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Darwin and Proca Lagrangians

1 Darwin Lagrangian

Newtonian classical mechanics is based on the idea that motion is described
by the positions ~xj of particles at a given time t, and these evolve according to
forces given by the positions of all other particles ~xk(t) at that instant. When
these forces are conservative we may specify the forces by potential energies
which are again functions of the several positions ~xj(t) at that instant. This
notion violates the constraint of special relativity that information cannot
travel faster than light, so there is no way the particle at ~xj(t) can feel a force
that depends on where particle k is at this instant, unless ~xj(t) = ~xk(t). So
the only potential consistent with relativity is a delta function!

Nonetheless we know that Lagrangians with potential energies are a very
effective way of describing physics if the relevant velocities remain small
compared to c.

Let us see what we can do for charged particles interacting electromag-
netically. We learned as freshmen how to do the lowest order (c → ∞):
V (~xj , ~xk) = qjqk/|~xj − ~xk| and T = 1

2

∑
mj~v

2
j . This encapsulates the effect

of the electric field produced by one charge on the motion of the other. In our
relativistic treatment the interaction lagrangian (of charges with the fields)

Lint =
∑

j qj
(
−Φ(~xj) + 1

c
~uj · ~A(~xj)

)
, and Φ(~xj) =

∑
k qk/|~xj − ~xk| is the

c → ∞ limit for the scalar potential. Magnetic forces are only produced to
next order in v/c, and these produce forces only proportional to the velocity
of the second particle, so these only enter to order v2/c2. At that order, the

expressions for Φ and ~A will depend on the choice of gauge, and it is useful
here to use not the Lorenz gauge but the Coulomb gauge ~∇ · ~A = 0, because
in that gauge1 ∇2Φ = −4πρ, and Φ(~r, t) =

∫
d3r′ρ(~r ′, t)/|~r −~r ′| really is

instantaneous. From ∂σF
σj = 4πJ j/c we have

1

c2
∂2

∂t2
~A−∇2 ~A+ ~∇

(
1

c

∂

∂t
Φ + ~∇ · ~A

)
= 4π ~J/c.

1Gaussian units.
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The ~∇ · ~A is zero. Working accurate to order (v/c)2 we may drop the 1
c2

∂2

∂t2
~A

term, as ~A is already order (v/c)1. Thus we may take

∇2 ~A = −4π

c
~J +

1

c
~∇ ∂

∂t
Φ.

The contribution of particle j to ~J(~x ′) is qj~vjδ
3(~x ′ − ~xj). It’s contribution

to Φ(~x ′) is qj/|~x ′−~x ′j|, so it contributes qj~vj · (~x ′− ~xj)/|~x ′− ~xj |3 to ∂Φ/∂t.
As the Green’s function for Laplace’s equation is 1/|~x−~x ′|, we have

~A(~x) =
∫ d3x′

|~x−~x ′|
(

1

c
~J(~x ′)− 1

4πc
~∇ ′ ∂
∂t

Φ(~x ′)

)

=
∫

d3x′

|~x−~x ′|
(
qjvj

c
δ3(~x ′ − ~xj)− qj

4πc
~∇ ′
(
~vj · (~x ′ − ~xj)

|~x ′ − ~xj |3
))

=
qj~vj

c|~x− ~xj | +
qj

4πc

∫
d3x′

(
~vj · (~x ′ − ~xj)

|~x ′ − ~xj |3
)
~∇ ′ 1

|~x−~x ′|
where we have integrated by parts and thrown away the surface at infinity.
The gradient ~∇ ′ ∼ −~∇ action on a function of ~x−~x ′, so we can pull ~∇ out
of the integral. Let ~r = ~x− ~xj and ~y = ~x ′ − ~xj . Then

~A(~x) =
qj~vj

c|~r| −
qj

4πc
~∇
∫
d3y

~vj · ~y
|~y|3

1

|~y − ~r|
=

qj~vj

c|~r| −
qj

4πc
~∇
∫ ∞

0
y2dy

∫ π

0
dθ sin θ

∫ 2π

0
dφ
y(cos θvjz + sin θ cosφvjx)

y3

1√
y2 + r2 − 2yr cos θ

where we have chosen z in the ~r direction and ~vj in the xz plane. The φ
integral kills the vjx term and, writing vjz = ~vj · ~r/r, we have

~A(~r) =
qj
c

[
~vj

|~r| −
1

2
~∇
(
~vj · ~r
r

)
C

]
,

where the integral giving C is

C =
∫ ∞

0
dy
∫ 1

−1
du

u√
y2 + r2 − 2yru

= 1,
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though this integral is not as straightforward as Jackson claims. Then

~Aj(~xk) =
qj

2c|~xj − ~xk|
[
~vj +

(~xk − ~xj)~vj · (~xk − ~xj)

|~xk − ~xj |
]
.

Multiplying by qk~vk/c to get the appropriate contribution to Lint, and cor-
recting the free-particle Lagrangian, −mc2γ−1 +mc2 ≈ 1

2
mv2 + 1

8
mv4/c2, we

get the Darwin Lagrangian

LDarwin =
1

2

∑
j

mjv
2
j +

1

8c2
∑
j

mjv
4
j

+
∑
j 6=k

qjqk
rjk

(
−1

2
+

1

4c2
[~vj · ~vk + (~vj · r̂jk)(~vk · r̂jk)]

)
,

where of course ~rjk := ~xj − ~xk, rjk := |~rjk|, and r̂jk = ~rjk/rjk.
We mostly experience slightly relativistic particles in atomic physics,

though the electrons are best described by the Dirac formalism, so the ve-
locities are replaced by ~α. It is also of use in plasma physics.

2 Proca Lagrangian

As we saw, our lagrangian density for electromagetic fields,

LEM = − 1

16π
F µνFµν − 1

c
JµA

µ,

gives equations of motion which do not completely determine the evolution
of the fields Aµ. Let us consider adding a term proportional to A2:

LProca = − 1

16π
F µνFµν +

µ2

8π
AµA

µ − 1

c
JµA

µ,

known as the Proca Lagrangian, which as we shall see describes a field which
has quanta of mass µ rather than the massless photons whose classical limit
is Maxwell theory. We still mean Fµν to be shorthand for ∂µAν−∂νAµ rather
than an independent field, so the homogeneous Maxwell’s equations still hold,
as they are consequences of F = dA. The extra term does not contribute
to P µ

α , as it depends only on A and not on derivatives thereof, so the extra
contribution to the equations of motion is just from ∂L/∂Aµ = (µ2/4π)Aµ,
and

∂βFβα + µ2Aα =
4π

c
Jα.
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One consequence comes from taking the 4-divergence of this equation:

∂α∂βFβα + µ2∂αAα =
4π

c
∂αJα.

The first term is identically zero by symmetry, and if the current density still
represents a conserved charge, the right hand side is also zero, so the Lorenz
condition ∂αAα = 0 is now a consequence of the equations of motion and not
an arbitrary choice. As a consequence, we now have ∂βFβα = Aα, so

(
+ µ2

)
Aα =

4π

c
Jα.

In the absence of sources, this has solutions as before,

∑
~k

(
Aµ

~k +
ei~k·~x−iω~k

t + Aµ
~k−e

i~k·~x+iω~k
t
)
,

but with ω2 = c2(~k 2 +µ2). Quantum mechanically we know ~p = −ih̄~∇ ∼ h̄~k
and E = ih̄∂/∂t = ±h̄ω, so this field represents particles for which E2 =
P 2c2 + µ2h̄2c2. Of course quantum field theoriests take h̄ = 1 and c = 1, so
this represents a massive photon with mass µ.

If we consider a point charge at rest and look for the static field it would
generate, we need to solve

∇2Φ + µ2Φ = −4πqδ3(~r)

or
∂

∂r

(
r2∂Φ

∂r

)
+ r2µ2Φ = −qδ(r).

Away from r = 0 this clearly requires rΦ(r) = Ce−µr and Gauss’s law tells
us

−4πq = 4πR2 dΦ/dr|R + µ2
∫

r<R
Φ −→

R→0
4πC,

so C = q and

Φ(~x) = q
e−µr

r
, with r = |~x|.

This is the well-known Yukawa potential, which nuclear physicists had found
was a good fit to the binding of nucleons in a nucleus, leading Yukawa to
propose the existance of a massive carrier of the nuclear force, which we now
know to be the π meson.
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2.1 Superconductors

In the BCS theory of superconductivity, electrons form pairs, and each pair
acts like a boson. So the quantum mechanical state that each pair is in
can be multiply occupied, and superconductivity occurs when states develop
macroscopic occupation numbers, � 1. The wave function ψ(~x) describing
these particles is a complex function, with the density of particles n(~x) =
ψ∗ψ, so ψ = n(~x)eiθ(~x). We may approximate n(~x) as being roughly constant.

The velocity of these particles is related to the canonical momentum by

~v =
1

m

(
~P − q

c
~A
)

which can be viewed as an operator acting between ψ∗ and ψ. It is the
canonical momentum ~P which acts like −ih̄~∇. Thus the current density is

~J = qψ∗~vψ =
nq

m

(
h̄∇θ − q

c
~A
)
.

If we take the curl of both sides, we get

~∇× ~J = −nq
2

mc
~∇× ~A = −nq

2

mc
~B, (1)

as ~∇× ~∇θ = 0. This equation doesn’t quite say

~J = −nq
2

mc
~A, (2)

but it does say, in a simply connected region, that the difference is the gra-
dient of something, and as such a gradient could be added to ~A by a gauge
transformation, we might as well assume (2), which is known as the London
equation. This gauge is still compatible with Lorenz (which can be viewed
as determining A0), so we have

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −4π

c
~J =

4πnq2

mc2
~A,

which is the Proca equation with µ2 = 4πnq2/mc2.
At the boundary of the superconductor, if no current is crossing the

boundary, we must have ~n · ~A = 0. If we look for a static solution for a
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planar boundary ⊥ z, uniform along the boundary, we have A ∝ e−µz. The
London penetration depth is

λL :=
1

µ
=

√
mc2

4πnq2
.

With q = −2e and m = 2me for the electron pair, and taking n as the
density of valence electrons, the penetration depth is of the order of tens
of nanometers. As the A field is not penetrating further than that into the
medium, any external magnetic field has been excluded.

But magnetic field lines can enter the medium if our assumption of being
able to do away with ~∇ · ~A by a gauge transformation is not correct. That
could happen if the region of the superconductor is not simply connected —
that is, a flux line could enter and destroy the superconducting region around
which θ is incremented by a multiple of 2π. This is called a vortex line, and
corresponds to a quantized amount of flux, as

∮
~A · d` = 2πNh̄c/q =

∫
S

~∇× ~A = ΦB,

with N ∈ Z. With q = −2e, the quantum of flux is hc/2e.


