑T LN,w .  [Hint: modification of the numerical 
techniques developed in bose.nb will be helpful.]

ô Bose condensation in anisotropic trap

Consider an ideal Bose gas confined by an anisotropic harmonic potential with single-particle energy levels of the 
form ¶@n1, n2, n3D = ‚

i=1

3 Hni + 1ÅÅÅÅ2 L Ñwi .

a) Show that a continuous approximation to the density of states takes the form D@¶D ∂ ¶2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅw1  w2  w3

and evaluate the 
constant of proportionality.  Under what conditions is this approximation accurate?

b) Evaluate the critical temperature for Bose-Einstein condensation as a function of N  and the parameters of the 
confining potential.

c) Suppose that w1 ~ w2  but that w3 p w1,2 .  Use this system to provide a physical explanation for the oft-quoted 
theorem that Bose-Einstein condensation does not occur in two-dimensional systems.

ô Roton contribution using Bose-Einstein statistics

The Landau theory of superfluid helium includes a class of excitations, known as rotons, satisfying the dispersion 
relation

¶ = D +
Hp - p0L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 m0

where ¶  and p  are the energy and momentum of a single roton and where D , m0 , and p0  are positive constants.  
Assume that rotons obey Bose-Einstein statistics.  [Notes: p  is the magnitude of the momentum vector in three 
dimensions and both p  and p0  are scalars.]

a) Determine the average number of rotons per unit volume as a function of temperature assuming that kB T ` p0
2

ÅÅÅÅÅÅÅÅÅÅÅ2 m0
.  

Justify your approximations.

b) Compute the roton contribution to the heat capacity for low temperatures and explain the temperature dependence.
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ô Quark-gluon plasma

Scientists working at CERN recently announced that they believe a new state of matter, known as a quark-gluon 
plasma (QGP), has been observed.  Although the evidence remains controversial, the search for QGP is a very hot 
topic.  The basic idea is that nucleons consist of quarks bound together by the exchange of gluons.  If sufficiently 
high density and temperature can be achieved by colliding energetic beams of nuclei, it might be possible to recreate 
a state of the early universe, immediately after the Big Bang, in which quarks and gluons form a plasma.  As this 
system expands and cools, the quarks condense into nucleons with 3 quarks each.  Here we develop a simple model 
of the phase boundary between QGP and ordinary nuclear matter.  Quarks are fermions with degeneracy factor gQ , 
while gluons are massless bosons (like photons) with degeneracy factor gG = 16.  Near the phase boundary we can 
assume that heavy quarks do not participate and, hence, use gQ = 12 for u and d quarks.  

a) Show that the chemical potential for an ultrarelativistic Fermi gas is related to density by

N
ÅÅÅÅÅÅÅ
V

º
gQ T3
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
 J m

ÅÅÅÅÅÅ
T

+
1

ÅÅÅÅÅÅÅÅ
p2  J m

ÅÅÅÅÅÅ
T

N3N
where gQ  is the quark degeneracy factor.  Note that we use natural units in which temperature is measured in energy 
units and Ñ = c = 1.  More familiar units can be obtained using Ñc º 200 MeV fm, where a femtometer (fm) is 10-15  
m.  [Hint: although the temperature is high, the density is also large; hence, the quark gas is highly degenerate.  You 
can use the approximation for large z  developed in fermi.nb.] 

b) Show that the equation of state for an ultrarelativistic quark gas can be expressed in the form

pQ º
1
ÅÅÅÅÅ
3

 
UQ
ÅÅÅÅÅÅÅÅÅÅÅ
V

=
gQ
ÅÅÅÅÅÅÅÅÅÅ
3

 T4 
ikjjj 7 p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
120

+
1
ÅÅÅÅÅ
4

 J m
ÅÅÅÅÅÅ
T

N2
+

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
8 p2  J m

ÅÅÅÅÅÅ
T

N4y{zzz
while the equation of state for massless gluons with degeneracy factor gG  is

pG =
1
ÅÅÅÅÅ
3

 
UGÅÅÅÅÅÅÅÅÅÅÅ
V

= gG 
p2
ÅÅÅÅÅÅÅÅÅ
90

 T4

c) A nucleon can be visualized as a bubble containing 3 quarks whose surface is subject to a pressure B exerted by 
the quantum-mechanical vacuum.  Thus, balancing the internal and external pressures requires B = pQ + pG .  Use 
these results to produce a plot of temperature versus density along the phase boundary given that B1ê4 º 0.7 fm-1 .
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