Management of urinary stones: state of the art and future perspectives by experts in stone disease
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Aim: To present state of the art on the management of urinary stones from a panel of globally recognized urolithiasis experts who met during the Experts in Stone Disease Congress in Valencia in January 2024.
Options of treatment: The surgical treatment modalities of renal and ureteral stones are well defined by the guidelines of international societies, although for some index cases more alternative options are possible. For 1.5 cm renal stones, both m-PCNL and RIRS have proven to be valid treatment alternatives with comparable stone-free rates. The m-PCNL has proven to be more cost effective and requires a shorter operative time, while the RIRS has demonstrated lower morbidity in terms of blood loss and shorter recovery times. SWL has proven to be less effective at least for lower calyceal stones but has the highest safety profile. For a 6mm obstructing stone of the pelviureteric junction (PUJ) stone, SWL should be the first choice for a stone less than 1 cm, due to less invasiveness and lower risk of complications although it has a lower stone free-rate. RIRS has advantages in certain conditions such as anticoagulant treatment, obesity, or body deformity.
Technical issues of the surgical procedures for stone removal: In patients receiving antithrombotic therapy, SWL, PCN and open surgery are at elevated risk of hemorrhage or perinephric hematoma. URS, is associated with less morbidity in these cases. An individualized combined evaluation of risks of bleeding and thromboembolism should determine the perioperative thromboprophylactic strategy. Pre-interventional urine culture and antibiotic therapy are mandatory although UTI treatment is becoming more challenging due to increasing resistance to routinely applied antibiotics. The use of an intrarenal urine culture and stone culture is recommended to adapt antibiotic therapy in case of postoperative infectious complications. Measurements of temperature and pressure during RIRS are vital for ensuring patient safety and optimizing surgical outcomes although techniques of measurements and methods for data analysis are still to be refined. Ureteral stents were improved by the development of new biomaterials, new coatings, and new stent designs. Topics of current research are the development of drug eluting and bioresorbable stents.
Complications of endoscopic treatment: PCNL is considered the most invasive surgical option. Fever and sepsis were observed in 11 and 0.5% and need for transfusion and embolization for bleeding in 7 and 0.4%. Major complications, as colonic, splenic, liver, gall bladder and bowel injuries are quite rare but are associated with significant morbidity. Ureteroscopy causes less complications, although some of them can be severe. They depend on high pressure in the urinary tract (sepsis or renal bleeding) or application of excessive force to the urinary tract (ureteral avulsion or stricture).
Diagnostic work up: Genetic testing consents the diagnosis of monogenetic conditions causing stones. It should be carried out in children and in selected adults. In adults, monogenetic diseases can be diagnosed by systematic genetic testing in no more than 4%, when cystinuria, APRT deficiency, and xanthinuria are excluded. A reliable stone analysis by infrared spectroscopy or X-ray diffraction is mandatory and should be associated to examination of the stone under a stereomicroscope. The analysis of digital images of stones by deep convolutional neural networks in dry laboratory or during endoscopic examination could allow the classification of stones based on their color and texture. Scanning electron microscopy (SEM) in association with energy dispersive spectrometry (EDS) is another fundamental research tool for the study of kidney stones. The combination of metagenomic analysis using Next Generation Sequencing (NGS) techniques and the enhanced quantitative urine culture (EQUC) protocol can be used to evaluate the urobiome of renal stone formers. Twenty-four hour urine analysis has a place during patient evaluation together with repeated measurements of urinary pH with a digital pH meter. Urinary supersaturation is the most comprehensive physicochemical risk factor employed in urolithiasis research. Urinary macromolecules can act as both promoters or inhibitors of stone formation depending on the chemical composition of urine in which they are operating. At the moment, there are no clinical applications of macromolecules in stone management or prophylaxis. Patients should be evaluated for the association with systemic pathologies.
Prophylaxis: Personalized medicine and public health interventions are complementary to prevent stone recurrence. Personalized medicine addresses a small part of stone patients with a high risk of recurrence and systemic complications requiring specific dietary and pharmacological treatment to prevent stone recurrence and complications of associated systemic diseases. The more numerous subjects who form one or a few stones during their entire lifespan should be treated by modifications of diet and lifestyle. Primary prevention by public health interventions is advisable to reduce prevalence of stones in the general population. Renal stone formers at "high-risk" for recurrence need early diagnosis to start specific treatment. Stone analysis allows the identification of most “high-risk” patients forming non-calcium stones: infection stones (struvite), uric acid and urates, cystine and other rare stones (dihydroxyadenine, xanthine). Patients at “high-risk” forming calcium stones require a more difficult diagnosis by clinical and laboratory evaluation. Particularly, patients with cystinuria and primary hyperoxaluria should be actively searched.
Future research: Application of Artificial Intelligence are promising for automated identification of ureteral stones on CT imaging, prediction of stone composition and 24-hour urinary risk factors by demographics and clinical parameters, assessment of stone composition by evaluation of endoscopic images and prediction of outcomes of stone treatments. The synergy between urologists, nephrologists, and scientists in basic kidney stone research will enhance the depth and breadth of investigations, leading to a more comprehensive understanding of kidney stone formation.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.