Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

DataPro

41 Articles
Merlyn from Packt
06 Sep 2024
13 min read
Save for later

🌠 Llama-3.1-Storm-8B, CausalLM/miniG, RAG pipelines with LlamaIndex and Amazon Bedrock, Claude for Enterprise \ Anthropic, Concrete ML

Merlyn from Packt
06 Sep 2024
13 min read
Custom Tokenizer with Hugging Face Transformers, Multi-Agent Chat Application Using LangGraph @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }Live Webinar: The Power of Data Storytelling in Driving Business Decisions (September 10, 2024 at 9 AM CST)Data doesn’t have to be overwhelming. Join our webinar to learn about Data Storytelling and turn complex information into actionable insights for faster decision-making.Click below to check the schedule in your time zone and secure your spot. Can't make it? Register to get the recording instead.REGISTER FOR FREESponsoredHappy Friday! 🌟Welcome to DataPro #110—Your Ultimate Data Science & ML Update! 🚀In the world of AI and ML, sharp reasoning is the key to smarter decisions and impactful leadership. Our latest insights and strategies will help you boost model accuracy, optimize performance, and cut costs with scalable solutions. Dive in for cutting-edge tips and real-world techniques to elevate your data game.📚 Book Haven: Top Reads & Author Insights◽"Data Science for Decision Makers": Elevate your leadership with data science and AI prowess by Jon Howells.◽"Data Science for IoT Engineers": Unlock data science techniques and ML applications for innovative IoT solutions by P. G. Madhavan.◽"Bash for Data Scientists": Master shell scripting for data science tasks with Oswald Campesato.◽"Angular and Machine Learning Pocket Primer": Get the essentials on integrating ML with Angular, also by Oswald Campesato.◽"AI, ML, and Deep Learning": Explore advanced AI techniques with Oswald Campesato’s practical guide.🔍 Model Breakdown: Algorithm of the Week◽Custom Tokenizers for Non-English Languages: Dive into Hugging Face Transformers for multilingual models.◽Concrete ML Privacy: Secure end-to-end privacy in model training and inference.◽Multilingual Multi-Agent Chat with LangGraph: Build diverse language chat applications.◽Approximating Stochastic Functions: Techniques for multivariate output functions.🪐Trendspotting: Hot Tech Trends◽Legal Reasoning Engines: How reasoning drives legal arguments.◽R Clinical Flowcharts with shinyCyJS: Use R for clinical flowcharting.◽Claude for Enterprise: Explore Anthropic's latest.◽IBM Quantum Update: Qiskit SDK v1.2 release news!🛠️ Platform Showdown: ML Tools & Services◽FastAPI for ML Web Apps: Build powerful web apps with FastAPI.◽DetoxBench: Benchmarking large language models for fraud and abuse detection.◽Llama-3.1-Storm-8B & CausalLM/miniG: New Hugging Face models.◽Build RAG Pipelines: Combine LlamaIndex with Amazon Bedrock for robust pipelines.📊 Success Stories: ML in Action◽Ecommerce Data Quality: Strategies for improving data quality.◽Essential Python Modules: Must-know Python modules for data engineers.◽Avoiding Data Science Mistakes: Tips to steer clear of common pitfalls.◽Thomson Reuters Labs: Accelerating AI/ML innovation with AWS MLOps.◽Galxe & AlloyDB: Cost-cutting success story.🌍 ML Newsflash: Industry Buzz & Discoveries◽GPT-4 for Customer Service: Redefining standards with GPT-4.◽HYGENE: A novel diffusion-based hypergraph generation method.◽Yi-Coder: Meet a compact yet powerful LLM for code.◽Guided Reasoning: New approaches to enhance multi-agent system intelligence.Enjoy the newsletter and have a fantastic weekend! ✨DataPro Newsletter is not just a publication; it’s a complete toolkit for anyone serious about mastering the ever-changing landscape of data and AI. Grab your copyand start transforming your data expertise today!Calling Data & ML Enthusiasts!Want to share your insights and build your online reputation? Contribute to our new Packt DataPro column! Discuss tools, share experiences, or ask questions. Gain recognition among 128,000+ data professionals and boost your CV. Simply reply with your Google Docs link or use our feedback form. Whether you’re looking for visibility or a discreet approach, we’re here to support you.Share your content today and engage with our vibrant community! We’re excited to hear from you!Take our weekly survey and get a free PDF copy of our best-selling book,"Interactive Data Visualization with Python - Second Edition."We appreciate your input and hope you enjoy the book!Share Your Insights and Shine! 🌟💬200+ hours of research on AI-led career growth strategies & hacks packed in 3 hoursThe only AI Crash Course you need to master 20+ AI tools, multiple hacks & prompting techniques in just 3 hoursYou’ll save 16 hours every week & find remote jobs using AI that will pay you upto $10,000/moRegister & save your seat now (100 free seats only)Sponsored📚 Book Haven: Must-Reads & Author InsightsDid you know? “Books are the quietest, most constant friends, holding the world’s treasured wisdom. They offer gentle guidance and timeless lessons, passing their rich inheritance from one generation to the next.”We’re thrilled to bring you this week’s must-have new releases, straight from the experts to your bookshelf! Whether you're eager to enhance your skills or explore new horizons, now is the perfect moment to add these invaluable resources to your collection.For a limited time,enjoy 30% off all eBooks at Packtpub.com. These books are thoughtfully crafted by industry insiders with hands-on experience, offering unique insights you won’t find anywhere else.Don’t let these Packt-exclusive deals slip away—seize the opportunity to learn from the best at an unbeatable price!Order Today at $24.99 $35.99Data Science for Decision Makers: Enhance your leadership skills with data science and AI expertiseBy Jon HowellsStruggling to bridge the gap between data science and business leadership? Our new book is here to help!What you’ll gain:✔️ Master statistics and ML to interpret models and drive decisions.✔️ Identify AI opportunities and oversee data projects from start to finish.✔️ Empower teams to tackle complex problems and build AI solutions.Elevate your leadership and make data work for you! Get the book now—just $24.99, down from $35.99!Order Today at $34.98$49.99Data Science for IoT Engineers: Master Data Science Techniques and Machine Learning Applications for Innovative IoT SolutionsBy Mercury Learning and Information, P. G. MadhavanDive into our new book, crafted for engineers, physicists, and mathematicians eager to bridge the gap between theory and practice!What’s inside:✔️ Integrate systems theory and machine learning seamlessly.✔️ Apply practical solutions like digital twins to real-world problems.✔️ Progress from basics to advanced techniques with ease.Whether you're tackling IoT challenges or modeling complex systems, this workbook with MATLAB code will guide you every step of the way. Get the eBook now for just $34.98, down from $49.99! Elevate your skills and tackle IoT and complex systems with confidence.Order Today at $37.99$54.99Bash for Data Scientists: A Comprehensive Guide to Shell Scripting for Data Science TasksBy Mercury Learning and Information, Oswald CampesatoUnlock the power of Bash for your data science projects with our latest book!What’s inside:✔️ Master Bash for efficient data processing with practical, real-world examples.✔️ Learn to integrate with Pandas and databases for advanced data handling.✔️ Get hands-on with grep, sed, and awk to clean and manage datasets effectively.Grab the eBook now for just $37.99, originally $54.99! Elevate your scripting skills and streamline your data tasks today!Order Today at $27.98$39.99Angular and Machine Learning Pocket Primer: A Comprehensive Guide to Angular and Integrating Machine LearningBy Mercury Learning and Information, Oswald CampesatoReady to elevate your Angular apps with machine learning? Our latest Pocket Primer has you covered!What’s inside:✔️ Seamless integration of Angular and machine learning using TensorFlow.js and Keras.✔️ Practical, step-by-step tutorials and real-world examples.✔️ Comprehensive coverage of Angular basics, UI development, and machine learning models.Get the eBook now for just $27.98, originally $39.99! Transform your skills and build sophisticated applications with ease.Order Today at $41.98$59.99Artificial Intelligence, Machine Learning, and Deep Learning: A Practical Guide to Advanced AI TechniquesBy Mercury Learning and Information, Oswald CampesatoDiscover the world of AI with our new book, perfect for expanding your skills from basics to advanced techniques!What’s inside:✔️ In-depth coverage of AI, machine learning, and deep learning.✔️ Practical examples and hands-on tutorials with Keras, TensorFlow, and Pandas.✔️ Explore classifiers, deep learning architectures, NLP, and reinforcement learning.Get the eBook now for just $41.98, down from $59.99! Transform your understanding and apply these cutting-edge concepts in real-world scenarios.🔍 Model Breakdown: Unveiling the Algorithm of the Week➽ How to Create a Custom Tokenizer for Non-English Languages with Hugging Face Transformers? This blog explains the importance of tokenization in NLP and provides a detailed guide on training a custom tokenizer for non-English languages using Hugging Face libraries, ensuring improved model performance for diverse datasets.➽ End-to-end privacy for model training and inference with Concrete ML: This blog explores how to achieve end-to-end privacy in collaborative machine learning using federated learning and fully homomorphic encryption (FHE). It details a demo with scikit-learn and Concrete ML for secure model training and inference.➽ Building a Multilingual Multi-Agent Chat Application Using LangGraph: This blog details the development of a multilingual chat application to bridge language barriers in workplaces. It covers building features using LangChain and LangGraph, including agent design, translation workflows, and deployment with FastAPI.➽ Approximating Stochastic Functions with Multivariate Outputs: The article describes an enhanced method for training generative machine learning models, named Pin Movement Training (PMT). It extends the original PMT, which approximated single-output stochastic functions, to handle multiple-output functions. The approach uses a neural network and a hypersphere-based Z-space to map and approximate multidimensional outputs, like autoencoders but with uniform sampling for better results.Developing for iOS? Setapp's 2024 report on the state of the iOS market in the EU is a must-seeHow do users in the EU find apps? What's the main source of information about new apps? Would users install your app from a third-party app marketplace?Set yourself up for success with these and more valuable marketing insights in Setapp Mobile's report iOS Market Insights for EU.Get Insights freeSponsored🚀 Trendspotting: What's Next in Tech Trends➽ Reasoning as the Engine Driving Legal Arguments: The article explores how tribunals assess evidence in legal cases, focusing on three key stages: determining evidence relevance, evaluating trustworthiness, and weighing competing evidence. It highlights the role of "reasoning sentences" in explaining decision-making and discusses machine learning techniques for identifying these sentences in legal documents.➽ Use R to build Clinical Flowchart with shinyCyJS: The blog discusses creating Clinical Flowcharts for visualizing clinical trials, focusing on various methods, particularly using R. It details challenges and solutions in drawing flowcharts, including software limitations and customizations with shinyCyJS for precise visual representation.➽ Claude for Enterprise \ Anthropic: The Claude Enterprise plan now offers enhanced features for secure collaboration, including a 500K context window, GitHub integration, and advanced security measures. This allows teams to leverage internal knowledge while safeguarding data.➽ IBM Quantum Computing - Release news: Qiskit SDK v1.2 is here! Qiskit SDK v1.2 introduces major updates, including Rust-based circuit infrastructure for faster performance, improved synthesis and transpilation, and new features. It also ends support for Python 3.8, requiring Python 3.9 or later. 🛠️ Platform Showdown: Comparing ML Tools & Services➽ Using FastAPI for Building ML-Powered Web Apps: This tutorial demonstrates building a machine learning web app using FastAPI and Jinja2 templates. It covers creating a prediction API for a Random Forest model and integrating it with a web interface for user interaction.➽ DetoxBench: Benchmarking large language models for multitask fraud & abuse detection. This paper introduces a benchmark suite to evaluate large language models (LLMs) for detecting and mitigating fraud and abuse in various real-world scenarios, highlighting performance gaps and offering a tool for improving LLMs in high-stakes applications.➽ Llama-3.1-Storm-8B · Hugging Face: The Llama-3.1-Storm-8B model outperforms Meta’s Llama-3.1-8B-Instruct and Hermes-3 across multiple benchmarks. It improves instruction-following, QA, reasoning, and function-calling via self-curation, fine-tuning, and model merging techniques.➽ CausalLM/miniG · Hugging Face: The miniG model has two versions: standard and "alt," the latter trained with masked context to improve stability. Trained on a large dataset with text and image support, it performs best with Hugging Face Transformers for minimal performance degradation.➽ Build powerful RAG pipelines with LlamaIndex and Amazon Bedrock: This blog explores using Retrieval Augmented Generation (RAG) techniques to enhance large language models (LLMs) by integrating external knowledge sources. It discusses building advanced RAG pipelines with LlamaIndex and Amazon Bedrock, covering topics like query routing, sub-question handling, and stateful agents.📊 Success Stories: Real-World ML Case Studies➽ Improving ecommerce data quality: This blog details how Lowe’s enhanced its website search accuracy by fine-tuning OpenAI’s GPT-3.5 model. By applying advanced prompt engineering, Lowe’s improved product data quality, reduced associate workload, and achieved a 20% accuracy boost in product tagging.➽ 10 Built-In Python Modules Every Data Engineer Should Know: This article highlights essential Python modules for data engineering, including tools for file management, data serialization, database interaction, and text processing. It covers how modules like `os`, `pathlib`, `shutil`, and `csv` can enhance data engineering tasks.➽ 5 Common Data Science Mistakes and How to Avoid Them: This blog outlines five common mistakes in data science projects, such as unclear objectives, neglecting basics, poor visualizations, lack of feature engineering, and overemphasizing accuracy. It offers practical solutions to avoid these pitfalls and improve project outcomes.➽ How Thomson Reuters Labs achieved AI/ML innovation at pace with AWS MLOps services? This post details how Thomson Reuters Labs developed a standardized MLOps framework using AWS SageMaker to streamline ML processes. It highlights the creation of TR MLTools and MLTools CLI to enhance efficiency, standardize practices, and accelerate AI/ML innovation.➽ Galxe migrates to AlloyDB for PostgreSQL, cutting costs by 40%: This blog explains how Galxe is addressing Web3 challenges by using AlloyDB for PostgreSQL and Google Cloud services. It highlights Galxe's innovations in decentralized identity, gamified user experiences, and scalable infrastructure to enhance Web3 adoption and performance.🌍 ML Newsflash: Latest Industry Buzz & Discoveries➽ Using GPT-4 to deliver a new customer service standard: Ada, valued at $1.2B with $200M in funding, is leading a $100B shift in customer service with its AI-native automation platform. Since its 2016 inception, Ada has doubled resolution rates using OpenAI’s GPT-4, achieving up to 80% resolution and setting new industry standards for effectiveness.➽ HYGENE: A Diffusion-based Hypergraph Generation Method. The paper introduces HYGENE, a diffusion-based method for generating realistic hypergraphs. Using a bipartite representation, it iteratively expands nodes and hyperedges through a denoising process, effectively modeling complex hypergraph structures. This is the first deep learning approach for hypergraph generation.➽ Meet Yi-Coder: A Small but Mighty LLM for Code. Yi-Coder is an open-source series of coding-focused LLMs, available in 1.5B and 9B parameter sizes. It offers advanced coding performance with up to 128K token context modeling, surpassing models like CodeQwen1.5 and DeepSeek-Coder, and excels in benchmarks such as LiveCodeBench and HumanEval.➽ Guided Reasoning: A New Approach to Improving Multi-Agent System Intelligence. Gregor Betz from Logikon AI introduces Guided Reasoning, a multi-agent system where a guide agent helps client agents improve their reasoning through structured methods. This approach, using argument maps and pros/cons evaluations, aims to enhance clarity and accuracy in AI decision-making and explanations.See you next time! *{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{line-height:0;font-size:75%} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}} @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }
Read more
  • 0
  • 0
  • 5846

Merlyn from Packt
12 Sep 2024
11 min read
Save for later

🌐 IBM's PowerLM-3B & PowerMoE-3B models, Apple’s Byte-Level ASR Optimization, AtScale’s Open-Source Semantic Modeling Language, LG’s EXAONEPath

Merlyn from Packt
12 Sep 2024
11 min read
Google’s AI detective, Regnology Automates Ticket-to-Code with agentic GenAI on Vertex AI, MedFuzz @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }Grow your business & career by 10x using AI Strategies in 4 hrs! 🤯Join GrowthSchool's AI Business Growth & Strategy Crash Course and discover how to revolutionise your approach to business on 12th September at 10 AM EST.In just 4 hours, you’ll gain the tools, insights, and strategies to not just survive, but dominate your market.This is more than just a workshop—it's a turning point.The first 100 to register get in for FREE. Don’t miss the chance to change your business trajectory forever.Sign up here to save your seat! 👈SponsoredWelcome to DataPro #111—Your Weekly Dose of Data Science & ML Magic! 🚀We’re now landing in your inbox every Thursday to keep you sharp and ahead of the game!In the ever-evolving realm of AI and ML, it's all about harnessing smart insights for impactful decisions and stellar leadership. Dive into our new Packt Signature Series, where you'll find expert tips on everything from real-time data management to mastering AI modeling. We’re here to equip you with the tools you need to navigate the data world like a pro.This week, we’ve got cutting-edge strategies to boost your model accuracy, optimize performance, and reduce costs with scalable solutions. Get ready for top-notch tips and practical techniques to supercharge your data skills.📚 Top Reads & Author Insights:✦ Building AI Intensive Python Applications:Dive deep into advanced AI apps.✦ Databricks ML in Action: Real-world applications and best practices.✦ Generative AI Application Integration Patterns:Innovative uses of generative AI.✦ Polars Cookbook:Essential recipes for efficient data handling.✦ Building LLM Powered Applications:Building with large language models.✦ Building Data-Driven Applications with LlamaIndex:Leveraging LlamaIndex for robust applications.✦ Data Quality in the Age of AI:Ensuring top-notch data quality.✦ Modern Computer Vision with PyTorch - Second Edition:Updated techniques in computer vision.✦ Accelerate Model Training with PyTorch 2.X:Speed up your model training.✦ Mastering PyTorch - Second Edition:The ultimate guide to mastering PyTorch.🔍 Algorithm Spotlight:✦ Apple’s Byte-Level ASR Optimization: A new AI algorithm for speech recognition.✦ IBM’s PowerLM-3B & PowerMoE-3B: Massive language models with advanced scheduling.✦ AtScale’s Open-Sourced SML: Transforming analytics with a new semantic modeling framework.✦ LG’s EXAONEPath: Enhancing histopathology analysis with a pre-trained model.🚀 Tech Trendwatch:✦ Tracing Memory Allocation in Python: Learn how to track memory usage.✦ Anomaly Detection in Streaming Data: Using Amazon Managed Service for Apache Flink.🛠️ ML Tool Showdown:✦7 Free Cloud IDEs You Need: Explore top IDEs for data science.✦ End-to-End Data Science Pipelines: From ingestion to visualization.✦ Sustainable MLOps: Optimizing operations for sustainability.📊 Success Stories:✦ GraphRAG’s Auto-Tuning: Adapting rapidly to new domains.✦ Enterprise Data Quality Guide: Navigating enterprise data challenges.✦ AI Agents for Daily Tasks: Automating routine app tasks.🌍 ML Newsflash:✦ Google’s AI Detective: Solving challenges with Gemini 1.5 Pro.✦ Regnology’s Gen AI on Vertex AI: Automating ticket-to-code processes.✦ MedFuzz on LLM Robustness: Evaluating LLMs in medical contexts.Stay tuned for your weekly dose of data brilliance! 🚀Take our weekly survey and get a free PDF copy of our best-selling book, "Interactive Data Visualization with Python - Second Edition."We appreciate your input and hope you enjoy the book!Share Your Insights and Shine! 🌟💬📚 Packt Signature Series: Must-Reads & Author InsightsStep into a world of expert-driven knowledge with ourone-of-a-kindin-house content, crafted by industry pros to deliver the freshest insights on the latest tech releases. Discover how these cutting-edge titles are shaping the data landscape and unlocking the "whats," "hows," and "whys" behind emerging technologies. Whether you're looking to sharpen your skills or dive into something entirely new, there's never been a better time to expand your library with these essential resources.For a limited time, enjoy 30% off all eBooks at Packtpub.com. These books are more than just guides, they’re packed with real-world expertise from those who know the industry inside and out, offering perspectives you simply won’t find anywhere else.➽ Building AI Intensive Python ApplicationsThis book guides you through building powerful AI applications using large language models (LLMs), vector databases, and Python frameworks. You'll learn how to optimize AI performance, implement advanced techniques like retrieval-augmented generation, and tackle challenges like hallucinations and data leakage, ultimately creating reliable, high-impact AI solutions.Order Today at $41.98 $59.99➽ Databricks ML in ActionThis book is all about mastering the Databricks platform for machine learning and data science. It helps data engineers and scientists solve key problems by offering practical, cloud-agnostic examples and code projects. You’ll learn how to use Databricks tools to streamline workflows, improve model performance, and integrate with third-party apps.Order Today at $24.99 $35.99➽ Generative AI Application Integration PatternsThis book guides you through designing and integrating GenAI applications. You’ll learn essential tools and strategies, from prompt engineering to advanced techniques like retrieval-augmented generation. It provides practical examples, a clear 4-step framework, and covers ethical considerations for deploying GenAI models effectively.Order Today at $27.98 $39.99➽ Polars CookbookThis cookbook is your go-to guide for mastering Python Polars, a high-performance library for efficient data analysis. It offers step-by-step recipes for handling large datasets, advanced querying, and performance optimization. With practical tips on data manipulation, integration, and deployment, you'll boost your data workflows and analysis skills.Order Today at $24.99 $35.99➽ Building LLM Powered ApplicationsThis book helps you integrate LLMs into real-world apps using LangChain for orchestration. It covers the basics and advanced techniques of prompt engineering, explores various LLM architectures, and guides you through using powerful tools to create intelligent agents. You'll also learn about ethical considerations and the future of large foundation models.Order Today at $27.98 $39.99➽ Building Data-Driven Applications with LlamaIndexThis guide explores Generative AI and LlamaIndex, focusing on overcoming LLM limitations and building interactive applications. Learn to manage text chunking, security, and real-time data challenges. With hands-on projects, you'll master data ingestion, indexing, querying, and deployment, equipping you to develop and customize sophisticated AI-driven solutions.Order Today at $24.99 $35.99➽ Data Quality in the Age of AIThis book emphasizes the crucial role of data quality in AI success. It provides strategies to improve and measure data quality, offering practical steps to enhance data-driven decision-making. With real-world examples and actionable insights, it equips teams to optimize their data culture, leading to better AI performance and business outcomes.Order Today at $55.98 $79.99➽ Modern Computer Vision with PyTorch - Second EditionThis book offers a deep dive into neural network architectures and PyTorch for computer vision tasks. Learn to build solutions for image classification, object detection, and more using state-of-the-art models like CLIP and Stable Diffusion. With code available on GitHub and Google Colab, you'll gain practical skills for real-world applications and production deployment.Order Today at $33.99 $48.99➽ Accelerate Model Training with PyTorch 2.XThis book helps you optimize PyTorch model training, focusing on reducing build time and improving efficiency. Learn to speed up training with multicore systems, multi-GPU setups, and mixed precision. You'll explore techniques for model simplification, specialized libraries, and data pipeline improvements to enhance performance and model quality.Order Today at $24.99 $35.99➽ Mastering PyTorch - Second Edition This book guides you through building advanced neural network models with PyTorch, including CNNs, RNNs, and transformers. Learn to optimize training with GPUs, deploy models on mobile, and utilize libraries like Hugging Face and PyTorch Lightning. It covers deep learning across text, vision, and music, enhancing your AI skills with practical techniques.Order Today at $28.99 $41.99🔍 Model Breakdown: Unveiling the Algorithm of the Week➽ Apple Researchers Propose a Novel AI Algorithm to Optimize a Byte-Level Representation for Automatic Speech Recognition ASR and Compare it with UTF-8 Representation: The blog discusses a new method for enhancing multilingual automatic speech recognition (ASR) using vector quantized auto-encoders. This approach improves byte-level representation accuracy, optimizes resource usage, and reduces error rates, outperforming UTF-8 and character-based methods in multilingual settings.➽ PowerLM-3B and PowerMoE-3B Released by IBM: Revolutionizing Language Models with 3 Billion Parameters and Advanced Power Scheduler for Efficient Large-Scale AI Training. IBM's PowerLM-3B and PowerMoE-3B models showcase advancements in large-scale language model training. Utilizing IBM’s Power scheduler, these models achieve high efficiency and scalability, optimizing learning rates and computational costs for improved performance in NLP tasks.➽ AtScale Open-Sourced Semantic Modeling Language (SML): Transforming Analytics with Industry-Standard Framework for Interoperability, Reusability, and Multidimensional Data Modeling Across Platforms: AtScale has open-sourced its Semantic Modeling Language (SML) to create a standardized, interoperable language for semantic modeling across platforms. Built on YAML, SML supports complex data structures, promotes reusability, and integrates with modern development practices, aiming to enhance collaboration and efficiency in analytics.➽ LG AI Research Open-Sources EXAONEPath: Transforming Histopathology Image Analysis with a 285M Patch-level Pre-Trained Model for Variety of Medical Prediction, Reducing Genetic Testing Time and Costs: LG AI Research's EXAONEPath enhances digital histopathology by addressing Whole Slide Image (WSI) challenges with advanced self-supervised learning and stain normalization. This open-source model improves diagnostic accuracy, reduces genetic testing time, and supports various medical tasks.🚀 Trendspotting: What's Next in Tech Trends➽ How to Trace Memory Allocation in Python? This tutorial demonstrates how to use Python's `tracemalloc` module for tracing memory allocation in memory-intensive operations. It covers setting up a sample dataset, tracking memory usage before and after processing, and comparing snapshots to debug memory issues.➽ Anomaly detection in streaming time series data with online learning using Amazon Managed Service for Apache Flink: This post describes building a real-time anomaly detection system for time series data using AWS services. It outlines how to deploy an end-to-end solution with Amazon Managed Service for Apache Flink, Kafka, and SageMaker, focusing on detecting unusual patterns in streaming data.🛠️ Platform Showdown: Comparing ML Tools & Services➽ 7 Free Cloud IDE for Data Science That You Are Missing Out: To start data science projects quickly, explore these 7 Cloud IDEs: Kaggle Notebooks, Deepnote, Lightning.ai, Datalab by DataCamp, Google Colab, Amazon SageMaker Studio Lab, and DataLore. Each provides pre-built environments and free access to GPUs.➽ Developing End-to-End Data Science Pipelines with Data Ingestion, Processing, and Visualization: The article discusses the iterative nature of data science projects, emphasizing the importance of data ingestion, processing, and visualization. It outlines an end-to-end process involving business understanding, data preparation, model building, and monitoring.➽ Optimizing MLOps for Sustainability: The post outlines optimizing MLOps for sustainability using AWS by improving data preparation, model training, and deployment. Key practices include selecting low-carbon impact regions, using efficient storage, leveraging SageMaker’s tools, and monitoring with AWS services to minimize resource use and emissions.📊 Success Stories: Real-World ML Case Studies➽ GraphRAG auto-tuning provides rapid adaptation to new domains: Microsoft Research's GraphRAG uses large language models to build domain-specific knowledge graphs from text, enabling complex query responses. The tool automates the creation of domain-specific prompts to enhance graph accuracy and streamline knowledge extraction.➽ The “Who Does What” Guide to Enterprise Data Quality: This analysis explores enterprise data quality management, focusing on roles and processes in data detection, triage, resolution, and measurement. It highlights the importance of foundational versus derived data products, and strategies for improving data quality and efficiency.➽ Can AI Agents Do Your Day-to-Day Tasks on Apps? The blog introduces AppWorld, a new benchmarking framework for AI agents that interact with various apps to perform complex tasks. It features a simulated environment, a benchmark of intricate tasks, and a robust evaluation framework to test and improve AI agents’ performance.🌍 ML Newsflash: Latest Industry Buzz & Discoveries➽ Google’s AI detective: The Needle in a Haystack test and how Gemini 1.5 Pro solves it. The blog discusses Google's Gemini 1.5 Pro, an AI model excelling in the "Needle in a Haystack" test. It showcases the model's ability to retrieve specific information from vast datasets across text, video, and audio, outperforming GPT-4 in complex retrieval tasks.➽ Regnology Automates Ticket-to-Code with GenAI on Vertex AI: The blog discusses Regnology's solution to the "Ticket-to-Code Problem," where bug reports are transformed into actionable code. Their Ticket-to-Code Writer tool, enhanced by Google’s Vertex AI and Gemini 1.5 Pro, automates this process, boosting efficiency by 60% and improving accuracy.➽ MedFuzz: Exploring the robustness of LLMs on medical challenge problems. LLMs excel in medical benchmarks but often oversimplify complex real-world scenarios. MedFuzz, inspired by security red-teaming and fuzzing, introduces adversarial challenges to test LLMs against these simplifying assumptions. This approach assesses their true effectiveness in nuanced clinical settings.*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{line-height:0;font-size:75%} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}} @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }
Read more
  • 0
  • 0
  • 5814

Merlyn from Packt
18 Sep 2024
6 min read
Save for later

[Save 30%] on Top-Selling Print + eBooks for Data Professionals: Boost Your Knowledge in AI and Data Analytics!

Merlyn from Packt
18 Sep 2024
6 min read
For a limited time, save on the best-selling books that will elevate your skills and knowledge! @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }👋 Hello ,✨ Welcome to Packt’s Signature Series: New Titles Just Arrived!📚 We’re excited to present a new collection in our Signature Series, featuring the best-selling titles in the data industry. Packed with insights on Generative AI and multimodal systems, this collection is available for a limited time at 30% off both print and e-book formats. This offer ends Sunday, September 22nd. Don’t miss your chance to upskill and elevate your career. Let’s dive in!➽ Building LLM Powered Applications: This new titleis all about helping engineers and data pros use large language models (LLMs) effectively. It tackles key challenges like embedding LLMs into real-world apps and mastering prompt engineering techniques. You’ll learn to orchestrate LLMs with LangChain and explore various models, making it easier to create intelligent systems that can handle both structured and unstructured data. It’s a great way to boost your skills, whether you’re new to AI or already experienced! Start your free trial for access, renewing at $19.99/month.eBook $27.98 $39.99Print + eBook $34.98 $49.99➽ Python for Algorithmic Trading Cookbook: This bookis your go-to guide for using Python in trading. It helps you tackle key issues like acquiring and visualizing market data, designing and backtesting trading strategies, and deploying them live with APIs. You’ll learn practical techniques to gather data, analyze it, and optimize your strategies using tools like OpenBB and VectorBT. Whether you’re just starting or looking to refine your skills, this book equips you with the know-how to trade smarter with Python! Start your free trial for access, renewing at $19.99/month.eBook $27.98 $39.99Print + eBook $36.99 $49.99➽ Microsoft Power BI Cookbook - Third Edition: The Power BI Cookbook is your essential guide to mastering data analysis and visualization with Power BI. It covers using Microsoft Data Fabric, managing Hybrid tables, and creating effective scorecards. Learn to transform complex data into clear visuals, implement robust models, and enhance reports with real-time data. This updated edition prepares you for future AI innovations, making it a must-have for beginners and seasoned users alike! Start your free trial for access, renewing at $19.99/month.eBook $29.99 $43.99Print + eBook $41.98 $59.99➽ The Definitive Guide to Power Query (M): The Definitive Guide to Power Query (M) focuses on mastering data transformation with Power Query. It covers fundamental and advanced concepts through hands-on examples that address real-world problems. You'll learn the Power Query M language, optimize performance, handle errors, and implement efficient data processes. By the end, you'll have the skills to enhance your data analysis effectively! Start your free trial for access, renewing at $19.99/month.eBook $43.99Print + eBook $37.99 $54.99➽ Mastering PyTorch - Second Edition: This is your essential resource for building advanced neural network models with PyTorch. You'll explore tools like Hugging Face, fastai, and Docker, learning to create models for text, images, and music. With hands-on examples, you'll master training optimization, mobile deployment, and various network types, equipping you to tackle complex AI tasks using the PyTorch ecosystem! Start your free trial for access, renewing at $19.99/month.eBook $28.99 $41.99Print + eBook $40.99 $51.99➽ Unlocking the Secrets of Prompt Engineering: It'syour guide to mastering AI-driven writing with large language models (LLMs). It covers essential techniques and applications, from content creation to chatbots. With practical examples, you'll learn to generate product descriptions and tackle advanced uses like podcast creation. The book emphasizes ethical practices and optimization strategies, preparing you to leverage AI for improved writing, creativity, and productivity! Start your free trial for access, renewing at $19.99/month.eBook $24.99 $35.99Print + eBook $30.99 $44.99➽ ChatGPT for Cybersecurity Cookbook: Your essential guide to using AI in cybersecurity. It helps you automate tasks like penetration testing, risk assessment, and threat detection with ChatGPT. Each recipe provides step-by-step instructions for generating commands, writing code, and creating tools with the OpenAI API and Python. You'll explore innovative strategies and optimize workflows, gaining confidence in AI-driven techniques to excel in the rapidly evolving cybersecurity landscape! Start your free trial for access, renewing at $19.99/month.eBook $27.98 $39.99Print + eBook $34.98 $49.99➽ Mastering NLP from Foundations to LLMs:Your complete guide to Natural Language Processing (NLP) with Python. It covers the mathematical foundations of machine learning and essential topics like linear algebra and statistics. You'll learn to preprocess text, classify it, and implement advanced techniques, including large language models (LLMs). With practical Python code samples and insights into future trends, you'll gain the skills to tackle real-world NLP challenges confidently and effectively design ML-NLP systems! Start your free trial for access, renewing at $19.99/month.eBook $29.99 $42.99Print + eBook $46.99 $52.99➽ Learn Microsoft Fabric: This title is your essential guide to using Microsoft Fabric for data integration and analytics. It explores key features with real-world examples, helping you build solutions for lakehouses, data warehouses, and real-time analytics. You'll learn to effectively monitor your Fabric platform and cover workloads like Data Factory and Power BI. By the end, you'll be equipped to unlock AI-driven insights and navigate the analytics landscape confidently! Start your free trial for access, renewing at $19.99/month.eBook $24.99 $35.99Print + eBook $35.98 $44.99➽ Building Data-Driven Applications with LlamaIndex: This book is your comprehensive guide to leveraging Generative AI and large language models (LLMs). It addresses challenges like memory constraints and data gaps while teaching you to build interactive applications with LlamaIndex. You'll learn to ingest and index data, create optimized indexes, and query your knowledge base through hands-on projects. By the end, you'll be equipped to troubleshoot LLM issues and confidently deploy your AI-driven applications! Start your free trial for access, renewing at $19.99/month.eBook $24.99 $35.99Print + eBook $30.99 $44.99➽ OpenAI API Cookbook: This new title is all about using the OpenAI API to create smart applications. It helps engineers and data pros understand the basics, set up their API, and build tailored tools like chatbots and virtual assistants. You’ll learn practical recipes to enhance user experience and integrate AI into your workflows, making your projects more efficient and innovative! Start your free trial for access, renewing at $19.99/month.eBook $21.99 $31.99Print + eBook $27.98 $39.99Loved Those Titles? Check These Out!➽ Data Governance Handbook➽ Generative AI for Cloud Solutions➽ Data-Centric Machine Learning with Python➽ Modern Python Cookbook - Third EditionWe’ve got more great things coming your way—see you soon!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{line-height:0;font-size:75%} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}} @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }
Read more
  • 0
  • 0
  • 5199
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
Merlyn from Packt
19 Sep 2024
10 min read
Save for later

Google AI’s DataGemma, PyTorch Automatic Mixed Precision Library, Conversational Analytics in Looker, Mistral-Small-Instruct-2409, Comet’s Opik, OpenAI o1 System Card

Merlyn from Packt
19 Sep 2024
10 min read
BigQuery’s Contribution Model, Apache Airflow ETL on Google Cloud, Graviton4 EC2 Instances @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }Join Roman Lavrik from Deloitte Snyk hosted DevSecCon 2024Snyk is thrilled to announce DevSecCon 2024, Developing AI Trust Oct 8-9, a FREE virtual summit designed for DevOps, developer and security pros of all levels. Join Roman Lavrik from Deloitte, among many others, and learn some presciptive DevSecOps methods for AI-powered development.Save your spotSponsoredWelcome to DataPro #112—Your Weekly Fix of Data Science & ML Magic! 🌟In the fast-moving world of AI and ML, staying ahead means leveraging smart strategies for bold decisions. This week, we’re bringing you expert insights from our new Packt Signature Series. From real-time data mastery to AI modeling techniques, we’ve got everything you need to level up your data game!Get ready to elevate your model accuracy, supercharge performance, and cut costs with the latest in scalable solutions. Dive into this week’s must-read articles, tips, and practical techniques.📚 Must-Reads for Data Pros✦ LLM-Powered Apps: Build smarter AI tools✦ Python for Trading: Algorithmic insights✦ Power BI Cookbook: Master data visualization✦ The Prompt Engineering Playbook: Unlock AI secrets✦ Mastering PyTorch: Deep learning unleashed🔍 Algorithm Spotlight: Dive Deep into the Tech✦ Automating Metrics with Amazon Prometheus: Simplify data tracking on EKS✦ Graviton4 EC2 Instances: Memory-optimized power for your AI workloads✦ OpenAI Safety Practices: An update on securing AI✦ Mistral AI Release: Open-source models with unmatched flexibility🚀 Trendspotting: The Future of AI✦ Eureka AI Progress: Understand and evaluate AI advancements✦ OpenAI o1 System Card: A glance into AI innovations✦ Conversational Analytics Preview: What’s new in Looker?✦ Comet’s Opik: Streamlining LLM evaluation and prompt tracking🛠️ Tool Showdown: Which ML Platform Reigns Supreme?✦ BigQuery’s Contribution Model: Fresh insights for your data✦ Running Airflow on Google Cloud: Three easy approaches✦ Python Tricks: Merge dictionaries like a pro✦ Google AI’s DataGemma: A Set of Open Models that Utilize Data Commons📊 Case Studies: ML Success Stories✦ Handling Large Text with Longformer: A Hugging Face deep dive✦ Confluent & Vertex AI: Integrating LLMs for big wins✦ What Makes a Data Business Thrive? Lessons from the top🌍 ML Buzz: Industry News & Discoveries✦ Cracking PyTorch’s Mixed Precision Library: What you need to know✦ MLflow, Azure, Docker: Managing models with ease✦ Self-Learning Models: Teaching AI to improve autonomouslyGet ready for a week of data-driven breakthroughs!Take our weekly survey and get a free PDF copy of our best-selling book,"Interactive Data Visualization with Python - Second Edition."We appreciate your input and hope you enjoy the book!Share Your Insights and Shine! 🌟💬Cheers,Merlyn Shelley,Editor-in-Chief, Packt.Sponsored📚 Packt Signature Series: Must-Reads & Author InsightsWe’re excited to present a new collection in our Signature Series, featuring the best-selling titles in the data industry. Packed with insights on Generative AI and multimodal systems, this collection is available for a limited time at 30% off both print and e-book formats. This offer ends Sunday, September 22nd. Don’t miss your chance to upskill and elevate your career. Let’s dive in!➽ Building LLM Powered Applications: This new titleis all about helping engineers and data pros use large language models (LLMs) effectively. It tackles key challenges like embedding LLMs into real-world apps and mastering prompt engineering techniques. You’ll learn to orchestrate LLMs with LangChain and explore various models, making it easier to create intelligent systems that can handle both structured and unstructured data. It’s a great way to boost your skills, whether you’re new to AI or already experienced! Start your free trial for access, renewing at $19.99/month.eBook $27.98 $39.99Print + eBook $34.98 $49.99➽ Python for Algorithmic Trading Cookbook: This bookis your go-to guide for using Python in trading. It helps you tackle key issues like acquiring and visualizing market data, designing and backtesting trading strategies, and deploying them live with APIs. You’ll learn practical techniques to gather data, analyze it, and optimize your strategies using tools like OpenBB and VectorBT. Whether you’re just starting or looking to refine your skills, this book equips you with the know-how to trade smarter with Python! Start your free trial for access, renewing at $19.99/month.eBook $27.98 $39.99Print + eBook $36.99 $49.99➽ Microsoft Power BI Cookbook - Third Edition: The Power BI Cookbook is your essential guide to mastering data analysis and visualization with Power BI. It covers using Microsoft Data Fabric, managing Hybrid tables, and creating effective scorecards. Learn to transform complex data into clear visuals, implement robust models, and enhance reports with real-time data. This updated edition prepares you for future AI innovations, making it a must-have for beginners and seasoned users alike! Start your free trial for access, renewing at $19.99/month.eBook $29.99 $43.99Print + eBook $41.98 $59.99➽ The Definitive Guide to Power Query (M): The Definitive Guide to Power Query (M) focuses on mastering data transformation with Power Query. It covers fundamental and advanced concepts through hands-on examples that address real-world problems. You'll learn the Power Query M language, optimize performance, handle errors, and implement efficient data processes. By the end, you'll have the skills to enhance your data analysis effectively! Start your free trial for access, renewing at $19.99/month.eBook $43.99Print + eBook $37.99 $54.99🔍 Model Breakdown: Unveiling the Algorithm of the Week➽ Automating metrics collection on Amazon EKS with Amazon Managed Service for Prometheus managed scrapers: This blog discusses how Amazon Managed Service for Prometheus simplifies monitoring containerized applications in Amazon EKS by introducing a fully-managed, agentless scraper for Prometheus metrics, reducing operational overhead and enhancing efficiency through Terraform and AWS CloudFormation automation.➽ Now available: Graviton4-powered memory-optimized Amazon EC2 X8g instances. This post introduces Graviton-4-powered X8g instances, offering high memory, enhanced performance, scalability, and security for applications like databases and electronic design automation, emphasizing their efficiency, flexibility, and improved price-performance over previous instances.➽ An update on OpenAI safety & security practices: This post introduces OpenAI's Safety and Security Committee, outlining five key recommendations to enhance governance, security, transparency, collaboration, and safety frameworks for AI model development and deployment, ensuring responsible and secure advancements in AI technology.➽ Mistral AI Released Mistral-Small-Instruct-2409: A Game-Changing Open-Source Language Model Empowering Versatile AI Applications with Unmatched Efficiency and Accessibility. This article introduces Mistral AI's release of Mistral-Small-Instruct-2409, a powerful open-source large language model designed to enhance AI performance, promote accessibility, and support various natural language processing tasks with an emphasis on transparency, collaboration, and ethical AI development.🚀 Trendspotting: What's Next in Tech Trends➽ Eureka: Evaluating and understanding progress in AI. This post introduces the EUREKA framework for evaluating AI models, emphasizing the need for in-depth measurement beyond standard benchmarks. It aims to uncover strengths, weaknesses, and real-world capabilities of state-of-the-art models through transparent and reproducible evaluations.➽ OpenAI o1 System Card: This report outlines safety evaluations conducted before releasing OpenAI o1 models, addressing risks like bias, hallucinations, and disallowed content. It highlights mitigations, advanced reasoning capabilities, and overall safety ratings under OpenAI's Preparedness Framework.➽ Conversational Analytics in Looker is now in preview: This post introduces Looker's Conversational Analytics, powered by AI and Looker’s semantic model, enabling users to ask data questions in natural language. It simplifies business intelligence, enhances accessibility, and promotes data-driven decision-making across organizations.➽ Comet Launches Opik: A Comprehensive Open-Source Tool for End-to-End LLM Evaluation, Prompt Tracking, and Pre-Deployment Testing with Seamless Integration. This article introduces Opik, an open-source platform by Comet for enhancing observability and evaluation of large language models (LLMs). Opik helps developers and data scientists monitor, test, and track LLM applications, improving performance reliability and addressing issues like hallucinations.🛠️ Platform Showdown: Comparing ML Tools & Services➽ Introducing a new contribution analysis model in BigQuery: This post introduces contribution analysis in BigQuery ML, which helps organizations identify key data drivers behind trends and fluctuations, enabling faster, data-driven decisions by analyzing test and control datasets, and finding statistically significant contributors at scale.➽ Three different ways to run Apache Airflow ETL on Google Cloud: This article explores three ways to run Apache Airflow on Google Cloud, comparing Compute Engine, managed solutions, and infrastructure setups. It highlights the pros and cons of each, providing Terraform code for implementation.➽3 Simple Ways to Merge Python Dictionaries: This blog explains three common methods to merge dictionaries in Python: using the `update()` method, dictionary unpacking (`{**dict1, **dict2}`), and the union operator (`|`), providing code examples for each approach.➽ Google AI Introduces DataGemma: A Set of Open Models that Utilize Data Commons through Retrieval Interleaved Generation (RIG) and Retrieval Augmented Generation (RAG). Google's DataGemma addresses hallucinations in large language models (LLMs) by grounding them in real-world statistical data through Google’s Data Commons. It introduces two advanced models, RAG-27B-IT and RIG-27B-IT, enhancing precision for tasks requiring deep analysis and real-time fact-checking.📊 Success Stories: Real-World ML Case Studies➽ How to Handle Large Text Inputs with Longformer and Hugging Face Transformers? This post is a tutorial on using Longformer with Hugging Face Transformers for processing long text inputs in NLP tasks. It covers installing necessary packages, loading datasets, fine-tuning models, and evaluating results for tasks like review classification.➽ Integrating Confluent and Vertex AI with LLMs: This blog explains how integrating large language models (LLMs) with Confluent and Vertex AI automates SQL query generation, streamlining real-time data analytics. It enhances data exploration, report generation, pipeline optimization, and anomaly detection, addressing challenges like complex queries and real-time decision-making.➽ What Makes a Great Data Business? This post discusses how to identify and evaluate data businesses, highlighting their high margins and value potential. It covers key evaluation criteria: data sources, uses, nice-to-haves, and business models, providing a framework for private equity investors to spot valuable data businesses.🌍 ML Newsflash: Latest Industry Buzz & Discoveries➽ The Mystery Behind the PyTorch Automatic Mixed Precision Library: This article explains how to accelerate deep learning model training using Nvidia's automatic mixed precision (AMP) technique. It introduces Nvidia's Tensor cores, reviews the "Mixed Precision Training" paper, and demonstrates a 2X training speed-up for ResNet50 on FashionMNIST with minimal code changes.➽ Model Management with MLflow, Azure, and Docker: This article explains how to deploy MLflow, a tool for managing machine learning workflows, in a Docker container on Azure for scalability and collaboration. It covers MLflow's key components, focusing on MLflow Tracking, and provides a hands-on guide for setting up the system with Azure SQL Database and Blob Storage.➽ Teaching Your Model to Learn from Itself: This article explains pseudo-labeling, a semi-supervised learning technique that uses confident predictions from a model to label unlabeled data. A case study on the MNIST dataset demonstrates how pseudo-labeling boosted accuracy from 90% to 95% by iteratively adding confident predictions to the training set.We’ve got more great things coming your way—see you soon!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{line-height:0;font-size:75%} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}} @media only screen and (max-width: 100%;} #pad-desktop {display: none !important;} }
Read more
  • 0
  • 0
  • 4876

Merlyn from Packt
30 Aug 2024
13 min read
Save for later

❇️ NVIDIA NIM on SageMaker, Weaviate's StructuredRAG, Vectorlite v0.2.0, Imagen 3 on Vertex AI, Cerebras DocChat, Zyphra's Zamba2-mini, AWS DeepRacer

Merlyn from Packt
30 Aug 2024
13 min read
DeepSeek-AI’s Fire-Flyer AI-HPC, Microsoft’s Brain-Inspired AI Design, Fairness in Graph Filtering👋 Hello ,Happy Friday! 🌟Welcome to DataPro #109—Your Weekly Data Science & ML Digest! 🚀This week’s edition is packed with exciting updates! Discover Table-Augmented Generation (TAG) for smarter querying, Vectorlite v0.2.0 for speedy SQL-powered search, Zyphra's Zamba2-mini, and Weaviate's StructuredRAG for reliable AI outputs. Plus, we’ve curated top resources to supercharge your ML models with enhanced accuracy and efficiency!⚡ Tech Tidbits: Fresh Innovations and Tools▪️ AWS: Speed up AI inference with NVIDIA NIM on SageMaker and integrate Amazon Q with GitHub.▪️ Google ML: Explore multimodal search with BigQuery and get the lowdown on Imagen 3 on Vertex AI.▪️ Microsoft Research: Dive into brain-inspired AI design for next-gen tech.📚 Hot Reads from Packt Library▪️ Data Science Fundamentals Pocket Primer: Your essential guide to data science concepts.▪️ Mastering Looker and LookML: Create insightful views, dashboards, and databases.▪️ AI and Expert Systems: Techniques and applications for solving real-world problems.🔍 From Bits to BERT: LLMs & GPTs Spotlight▪️ TAG: Revolutionize database querying with a unified approach.▪️ Vectorlite v0.2.0: Get SQL-powered vector search with speed.▪️ StructuredRAG by Weaviate: Benchmark for reliable JSON outputs in AI.▪️ Cerebras DocChat: Fast, Llama 3-based GPT-4-level QA.▪️ Extension|OS: Open-source tool for on-demand AI access.▪️ AI21 Labs' Jamba 1.5: Quick, high-quality multilingual AI.▪️ LayerPano3D: AI framework for generating 3D scenes from text.▪️ Zyphra's Zamba2-mini: High-performance small language model.▪️ Fairness in Graph Filtering: Framework for better AI fairness.▪️ iAsk AI: Outperforming ChatGPT on MMLU Pro Test.▪️ DeepSeek-AI’s Fire-Flyer AI-HPC: Cost-effective deep learning solution.✨ On the Radar: What’s New & Noteworthy▪️ New LLM Agents: Exploring the latest architecture.▪️ Pandas Power: Advanced plotting techniques.▪️ AWS DeepRacer: Bridging the Sim2Real gap.▪️ MarianMT Translation: Easy language translation with Hugging Face Transformers.▪️ Building Transformers: A guide to training from scratch.▪️ ML Optimization: Top tips for boosting algorithm performance.Enjoy your weekend and stay ahead in the world of data science!DataPro Newsletter is not just a publication; it’s a complete toolkit for anyone serious about mastering the ever-changing landscape of data and AI. Grab your copyand start transforming your data expertise today!Calling Data & ML Enthusiasts!Want to share your insights and build your online reputation? Contribute to our new Packt DataPro column! Discuss tools, share experiences, or ask questions. Gain recognition among 128,000+ data professionals and boost your CV. Simply reply with your Google Docs link or use our feedback form. Whether you’re looking for visibility or a discreet approach, we’re here to support you.Share your content today and engage with our vibrant community! We’re excited to hear from you!Take our weekly survey and get a free PDF copy of our best-selling book,"Interactive Data Visualization with Python - Second Edition."We appreciate your input and hope you enjoy the book!Share Your Insights and Shine! 💬📚Expert Insights from Packt CommunityDid you know? “Books are the quietest, most constant friends, holding the world’s treasured wisdom. They offer gentle guidance and timeless lessons, passing their rich inheritance from one generation to the next.”We’re thrilled to bring you this week’s must-have new releases, straight from the experts to your bookshelf! Whether you're eager to enhance your skills or explore new horizons, now is the perfect moment to add these invaluable resources to your collection.For a limited time, enjoy 30% off all eBooks at Packtpub.com. These books are thoughtfully crafted by industry insiders with hands-on experience, offering unique insights you won’t find anywhere else.Don’t let these Packt-exclusive deals slip away—seize the opportunity to learn from the best at an unbeatable price!Order Today at $41.98 $59.99Data Science Fundamentals Pocket Primer: An Essential Guide to Data Science Concepts and TechniquesBy Mercury Learning and Information, Oswald CampesatoImagine having a go-to guide that gently walks you through the essentials of data science, making complex concepts feel accessible. This book does just that. With a blend of practical exercises and real-world examples, it simplifies the vast world of data science. Here’s what you’ll love:- A clear introduction to data science fundamentals.- Hands-on learning with practical examples.- Mastery of tools like Python, NumPy, Pandas, and R.- Techniques for data visualization to bring your data to life.Whether you're just starting or looking to sharpen your skills, this book is your companion on the journey to mastering data science.Get your copy now for $41.98 (originally $59.99).Order TodayMastering Looker and LookML - Complete Looker Guide for Developers: Master Looker and LookML to create views, dashboards, and databases with this guide [Video]By HHN Automate Book Inc.Embark on a journey to unlock the full potential of Looker with our all-encompassing course. Whether you’re new to Looker or looking to deepen your skills, this course guides you step-by-step through everything you need to know.Here’s what you can expect:- Hands-on tutorials for setting up your environment and connecting data.- In-depth exploration of LookML fields, parameters, and joins.- Advanced techniques for creating and managing impactful dashboards.By the end, you’ll have the confidence to create dynamic, data-driven insights that can drive meaningful decisions in your organization.Get the full video course now for $104.99 (MP4 download available).Order Today at $34.98 $49.99Artificial Intelligence and Expert Systems: Techniques and Applications for Problem SolvingBy Mercury Learning and Information ,I. Gupta ,G. NagpalDive into the world of AI with a guide that makes complex concepts approachable and practical. This book is your gateway to mastering AI, offering:- In-depth coverage of AI and expert systems.- Clear explanations paired with real-world applications.- Exploration of advanced topics like neural networks and fuzzy logic.From understanding the basics of AI to applying expert systems and neural networks, this book equips you with the tools to solve real-world problems. Perfect for anyone eager to enhance their knowledge of intelligent systems.Grab your copy now for $34.98 (originally $49.99).🔰 Data Science Tool Kit➤ NicolasHug/Surprise:Python scikit for building recommender systems with explicit rating data, emphasizing experiment control, dataset handling, and diverse prediction algorithms.➤ gorse-io/gorse:Open-source recommendation system in Go, designed for universal integration into online services, automating model training based on user interaction data.➤ recommenders-team/recommenders:Recommenders, a Linux Foundation project, offers Jupyter notebooks for building classic and cutting-edge recommendation systems, covering data prep, modeling, evaluation, optimization, and production deployment on Azure.➤ alibaba/Alink:Alink, developed by Alibaba's PAI team, integrates Flink for ML algorithms. PyAlink supports various Flink versions, maintaining compatibility up to Flink 1.13.➤ RUCAIBox/RecBole:RecBole, built on Python and PyTorch, facilitates research with 91 recommendation algorithms across general, sequential, context-aware, and knowledge-based categories.Access 100+ data tools in this specially curated blog, covering everything from data analytics to business intelligence—all in one place. Check out"Top 100+ Essential Data Science Tools & Repos: Streamline Your Workflow Today!"on PacktPub.com.⚡Tech Tidbits: Stay Wired to the Latest Industry Buzz!AWS ML Made Easy➤ Accelerate Generative AI Inference with NVIDIA NIM Microservices on Amazon SageMaker: The blog details NVIDIA's new NIM Inference Microservices integration with Amazon SageMaker, enabling fast, cost-effective deployment of large language models. It covers the use of prebuilt containers for efficient AI inferencing and provides a guide for setup and evaluation.➤ Connect the Amazon Q Business generative AI coding companion to your GitHub repositories with Amazon Q GitHub (Cloud) connector: This blog explains how incorporating generative AI, like Amazon Q Developer, can boost development productivity by up to 30% and streamline developer tasks. It details integrating Amazon Q Business with GitHub (Cloud) for natural language queries to manage repositories and enhance enterprise operations.Mastering ML with Google➤ Multimodel search using NLP, BigQuery and embeddings: This blog introduces a new era in search with multimodal embeddings, enabling text-based queries for images and videos. It showcases a demo for cross-modal search using Google Cloud Storage and BigQuery, allowing users to search for visual content through text queries.➤ A developer's guide to Imagen 3 on Vertex AI: The blog highlights user feedback on Imagen 3, emphasizing its need for high-quality, versatile image generation. It discusses improvements in artistic style, prompt adherence, and safety features like watermarking. Code examples illustrate creating photorealistic images and rendering text with the model.Microsoft Research Insights➤ Innovations in AI: Brain-inspired design for more capable and sustainable technology. Microsoft Research Asia, in collaboration with multiple institutions, is developing brain-inspired AI models to improve efficiency and sustainability. Key projects include CircuitNet for neural patterns, enhanced spiking neural networks (SNNs) for time-series prediction, and integrating central pattern generators for better sequence processing.🔍From Bits to BERT: Keeping Up with LLMs & GPTs➤ Table-Augmented Generation (TAG): A Unified Method for Improved Database Querying. Researchers from UC Berkeley and Stanford propose Table-Augmented Generation (TAG) to improve natural language queries over databases. TAG enhances query handling by combining query synthesis, execution, and answer generation, outperforming existing methods like Text2SQL and RAG in accuracy and complexity.➤ Vectorlite v0.2.0: Fast, SQL-Powered Vector Search with SQLite Driver. Vectorlite v0.2.0 enhances performance by using Google’s highway library for vector distance, addressing hnswlib’s limitations on SIMD instruction support and vector normalization. The update improves speed significantly, especially on x64 platforms with AVX2, and is now SIMD-accelerated on ARM.➤ StructuredRAG by Weaviate: Benchmark for Reliable JSON Output in AI. The StructuredRAG benchmark evaluates LLMs' ability to generate structured outputs like JSON. Testing Gemini 1.5 Pro and Llama 3 8B-instruct with various prompting strategies revealed an 82.55% success rate on average, with performance varying significantly by task and model.➤ Cerebras DocChat: Llama 3-Based GPT-4-Level QA in Hours. Cerebras has released two models for document-based Q&A: Llama3-DocChat and Dragon-DocChat, trained quickly using Cerebras Systems. Llama3-DocChat builds on Llama 3, while Dragon-DocChat improves on Dragon+ with enhanced recall. Both models and their training data are open-source.➤ Extension|OS: Open-Source Browser Tool for On-Demand AI Access. Extension|OS is a browser extension that integrates AI tools directly into web pages, allowing users to perform tasks like grammar checks and content edits without switching tabs. It features prompt customization, secure API key storage, and enhanced functionality with a Mixture of Agents.➤ AI21 Labs' Jamba 1.5 Models: Speedy, Quality, Multilingual AI. AI21's Jamba 1.5 Open Model Family features the Jamba 1.5 Mini and Large models, built on the SSM-Transformer architecture. They offer the longest context window, exceptional speed, and high quality. Jamba 1.5 models outperform competitors and support extensive enterprise applications.➤ LayerPano3D: AI Framework for Consistent 3D Scene Generation from Text. LayerPano3D introduces a novel framework for generating full-view, explorable panoramic 3D scenes from a single text prompt. By decomposing 2D panoramas into layered 3D representations, it achieves high-quality, consistent views and immersive exploration, surpassing existing methods.➤ Zyphra's Zamba2-mini: Efficient, High-Performance Small Language Model. Zamba2-1.2B improves hybrid SSM-transformer models by adding rotary embeddings and LoRA projectors for depth-specialization, enhancing performance. Developed to optimize model efficiency and accuracy, it’s applicable in real-world scenarios like advanced NLP tasks and code generation.➤ Fairness in Graph Filtering: Framework for Theory and Mitigation Techniques. The paper addresses fairness in GNN-based recommendation systems, which often overlook consumer fairness. It evaluates a new method for adjusting fairness via fair graph augmentation. This approach consistently improves fairness across various GNN models and datasets, advancing recommendation system equity.➤ iAsk Ai Outperforms ChatGPT and Others on MMLU Pro Test: The iAsk Pro model achieved a record 85.85% accuracy on the MMLU-Pro benchmark, surpassing all current LLMs, including GPT-4o, by over 13 percentage points. This dataset, with 12,000 complex questions, tests multi-task language comprehension rigorously. iAsk Pro's performance highlights its advanced reasoning and understanding capabilities, setting a new standard in AI evaluation.➤ Lite Oute 2 Mamba2Attn 250M: 10X More Efficient AI. The Lite Oute 2 Mamba2Attn 250M model, using the new Mamba2 architecture with attention layers, boasts 250 million parameters and achieves high benchmark scores. It was developed for improved efficiency and performance in various tasks, showing enhanced results in multiple evaluations compared to previous models.➤ DeepSeek-AI Launches Fire-Flyer AI-HPC: Cost-Effective Deep Learning Solution. The Fire-Flyer AI-HPC architecture addresses high costs and energy demands in Deep Learning by integrating hardware-software design. With 10,000 PCIe A100 GPUs, it cuts costs by 50% and reduces energy use by 40%, improving scalability and performance.✨On the Radar: Catch Up on What's Fresh➤ Navigating the New Types of LLM Agents and Architectures: The post explores the evolution of AI agents from early ReAct models to the second generation of more structured, efficient agents. It introduces tools and frameworks for building these agents and highlights advancements in design and performance. Key insights include improvements in routing and state management.➤ The Power of Pandas Plots: Backends. The article highlights how Pandas can leverage various visualization backends, such as Matplotlib, Plotly, and Hvplot, to enhance data visualization without extensive retraining. It shows how easy it is to switch between these backends for interactive and efficient plotting, emphasizing Hvplot's ease of use and integration.➤ AWS DeepRacer : A Practical Guide to Reducing The Sim2Real Gap. The article focuses on training the AWS DeepRacer to safely navigate a track. It emphasizes creating a "safe" model that prioritizes staying on the track over speed. Key aspects include setting up the track, designing reward functions, and using a discrete action space. It details iterative training, starting with slower models and gradually increasing speed, to enhance both safety and performance. The final reward function balances staying on the track and adjusting speed for turns, with iterative improvements for increased reliability.➤ How to Translate Languages with MarianMT and Hugging Face Transformers? The article explains how to use MarianMT with Hugging Face Transformers for language translation. It covers installation, model selection, loading, tokenization, and translating text. The guide provides steps for translating to multiple languages and highlights MarianMT’s ease of use and effectiveness.➤ How to Build and Train a Transformer Model from Scratch with Hugging Face Transformers? The Hugging Face Transformers library enables both the use of pre-trained models and the creation of custom transformer models from scratch. This tutorial guides you through setting up, tokenizing data, configuring, and training a transformer for sentiment classification, emphasizing the need for high-performance computing resources.➤ 5 Tips for Optimizing Machine Learning Algorithms: This blog provides key tips for optimizing machine learning algorithms, focusing on data preparation, hyperparameter tuning, cross-validation, regularization, and ensemble methods. It aims to improve the accuracy, efficiency, and robustness of ML models for real-world applications.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{line-height:0;font-size:75%} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 0
  • 0
  • 4705

Merlyn from Packt
05 Jun 2025
11 min read
Save for later

Claude Code + Amazon Bedrock Prompt Caching, Mistral Code, Snowflake’s Cortex AISQL, Google Cloud’s Lightning Engine + Vertex AI Ranking API

Merlyn from Packt
05 Jun 2025
11 min read
Google’s new MCP Toolbox for Databases streamlines AI-assisted devSubscribe | Submit a tip | Advertise with usWelcome to DataPro 138, where graphs aren’t just visuals, they’re the future of machine learning. Where maps aren’t static, they’re smart, dynamic tools. And where every scroll brings you closer to mastering the bleeding edge of data, AI, and analytics.🔍 AI Breakthroughs You Need to KnowThis month’s top research drops, and product releases are setting the stage for next-gen AI development:OpenAI's new agent stack makes voice agents more transparent, auditable, and real-time.Shanghai AI Lab cracks RL entropy collapse with Clip-Cov and KL-Cov — boosting LLM reasoning.Snowflake’s Cortex AISQL brings AI-native analytics straight into your SQL.Mistral Code enters the AI dev chat with full-stack, enterprise-ready coding support across 80+ languages.📘 Graph Machine Learning, Second Edition – Reinvent Your ML StackForget flat data. The world is connected, and your models should be too. The newly updated Graph Machine Learning dives deep into graph-native thinking with:PyTorch Geometric integrationFresh chapters on LLMs and temporal graphsReal-world use cases across healthcare, enterprise AI, and moreWhether you're building models for fraud detection or brain data analysis, this is your leap forward.🗺️ Learn QGIS, Fifth Edition – Spatial Thinking Starts HereIf QGIS has ever felt like deciphering an alien control panel… this book is your Rosetta Stone. The Fifth Edition of Learn QGIS is built for curious beginners and seasoned pros alike, offering:Step-by-step guidance from install to field-ready mobile appsPowerful map visualizations and spatial analyticsAutomation with Python, ethical GIS practices, and moreIt’s not just a manual. It’s a mentor in book form, authored by the legends of the QGIS ecosystem.💬 What the Data World’s Talking AboutFrom DuckDB pipelines to Claude-powered code boosts, and Jupyter grads leveling up to full-stack devs -this edition is packed with practical takeaways, including:How to use LLMs + Pandas for executive data summariesWhy decision trees need smarter encoding strategiesHow data drift monitoring is broken, and how to fix it🧠 Case Studies & Cloud Innovations from the Tech TitansGoogle, AWS, and Snowflake just raised the bar on AI-integrated workflows:Google Vertex AI Ranking API tackles noisy RAG systemsLightning Engine supercharges Apache Spark queries by 3.6xAWS Agentic AI makes cloud migration smarter and faster than everSponsored🔐 Mobile App SecurityFuture-proof your app.Discover how your mobile app can evolve automatically, leaving reverse engineers in the dust with every release.👉Register Now🤖 AI Side HustleEarn up to $50/hr building your AI skills, no experience needed!💰 Competitive Pay | ⏰ Flexible Schedule | 🚀 Remote & Beginner-Friendly👉Apply NowTL;DR: Graph ML is getting smarter. Geospatial data is going mainstream. And AI tooling is evolving faster than ever. Whether you’re coding smarter, mapping clearer, or just trying to stay ahead - DataPro 138 is your unfair advantage.👉 Ready to dive in? Let’s explore the future of data, together.Cheers,Merlyn ShelleyGrowth Lead, PacktBuild Your Own AI Agents Over The WeekendJoin the live"Building AI Agents Over the Weekend"Workshop starting onJune 21stand build your own agent in2 weekend.In this workshop, the Instructors will guide you through building a fully functional autonomous agent and show you exactly how to deploy it in the real world.BOOK NOW AND SAVE 25%Use CodeAGENT25at checkoutTop Tools Driving New Research 🔧📊🔶 OpenAI Introduces Four Key Updates to Its AI Agent Framework: OpenAI just dropped a major upgrade to its AI agent stack: TypeScript SDK support, real-time voice agents with human-in-the-loop control, full traceability for voice sessions, and smoother speech-to-speech interactions. These updates make agents easier to build, audit, and deploy across web, server, and multimodal voice apps. 🔶 From Exploration Collapse to Predictable Limits: Shanghai AI Lab Proposes Entropy-Based Scaling Laws for Reinforcement Learning in LLMs. Reinforcement learning for reasoning-centric LLMs just got a breakthrough: Researchers tackled the entropy collapse bottleneck by modeling the entropy-performance link and introducing Clip-Cov and KL-Cov, two novel strategies that sustain exploration during RL. Tested on top open-source models, these techniques deliver major performance gains.🔶 Snowflake Charts New AI Territory: Cortex AISQL & Snowflake Intelligence Poised to Reshape Data Analytics. Snowflake just redefined data-AI synergy: At the Snowflake Summit, they unveiled Cortex AISQL and Snowflake Intelligence, two new tools that embed AI into SQL workflows and enable natural language data queries. These innovations make advanced analytics intuitive for both analysts and business users, signaling a major leap in accessible enterprise AI.🔶 Mistral AI Introduces Mistral Code: A Customizable AI Coding Assistant for Enterprise Workflows. Mistral AI enters the enterprise dev arena with Mistral Code: Their new coding assistant prioritizes security, on-prem deployment, and tunability to internal codebases. Backed by four specialized models, it supports full-stack workflows—debugging, refactoring, and more, across 80+ languages. With partners like Capgemini onboard, it’s built for real-world, regulated environments.📘 Graph Machine Learning, Second Edition – ML’s Next Leap Starts HereThe future of ML is graph-native,and this book puts you ahead of the curve.Fully updated with PyTorch Geometric, new chapters on LLMs and temporal graphs, and expert-backed case studies, it’s your guide to building smarter, more dynamic models.👉 Preorder now and stay ahead while others catch up.🚀 Why it matters:Practical, production-ready techniquesModel real-world complexity with graph structuresCombine graph theory + LLMs for deeper insights20% off print / 50% off eBook - ends June 10👨‍🔬 Meet your expert guides:Aldo Marzullo – PhD in deep learning + graph theory for brain data Enrico Deusebio – Data science lead building enterprise AI systems Claudio Stamile – Biomedical AI specialist with ML + graph expertiseBuy Print at $43.98$54.99Buy ebook at $21.99$43.99Topics Catching Fire in Data Circles 🔥💬🔶 Data Science ETL Pipelines with DuckDB: ETL just got easier for data scientists with DuckDB: This open-source, in-memory SQL engine streamlines data pipelines, from extracting and transforming raw datasets to loading them into cloud warehouses like Motherduck. With seamless SQL and Pandas support, you can efficiently prep data for analysis, modeling, and beyond, all from your IDE.🔶 Unlocking Your Data to AI Platform: Generative AI for Multimodal Analytics: SQL meets multimodal AI in the modern data warehouse: Traditional platforms are evolving, now integrating generative AI to natively analyze text, images, and PDFs alongside structured data. With tools like BigQuery’s AI.GENERATE and ObjectRef, analysts can now ask nuanced, semantic questions using pure SQL, no external ML pipelines or prompt engineering required.🔶 The Journey from Jupyter to Programmer: A Quick-Start Guide. From notebook to production: why it’s time to graduate from Jupyter. This guide unpacks how transitioning from .ipynb files to modular Python scripts empowers data scientists with structure, scalability, and team collaboration. With tools like Cookie Cutter, VS Code, and best practices like if __name__ == '__main__', you’re coding like a pro.🔶 Supercharge your development with Claude Code and Amazon Bedrock prompt caching: Claude Code + Amazon Bedrock prompt caching is now live: Anthropic’s AI coding assistant, Claude Code, now leverages Bedrock’s prompt caching to cut token costs and speed up coding workflows, especially in large, iterative projects. With support for Model Context Protocol, it’s enterprise-ready, secure, and optimized for real-world software development on AWS.If You’ve Ever Googled “How to Map in QGIS”… This Is Your Sign.Every now and then, a tech book shows up that doesn’t just teach a tool, it redefines how you think about the problem. Learn QGIS, Fifth Edition is exactly that kind of book. It’s not a recycled walkthrough. It’s a no-fluff, deeply practical guide to working with geospatial data like a modern pro, even if you’re just getting started. Whether you're wrangling satellite data or just trying to make sense of your city's zoning chaos... this book has your back.But wait, what even is QGIS?QGIS blends the power of Excel with the spatial smarts of Google Maps, plus the logic of environmental science, urban planning, and Python. It’s a leading open-source GIS tool used by governments, researchers, and analysts. But learning it solo? Confusing and overwhelming. This guide makes it simple. From install to building a mobile-ready GIS app, this guide takes you from “Where do I start?” to “Look what I built.”Meet the Dream Team Behind the BookEugenia Sarafova – GIS professor, TEDx speaker, remote sensing PhD, and cartography content machine. She’s guided countless learners through the maze of mapmaking with clarity and confidence.Ivan Ivanov – Core contributor to QGIS, QField, and QFieldCloud. When we say “hands-on,” we mean he literally built the tools.Andrew Cutts – He breaks down complex geospatial stuff until you wonder why you ever found it hard.Anita Graser – A QGIS veteran and community icon, Anita’s work has guided thousands through the open-source geospatial jungle.This book is built for people solving real-world problems, not just collecting certifications. It’s fully updated for QGIS 3.38, QField, open data workflows, and AI tools, so you're learning what actually works from the experts shaping the future of GIS. If your work touches the physical world, spatial thinking leads to better decisions. Learn QGIS, Fifth Edition helps you master it, one hands-on chapter at a time. Now available for pre-order- Click Here to Buy.New Case Studies from the Tech Titans 🚀💡🔶 New MCP integrations to Google Cloud Databases: Google’s new MCP Toolbox for Databases streamlines AI-assisted dev: Now GA, Toolbox connects Claude Code, Cursor, and other AI agents directly to databases like BigQuery, AlloyDB, and Cloud SQL. Developers can query, refactor, and generate tests with simple natural language, all within their IDE. Schema changes? Test updates? Just prompt and go.🔶 Launching our new state-of-the-art Vertex AI Ranking API: Google launches Vertex AI Ranking API to fix noisy search and flaky RAG: With up to 70% of retrieved content often irrelevant, this precision reranker improves answer quality, speeds up AI agents, and cuts costs. It integrates easily with legacy search, RAG, or tools like AlloyDB, LangChain, and Elasticsearch, so you get better results in minutes.🔶 Introducing Lightning Engine for Apache Spark: Google Cloud unveils Lightning Engine to supercharge Apache Spark: Now in preview, this next-gen engine boosts query performance up to 3.6x with advanced optimizations from scan reduction to columnar shuffle. Built on Velox and Gluten, it integrates seamlessly with Iceberg, Delta Lake, BigQuery, and GCS, delivering faster insights and lower costs without rewriting code.🔶 AWS Agentic AI Options for migrating VMware based workloads: AWS streamlines VMware migrations with agentic AI: AWS Transform for VMware accelerates rehost planning by 80x, auto-translating networking configs and sizing EC2 workloads. For complex migrations, Amazon Bedrock enables multi-agent orchestration with deep domain expertise, MCP integrations, and traceability. Use both tools to blend speed and sophistication across your cloud migration strategy.Blog Pulse: What’s Moving Minds 🧠✨🔶 Building a Modern Dashboard with Python and Gradio: Gradio makes building interactive dashboards refreshingly simple: This guide walks through creating a polished sales performance dashboard using a CSV file and Python, complete with date filters, key metrics, visualizations, and raw data views. With minimal setup, Gradio offers a lightweight, flexible way to turn data into insights without heavy front-end code.🔶 Decision Trees Natively Handle Categorical Data: Decision trees handle categories just fine, until they don’t: While DTs natively split on categorical features, high cardinality makes training slow. Mean Target Encoding (MTE) elegantly sidesteps this by reducing the number of splits from exponential to linear, without sacrificing accuracy. Empirical tests confirm: MTE delivers the same split, but exponentially faster.🔶 LLMs + Pandas: How I Use Generative AI to Generate Pandas DataFrame Summaries. Tired of manually analyzing massive datasets? This guide shows how to pair Pandas with local LLMs (via Ollama) to generate polished executive summaries from raw data, no need to leave your machine or break the bank. With one-time setup, you can transform data insights into clean, readable reports in seconds.🔶 Data Drift Is Not the Actual Problem: Your Monitoring Strategy Is. Data drift isn’t the real threat, misinterpreting it is: In ML systems, drift is often treated as a red flag, but it's just a signal. Without context, statistical monitoring can trigger false alarms or worse, blind spots. A robust strategy layers statistical, contextual, and behavioral monitoring to answer what really matters: does the drift affect outcomes?See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0}#converted-body .list_block ol,#converted-body .list_block ul,.body [class~=x_list_block] ol,.body [class~=x_list_block] ul,u+.body .list_block ol,u+.body .list_block ul{padding-left:20px} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}.reverse{display:table;width: 100%;
Read more
  • 0
  • 0
Merlyn from Packt
09 Jul 2025
11 min read
Save for later

SmolLM3, Hugging Face’s small-but-mighty multilingual model with 128k-token context, MLarena, a diagnostic-rich, algorithm-agnostic toolkit

Merlyn from Packt
09 Jul 2025
11 min read
Microsoft’s Copilot Chat goes open-source, Beyond Prompts: The Rise of Context EngineeringTogether with Growth School & Infinite UptimeJoin this 16 hour AI Learning Sprint to become an AI Genius (worth $895 but $0 today)The AI race is getting faster & dirtier day by day. Things we could never have imagined are happening.--Thousands of people are getting laid off everyday--People are building 1-person million dollar companies--Tech giants are fighting for AI talentMeta just poached OpenAI’s 4 top researchers …….So if you’re not learning AI today, you probably won't have a job in the next 6 months.That’s why, you need to join the 3-Day Free AI Mastermind by Outskill which comes with 16 hours of intensive training on AI frameworks, building with sessions, creating images and videos etc. that will make you an AI expert. Originally priced at $895, but the first 100 of you get in for completely FREE! Extended 4th of july SALE! 🎁📅FRI-SAT-SUN- Kick Off Call & Live Sessions🕜10AM EST to 7PM EST✅ trusted by 4M+ learnersIn the 5 sessions, you will:✅ Master prompt engineering to get the best out of AI.✅ Build custom GPT bots & AI agents for email management to save you 20+ hours weekly.✅ Create high-quality images and videos for PPTs, marketing, and branding.✅ Monetise your AI skills into a $10,000/mo business.All by global experts from companies like Amazon, Microsoft, SamurAI and more. And it’s ALL. FOR. FREE. 🤯 🚀Join now and get $5100+ in additional bonuses$5100+ worth of AI tools across 3 days — Day 1: 3000+ Prompt Bible, Day 2: Roadmap to make $10K/month with AI, Day 3: Your Personal AI Toolkit Builder.SponsoredSubscribe|Submit a tip|Advertise with usWelcome to DataPro #141 ~ Engineering Intelligence, Not Just ModelsIn this landmark edition, we go beyond algorithms and hyperparameters to explore how data science is evolving into a discipline of system design, orchestration, and reasoning. As GenAI shifts the boundaries of what’s possible, the conversation is no longer about what model to use, but how we structure intelligence itself.Our feature deep dive, “Beyond Prompts: The Rise of Context Engineering” byRahul Singh, Data Science Manager at Adobe,challenges the prompt-centric mindset and introduces Context Engineering as a foundational pillar for building scalable, intelligent agents. If you’re architecting the future of enterprise AI, this is essential reading.Also inside:– Build a fully autonomous multi-agent system with Python, OpenAI API, and PrimisAI Nexus– Explore SmolLM3, Hugging Face’s small-but-mighty multilingual model with 128k-token context– Microsoft’s Copilot Chat goes open-source, offering powerful AI pair programming to everyone– Google’s MCP Toolbox simplifies secure, schema-aware database access for AI agents– A technical teardown of Shazam’s algorithmic magic, from FFT to hash matching– How POSETs in Python provide better multi-criteria decisions than rankings– Launch smarter ML pipelines with MLarena, a diagnostic-rich, algorithm-agnostic toolkit– Unlock true concurrency with free-threaded Python 3.13 and StaticFrame for blazing-fast row opsWhether you're scaling models, building infrastructure, or shaping AI policy, this issue delivers insights for every data scientist at the frontier.✉️ Have tips or tools to share? Reply and contribute to our next edition.Cheers,Merlyn ShelleyGrowth Lead, PacktUnlock 99.97% Availability with PlantOS: Production Reliability, RedefinedPlantOS Manufacturing Intelligence is powering the next era of industrial performance — delivering 99.97% equipment availability and up to 2% energy savings per unit produced. From steel to cement, manufacturers worldwide are turning fragmented data into confident decisions across every layer of production — from parameter to plant to global scale.Experience Infinite Uptime NowSponsoredBeyond Prompts: The Rise of Context EngineeringWhy context engineering is the next frontier in building smarter, more reliable AI systems.Written by Rahul Singh, Data Science Manager @Adobe. Over my seven-plus-year career in data science, working on projects ranging from customer-value measurement to product analytics and personalization, one question has remained constant through it all:Do we have the right data, and can we trust it?With the rapid rise of Generative AI, that question hasn’t disappeared; it’s become even more urgent. As AI systems evolve from proof-of-concept assistive chatbots to autonomous agents capable of reasoning and acting, their success increasingly depends not on how complex or powerful they are, but on how well they understand the context in which they operate.In recent weeks, leaders like Tobi Lütke (CEO of Shopify), Andrej Karpathy (former Director of AI at Tesla), and others have spotlighted this shift. Lütke’s tweet was widely reshared, including by Karpathy, who elaborated on it further. He emphasized that context engineering is not about simple prompting, but about carefully curating, compressing, and sequencing the right mix of task instructions, examples, data, tools, and system states to guide intelligent behavior. This emerging discipline, still poorly understood in most organizations, is quickly becoming foundational to any serious application of generative AI.This growing attention tocontext engineeringsignals a broader shift underway in the AI landscape. For much of the past year,prompt engineeringdominated the conversation, shaping new job titles and driving a surge in hiring interest. But that momentum is tapering. A Microsoft survey across 31 countries recently ranked “Prompt Engineer” near the bottom of roles companies plan to hire(Source).Job search trends reflect the change as well: according to Indeed, prompt-related job searches have dropped from144 per milliontojust 20–30(Source).But this decline doesn’t signal the death of prompt engineering by any means. Instead, it reflects a field in transition. As use cases evolve from assistive to agentic AI, ones that can plan, reason, and act autonomously, the core challenge is no longer just about phrasing a good prompt. It’s about whether the model has the right information, at the right time, to reason and take meaningful action.This is where Context Engineering comes in!Suppose prompt engineering is about writing the recipe, carefully phrased, logically structured, and goal-directed. In that case,context engineeringis about stocking the pantry, prepping the key ingredients, and ensuring the model remembers what’s already been cooked. It’s the discipline of designing systems that feed the model relevant data, documentation, code, policies, and prior knowledge, not just once, but continuously and reliably.In enterprises, where critical knowledge is often proprietary and fragmented across various platforms, including SharePoint folders, Jira tickets, Wiki pages, Slack threads, Git Repositories, emails, and dozens of internal tools, the bottleneck for driving impact with AI is rarely the prompt. It’s the missing ingredients from the pantry, the right data, delivered at the right moment, in the right format. Even the most carefully crafted prompt will fall flat if the model lacks access to the organizational context that makes the request meaningful, relevant, and actionable.And as today’s LLMs evolve intoLarge Reasoning Models(LRM), and agentic systems begin performing real, business-critical tasks, context becomes the core differentiator. Models like OpenAI’s o3 and Anthropic’s Claude Opus 4 can handle hundreds of thousands of tokens in one go. But sheer capacity is not enough to guarantee success. What matters is selectively injecting the right slices of enterprise knowledge: source code, data schemas, metrics, KPIs, compliance rules, naming conventions, internal policies, and more.This orchestration of context is not just document retrieval; it’s evolving into a new systems layer. Instead of simply fetching files, these systems now organize and deliver the right information at the right step, sequencing knowledge, tracking intermediate decisions, and managing memory across interactions. In more advanced setups, supporting models handle planning, summarization, or memory compression behind the scenes, helping the primary model stay focused and efficient. These architectural shifts are making it possible for AI systems to reason more effectively over time and across tasks.Without this context layer, even the best models stall on incomplete or siloed inputs. With it, they can reason fluidly across tasks, maintain continuity, and deliver compounding value with every interaction.Case in point:This isn’t just theory. One standout example comes from McKinsey. Their internal GenAI tool,Lilli,is context engineering in action. The tool unifies over 40 knowledge repositories and 100,000+ documents into a single searchable graph. When a consultant poses a question, it retrieves the five to seven most relevant artifacts, generates an executive summary, and even points to in-house experts for follow-up. This retrieval-plus-synthesis loop has driven ~72% firm-wide adoption and saves teams ~30% of the time they once spent hunting through SharePoint, wikis, and email threads, proof that the decisive edge isn’t just a bigger model, but a meticulously engineered stream of proprietary context (Source).What Does ContextActuallyMean in the Enterprise?By now, it’s clear that providing the right context is key to unlocking the full potential of AI and agentic systems inside organizations. But “context” isn’t just a document or a code snippet; it’s a multi-layered, fragmented, and evolving ecosystem. In real-world settings, it spans everything from database schemas to team ownership metadata, each layer representing a different slice of what an intelligent system needs to reason, act, and adapt effectively.Based on my experience working across hundreds of data sources and collaborating with cross-functional product, engineering, and data teams, I’ve found that most enterprise context and information fall into nine broad categories. These aren’t just a checklist; they form a mental model: each category captures a dimension of the environment that AI agents must understand, depending on the use case, to operate safely, accurately, and effectively within your organization.Read the full article on Packt’s Medium. If you’re new, make sure to follow our Medium handle and subscribe to our newsletter for more insights like this!📈 Patterns & Practice: What’s Moving the World of Data & ML⭕ Implementing a Tool-Enabled Multi-Agent Workflow with Python, OpenAI API, and PrimisAI Nexus: Learn how to implement a multi-agent AI system using Python, OpenAI API, and PrimisAI Nexus. The tutorial covers setting up hierarchical supervision, defining structured JSON schemas, and integrating tools for code validation, statistical analysis, and documentation search. Agents collaborate to automate complex workflows across planning, development, QA, and data analysis with scalable, role-based coordination.⭕ Hugging Face Releases SmolLM3: A 3B Long-Context, Multilingual Reasoning Model: Hugging Face's SmolLM3 is a compact 3B-parameter multilingual model offering SoTA reasoning, tool use, and 128k-token context handling. Released in base and instruct variants, it rivals 7B+ models across benchmarks like XQuAD and MGSM. SmolLM3 is ideal for multilingual RAG, agent workflows, and edge deployments, delivering powerful performance with efficiency and accessibility.⭕ Microsoft Open-Sources GitHub Copilot Chat Extension for VS Code—Now Free for All Developers: Microsoft has open-sourced the GitHub Copilot Chat extension for VS Code under the MIT license, unlocking premium AI coding tools for free. With Agent Mode, Edit Mode, predictive Code Suggestions, and in-editor Chat, developers gain powerful automation, multi-file editing, and contextual assistance, paving the way for customizable, AI-enhanced workflows across open-source and enterprise environments.⭕ Google AI Just Open-Sourced a MCP Toolbox to Let AI Agents Query Databases Safely and Efficiently: Google’s new MCP Toolbox for Databases simplifies secure, schema-aware SQL integration for AI agents with just a few lines of Python. Part of the open-source GenAI Toolbox, it supports PostgreSQL/MySQL, MCP-compliant interfaces, connection pooling, and safe query generation, enabling reliable database access for LLM workflows in analytics, customer support, DevOps, and enterprise automation.⭕ The Five-Second Fingerprint: Inside Shazam’s Instant SongID: Part of the Behind the Tap series, this deep dive unpacks how Shazam identifies songs in seconds using audio fingerprinting, FFT-based spectrograms, and hash matching. It explains the journey from a tap to real-time song recognition, reveals Shazam’s scalable architecture, and explores its industry impact, from music discovery to market insights used by Apple and record labels.⭕ POSET Representations in Python Can Have a Huge Impact on Business: POSETs (Partially Ordered Sets) offer a powerful alternative to traditional ranking systems by preserving multidimensional relationships without forcing a linear order. This post shows how POSETs can improve decision-making by avoiding arbitrary weighting and oversimplification, using Python and the Wine Quality dataset to build dominance matrices, Hasse diagrams, and interpret incomparability across samples.⭕ Build Algorithm-Agnostic ML Pipelines in aBreeze: MLarena is a newly open-sourced, algorithm-agnostic machine learning toolkit built on MLflow for training, evaluating, tuning, and deploying models. It balances automation with expert control, offering built-in diagnostics, explainability tools, robust hyperparameter optimization via Bayesian search, and seamless MLflow integration. MLarena simplifies end-to-end ML workflows while enhancing model transparency, stability, and reproducibility.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0}#converted-body .list_block ol,#converted-body .list_block ul,.body [class~=x_list_block] ol,.body [class~=x_list_block] ul,u+.body .list_block ol,u+.body .list_block ul{padding-left:20px} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 0
  • 0

Merlyn from Packt
16 Jul 2025
6 min read
Save for later

Amazon EKS now scales to 100K nodes, AutoKeras/Keras Tuner, Streamlit apps to AWS, Strands Agents 1.0

Merlyn from Packt
16 Jul 2025
6 min read
NVIDIA’s Audio Flamingo 3, GoogleSQL’s new pipe syntax, MetaStone-S1, Fractional ReasoningAn Exclusive Look into Next Gen BI – Live WebinarDashboards alone aren’t cutting it. The market’s moving toward something new: data apps, live collaboration, and AI that works the way teams actually work.See what's driving the rise of Next Gen BI, how Sigma earned a top debut on the Gartner Magic Quadrant, and what’s next for our roadmap.Secure Your SpotSponsoredSubscribe|Submit a tip|Advertise with usWelcome to DataPro 142: Tools Driving Tomorrow’s Thinking 🔬📈In this edition, we spotlight the breakthrough tools, patterns, and practices that are reshaping research and production in AI and data science.From NVIDIA’s Audio Flamingo 3 pushing the frontier of multimodal reasoning, to Fractional Reasoning’s elegant solution to adaptive LLM compute, and MetaStone-S1’s bold performance claims, this week’s releases are not just incremental; they’re foundational. Meanwhile, Kiro is redefining the dev experience, merging agentic coding with production-readiness from day one.On the systems front, Amazon EKS now scales to 100K nodes, opening the door to AGI-class workloads. And GoogleSQL’s new pipe syntax is winning hearts in the SQL community for its clarity and composability. If you’ve ever loathed nested subqueries, this is your moment.For those making decisions about tooling, don’t miss our link on Foundation vs. Custom Models, a smart, grounded guide for teams navigating performance vs. control. Also featured: Amazon SageMaker’s new unified catalog, practical AutoML with AutoKeras/Keras Tuner, and a no-fuss walkthrough of deploying Streamlit apps to AWS.Lastly, we dive into deeper reflections: Strands Agents 1.0 brings multi-agent orchestration into the real world, and standout articles explore paradox pitfalls in metrics, and how data’s 40-year evolution is shaping AI’s next wave.Let’s get into it. ⬇️Cheers,Merlyn ShelleyGrowth Lead, PacktTop Tools Driving New Research 🔧📊🔵 nvidia/audio-flamingo-3 · Audio Flamingo 3 (AF3) is an open Large Audio-Language Model (LALM) by NVIDIA for research use, capable of reasoning across speech, sound, and music. It supports long audio inputs, multi-turn voice dialogue, and chain-of-thought reasoning, achieving state-of-the-art results on 20+ tasks through unified audio representation and extensive dataset training.🔵 Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute: Fractional Reasoning introduces a model-agnostic, training-free method to dynamically adjust LLM reasoning depth at inference. By scaling latent steering vectors, it tailors compute per input complexity, boosting accuracy and efficiency. Compatible with Best-of-N, majority vote, and self-reflection, it outperforms fixed prompts across GSM8K, MATH500, and GPQA benchmarks.🔵 MetaStone-AI/MetaStone-S1: MetaStone-S1 is a 32B-parameter reflective generative model that rivals OpenAI-o3-mini on math, code, and Chinese reasoning. It combines Long-CoT Reinforcement and Process Reward Learning for efficient, high-quality inference. MetaStone-S1 achieves deep reasoning while reducing policy model costs by 99%, enabling fast, accurate outputs across multiple benchmarks.🔵 Introducing Kiro: Kiro is an agentic IDE that turns AI prototypes into production-grade apps using spec-driven development. It auto-generates requirements, design docs, and implementation tasks, and uses hooks for event-based automation. With built-in test coverage, design clarity, and consistency checks, Kiro helps developers ship reliable software faster and with greater confidence.Topics Catching Fire in Data Circles 🔥💬🔵 Do You Really Need a Foundation Model? Not every use case needs a foundation model. This guide compares foundation and custom models across performance, cost, latency, and control. It offers a decision framework, practical examples, and hybrid strategies to help teams choose the right approach, balancing rapid prototyping with long-term scalability, privacy needs, and task-specific optimization.🔵 Automating Deep Learning: A Gentle Introduction to AutoKeras and Keras Tuner. This guide introduces AutoKeras and Keras Tuner, two AutoML tools that simplify deep learning. AutoKeras automates architecture and training, while Keras Tuner optimizes hyperparameters of custom models. Together, they streamline experimentation, reduce guesswork, and boost performance, ideal for tasks like image classification, tabular modeling, or rapid prototyping with minimal manual tuning.🔵 Amazon EKS enables ultra scale AI/ML workloads with support for 100K nodes per cluster: Amazon EKS now supports up to 100,000 nodes per cluster, enabling ultra-scale AI/ML workloads with 1.6M Trainium or 800K GPU instances. This breakthrough powers large model training, reduces operational costs, and preserves Kubernetes compatibility, paving the way for AGI-scale innovation through enhanced orchestration, resiliency, and open-source flexibility.🔵 Exploring pipe syntax real-world use cases: GoogleSQL's pipe syntax reimagines SQL with a linear, readable data flow using the |> operator. It simplifies complex queries, streamlines data pipelines, and improves log analysis clarity. By eliminating nested structures and enabling intuitive chaining, pipe syntax boosts productivity, maintainability, and accelerates insight generation across BigQuery and Cloud Logging workflows.New Case Studies from the Tech Titans 🚀💡🔵 How Metrics (and LLMs) Can Trick You: A Field Guide to Paradoxes. This article unpacks how paradoxes like Simpson’s, the Accuracy Paradox, and Goodhart’s Law mislead both data science and LLM evaluation. It shows how surface-level metrics can distort truth, urging practitioners to embrace contextual, nuanced measurement, especially in BI and Retrieval-Augmented Generation, where incentives, imbalance, and aggregation errors can derail decision-making.🔵 What Can the History of Data Tell Us About the Future of AI? This sweeping 40-year history of data explores how shifts in storage, architecture, and business models have shaped intelligent systems. By tracing personal, public, and enterprise data, from PCs to cloud to AI, the piece reveals how incentives, infrastructure, and data ownership will determine the trajectory of AI’s future.🔵 Streamline the path from data to insights with new Amazon SageMaker Catalog capabilities: Amazon SageMaker now streamlines analytics with new integrations: QuickSight for in-studio dashboarding, S3 Access Grants for secure unstructured data sharing, and automatic onboarding of Glue Data Catalog datasets. These updates unify structured and unstructured data, accelerating workflows from raw data to insights, governed, discoverable, and ready for ML and BI use.Blog Pulse: What’s Moving Minds 🧠✨🔵 Deploy a Streamlit App to AWS: This hands-on guide walks you through deploying a Streamlit app on AWS using Elastic Beanstalk. It covers preparing your code, switching from Postgres to S3 for data, configuring AWS infrastructure, and managing deployment steps. Ideal for developers needing scalable, secure alternatives to public cloud endpoints like Streamlit Community Cloud.🔵 Accuracy Is Dead: Calibration, Discrimination, and Other Metrics You Actually Need. This guide challenges accuracy as a primary evaluation metric, urging data scientists to adopt deeper, problem-specific tools. It explores advanced classification metrics like ROC-AUC, log loss, and Brier score, and regression metrics like R², RMSLE, and quantile loss, emphasizing calibration, uncertainty, and decision-readiness over surface-level model performance.🔵 Introducing Strands Agents 1.0: Production-Ready Multi-Agent Orchestration Made Simple: Strands Agents 1.0 is a production-ready SDK for building multi-agent AI systems. It introduces primitives like Agents-as-Tools, Swarms, Graphs, and A2A support for inter-agent communication. With session persistence, async performance, and flexible model integration, Strands simplifies orchestration, scaling from prototype to production for complex, collaborative, and distributed agentic workflows.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 0
  • 0

Merlyn from Packt
25 Jun 2025
8 min read
Save for later

Microsoft Presidio, Amazon Bedrock + Arize Phoenix for Agent Observability, No-Code Forecasting with SageMaker Canvas

Merlyn from Packt
25 Jun 2025
8 min read
Multi-Agent KYC with Google’s ADK, Inside MiniMax-M1: A New Long-Context RL FoundationBecome an AI Generalist that makes $100K (in 16 hours)AI isn’t the future — it’s the present, quietly reshaping work, money, and opportunity. McKinsey says AI is set to add $13Trillion to the economy by 2030 — but also replace millions of jobs. Will you use it to get ahead, or get left behind? Don’t worry here’s exactly what you need: Join the World’s First 16-Hour LIVE AI Mastermind for professionals, founders, consultants & business owners like you.Rated 4.9/5 by 150,000 global learners – this will truly make you an AI Generalist that can build, solve & work on anything with AI.In just 16 hours & 5 sessions, you will:✅ Learn the basics of LLMs and how they work.✅ Master prompt engineering for precise AI outputs.✅ Build custom GPT bots and AI agents that save you 20+ hours weekly.✅ Create high-quality images and videos for content, marketing, and branding.✅ Automate tasks and turn your AI skills into a profitable career or business.All by global experts from companies like Amazon, Microsoft, SamurAI and more. And it’s ALL. FOR. FREE. Join now and get $5100+ in additional bonuses: 🔥$5,000+ worth of AI tools across 3 days — Day 1: 3000+ Prompt Bible, Day 2: $10K/month AI roadmap, Day 3: Personalized automation toolkit.Attend all 3 days to unlock the cherry on top — lifetime access to our private AI Slack community!Register Now (free only for the next 72 hours)SponsoredSubscribe|Submit a tip|Advertise with usWelcome to DataPro 140 – Where Breakthrough AI Meets Practical Problem-SolvingTired of demos and theoretical fluff? From no-code forecasting to long-context AI, this week’s roundup dives into how today’s most compelling tools are reshaping what’s possible, without requiring you to reinvent your stack. Whether you're rethinking compliance with agentic workflows, streamlining data prep with natural language, or scaling models without breaking compute, these stories explore the friction points data teams face, and how smart engineering is solving them. Let’s get into what’s moving the space forward👇🔍 This Week’s Top Drops[Build AI Workflows with n8n + LLMs]Launch intelligent automations, daily briefs, customer bots, schedulers, without writing complex code.[Magenta RealTime: Music Meets LLMs]Google's open model lets you generate music live using SpectroStream and a transformer backbone.[MiniMax-M1: A 456B Long-Context Model]Crush reasoning bottlenecks with 1M-token context and lightning-fast attention, optimized for real-world use.[DSPy: Program AI, Don’t Just Prompt]Treat LLM workflows like code: structured logic, modules, and debug-ability built right in.[KYC Agents with Google’s ADK + Gemini]Skip the manual drudgery, automate onboarding with grounded search, sub-agents, and BigQuery.[Amazon Bedrock + Arize: Agent Observability]Gain full visibility into AI agent behavior, tool calls, and accuracy with production-grade insights.[Presidio for PII Detection + Hashing]Anonymize names, numbers, even custom IDs, safely, consistently, and at scale with Microsoft Presidio.[PyBEL for Bio Knowledge Graphs]Map disease pathways and protein interactions with this powerful toolkit for causal graph building.Whether you’re building agentic pipelines or anonymizing sensitive data, this week’s roundup proves you’re only ever a prototype away from production.Cheers,Merlyn ShelleyGrowth Lead, PacktJoin us on July 19 for a 150-minute interactive MCP Workshop. Go beyond theory and learn how to build and ship real-world MCP solutions. Limited spots available! Reserve your seat today.Use Code EARLY35 for 35% offTop Tools Driving New Research 🔧📊🔵 Building AI-Powered Low-Code Workflows with n8n: Discover how to automate personal and business tasks using n8n, a low-code platform with built-in AI. This blog walks through building three useful workflows: a daily briefing assistant, customer support bot, and appointment scheduler, while addressing prompt injection, memory setup, and alternatives for creating intelligent, efficient systems without heavy technical effort.🔵 google/magenta-realtime: Explore Magenta RealTime, Google’s open music generation model designed for real-time audio creation. Licensed under Apache 2.0 and CC-BY 4.0, it enables interactive music workflows using components like SpectroStream, MusicCoCa, and a transformer LLM. It supports live performance, education, and research, while outlining usage terms, risks, and limitations.🔵 tencent/Hunyuan3D-2.1: Get to know Hunyuan3D 2.1, a high-fidelity 3D asset generation framework from images, designed with production-ready PBR materials. Developed by Tencent, it builds on scalable diffusion models and supports text-to-3D and image-to-3D workflows. Backed by multiple arXiv publications, the project acknowledges open-source contributions and promotes reproducibility through public citation and benchmarking.🔵 MiniMaxAI/MiniMax-M1-80k: Tackle complex reasoning and long-context challenges with MiniMax-M1, a purpose-built open-weight model for data professionals. Designed with a 1M-token context window and lightning-efficient attention, it excels in software engineering, tool use, and advanced problem-solving, making it a reliable foundation for building next-gen AI applications in practical, high-stakes environments.Topics Catching Fire in Data Circles 🔥💬🔵 Data Has No Moat! Rethink data's role in the AI era. While powerful models grab headlines, this piece makes a compelling case for data as the true competitive moat. From poisoning risks to quality loops, it outlines why responsible, curated, and well-governed data is still the foundation of any trustworthy AI system that lasts.🔵 Agentic AI: Implementing Long-Term Memory. Build better LLM applications by implementing long-term memory, because short-term hacks won't scale. This piece breaks down practical strategies for data professionals, from hybrid search to knowledge graphs, and weighs open-source and vendor tools. It’s a clear guide for designing memory systems that reduce hallucinations and support reasoning over time.🔵 Programming, Not Prompting: A Hands-On Guide toDSPy. Move beyond fragile prompting with DSPy, a framework that treats LLM workflows like real programming. This hands-on guide shows how to build AI apps using DSPy modules, structure logic with signatures, and boost reliability through instruction optimization. For data professionals, it's a smarter way to design, debug, and scale GenAI systems.New Case Studies from the Tech Titans 🚀💡🔵 Amazon Bedrock Agents observability using Arize AI: Monitor and improve AI agents with the Amazon Bedrock–Arize Phoenix integration. Gain full traceability of agent decisions, evaluate tool call accuracy, and optimize performance with structured insights. This setup simplifies debugging, enhances reliability, and supports production-scale deployment, key for building transparent, efficient, and trustworthy generative AI applications end-to-end.🔵 No-code data preparation for time series forecasting using Amazon SageMaker Canvas: Prepare time series data without writing code using Amazon SageMaker Canvas and Data Wrangler. Import datasets, clean and transform data with natural language or visual tools, and resample for forecasting. With built-in security, validation, and modeling, this no-code workflow streamlines time series forecasting from raw CSV to predictive model in minutes.🔵 Gemini 2.5 Updates: Flash/Pro GA, SFT, Flash-Lite on Vertex AI: Build and scale confidently with Gemini 2.5 now on Vertex AI. Gemini 2.5 Flash and Pro are production-ready, with Flash-Lite and audio-capable Live API in preview. Get speed, reasoning, and fine-tuning for custom workflows. With full observability, multimodal depth, and real-world testimonials, this release levels up enterprise AI development.🔵 Build KYC agentic workflows with Google’s ADK: Streamline KYC with a multi-agent workflow using Google’s Agent Development Kit, Gemini models, Search Grounding, and BigQuery. This three-step guide shows how to orchestrate document checks, resume verification, and wealth analysis using agent tools and grounded search, boosting accuracy, automation, and auditability for financial institutions aiming to modernize compliance with AI.Blog Pulse: What’s Moving Minds 🧠✨🔵 Getting Started with Microsoft's Presidio: A Step-by-Step Guide to Detecting and Anonymizing Personally Identifiable Information PII in Text. Learn to detect and anonymize PII in free text using Microsoft Presidio. This hands-on guide walks through installing Presidio, recognizing standard and custom entities, applying anonymizers like hashing and reanonymization, and maintaining consistent outputs. With spaCy integration and reusable mappings, it’s a practical toolkit for responsible data handling in NLP workflows.🔵 A Coding Implementation for Creating, Annotating, and Visualizing Complex Biological Knowledge Graphs Using PyBEL. Use PyBEL to model complex biological systems like Alzheimer’s pathways through causal graph construction, network analysis, and custom visualization. This tutorial guides you through defining proteins and processes, analyzing node centrality, querying paths, and mining literature evidence, all in Google Colab, laying a strong foundation for biological knowledge graph exploration and enrichment.🔵 MiniMax AI Releases MiniMax-M1: A 456B Parameter Hybrid Model for Long-Context and Reinforcement Learning RL Tasks. MiniMax-M1 is a 456B open-weight hybrid model built for long-context and reinforcement learning tasks. With 1M-token context, lightning-fast attention, and efficient RL via the CISPO algorithm, it reduces compute cost while excelling in software engineering and agent tool use. A scalable, transparent breakthrough for real-world reasoning applications.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0}#converted-body .list_block ol,#converted-body .list_block ul,.body [class~=x_list_block] ol,.body [class~=x_list_block] ul,u+.body .list_block ol,u+.body .list_block ul{padding-left:20px} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 0
  • 0
Merlyn from Packt
11 Jun 2025
13 min read
Save for later

10,000x Faster Bayesian Inference, OpenAI on Countering Malicious AI, MCP integrations to Google Cloud Databases, MLOps Pipeline with Tekton and Buildpacks

Merlyn from Packt
11 Jun 2025
13 min read
Gemini-Powered DataFrame Agent for Natural Language Data Analysis with Pandas and LangChain, VisualYour Exclusive Invite for the World’s first 2-day AI Challenge (usually $895, but $0 today)51% of companies have started using AITech giants have cut over 53,000 jobs in 2025 itselfAnd 40% of professionals fear that AI will take away their job.But here’s the real picture - companies aren't simply eliminating roles, they're hiring people who are AI-skilled, understand AI, can use AI & even build with AI. Join the online 2-Day LIVE AI Mastermind by Outskill - a hands-on bootcamp designed to make you an AI-powered professional in just 16 hours. Usually $895, but for the next 48 hours you can get in for completely FREE!In just 16 hours & 5 sessions, you will:Learn the basics of LLMs and how they workMaster prompt engineering for precise AI outputsBuild custom GPT bots and AI agents that save you 20+ hours weeklyCreate high-quality images and videos for content, marketing, and brandingAutomate tasks and turn your AI skills into a profitable career or businessKick off Call & Session 1- Friday (10am EST- 1pm EST)Sessions 2-5:Saturday 11 AM to 7 PM EST; Sunday 11AM EST to 7PM ESTAll by global experts from companies like Amazon, Microsoft, SamurAI and more. And it’s ALL. FOR. FREE. You will also unlock $3,000+ in AI bonuses: Slack community access, Your Personalised AI tool kit, and Extensive Prompt Library with 3000+ ready-to-use prompts - all free when you attend!Join in now, we have limited free seats!SponsoredSubscribe|Submit a tip|Advertise with usWelcome to DataPro #138 - Where AI Acceleration Meets Practical InsightThis week’s edition dives into the cutting edge of data science, AI tooling, and intelligent automation, highlighting breakthroughs that are reshaping how we build, reason, and scale.From a staggering 10,000x speed-up in Bayesian inference to OpenAI’s battle against malicious AI use, this issue captures the pulse of innovation across MLOps, LLM infrastructure, and trustworthy deployment. Google’s new MCP Toolbox integrations promise seamless AI-assisted development on Cloud Databases, while Tekton and Buildpacks simplify model automation with no Dockerfile in sight.We also explore research frontiers, from advanced molecular design powered by ether0’s RL-tuned 24B model, to VeBrain’s leap in embodied AI, letting language models perceive, reason, and act in physical environments. On the tooling side, Alchemist shows how to distill open datasets into generative gold, and Meta’s LlamaRL raises the bar on scalable RL fine-tuning for LLMs.Looking ahead, our preview spotlights a Gemini-powered Pandas agent capable of transforming natural language queries into statistical and visual insights, no code required. Plus, you’ll find a walkthrough on automating customer support with Bedrock and Mistral, and even a guide to running DeepSeek-R1 locally at home (if your GPU can handle it).SponsoredCloudVRM slashes vendor review and audit time by connecting directly to cloud environments, no spreadsheets, no forms, just real-time compliance, 24/7. Watch the demo.Whether you're in research, ops, or product, this editionoffers powerful perspectives and hands-on resources to keep your stack smart and future-ready.Cheers,Merlyn ShelleyGrowth Lead, PacktGet Chapter 1 of Learning Tableau 2025 – Free!Explore Tableau’s newest AI-powered capabilities with a free PDF of Chapter 1 from the latest edition of the bestselling series, Learning Tableau 2025.Written by Tableau Visionary Joshua Milligan, this hands-on guide helps you build smarter dashboards, master data prep, and apply AI-driven insights.Sign up to download your free chapter!Grab Your Free Chapter Now!Top Tools Driving New Research 🔧📊🔳ether0: A 24B LLM Trained with Reinforcement Learning RL for Advanced Chemical Reasoning Tasks. ether0 is a 24B-parameter language model developed by FutureHouse to tackle advanced chemical reasoning tasks. Trained using a blend of reinforcement learning and behavior distillation, it generates molecular structures as SMILES strings and significantly outperforms both general-purpose and chemistry-specific models. ether0 demonstrates exceptional accuracy and data efficiency, achieving 70% accuracy with only 60,000 training reactions, surpassing models trained on full datasets. Its architecture includes novel training strategies like GRPO, curriculum learning, and expert initialization, making it a new benchmark in scientific LLM development for molecular design and synthesis.🔳 OpenGVLab/VeBrain: Visual Embodied Brain: Let Multimodal Large Language Models See, Think, and Control in Spaces. Visual Embodied Brain (VeBrain) is a unified framework designed to extend multimodal large language models (MLLMs) into physical environments, enabling them to perceive, reason, and control in real-world spaces. By translating robotic tasks into text-based interactions within a 2D visual context, VeBrain simplifies multimodal objectives. It introduces a robotic adapter to convert MLLM-generated text into actionable control for physical systems. The accompanying VeBrain-600k dataset, meticulously curated with multimodal chain-of-thought reasoning, supports this integration. VeBrain significantly outperforms models like Qwen2.5-VL across multimodal and spatial benchmarks, and demonstrates superior adaptability and compositional reasoning in legged robot and robotic arm control tasks.🔳 Alchemist: Turning Public Text-to-Image Data into Generative Gold. Alchemist introduces a novel strategy for curating high-quality supervised fine-tuning (SFT) datasets to enhance text-to-image generation. By using a pre-trained generative model to identify impactful samples, the authors created a compact, diverse 3,350-sample dataset that significantly boosts the performance of five public T2I models. Unlike existing narrow-domain datasets, Alchemist is general-purpose and openly available, addressing limitations of proprietary data reliance. The approach offers a cost-effective and scalable alternative for dataset creation while improving image quality and stylistic variation in generative outputs. Fine-tuned model weights are also publicly released to support broader research and application.🔳 Meta Introduces LlamaRL: A Scalable PyTorch-Based Reinforcement Learning RL Framework for Efficient LLM Training at Scale. Meta’s LlamaRL is a new PyTorch-based framework designed to make reinforcement learning (RL) more scalable for training large language models. It uses an asynchronous, distributed architecture where components like generation and training run in parallel, reducing GPU idle time and improving memory efficiency. LlamaRL supports massive models, up to 405B parameters, with significant speedups, achieving over 10× faster RL step times compared to traditional methods. Features such as dedicated executors, NVLink-based synchronization, and offloading enable modularity and fine-grained parallelism. LlamaRL offers a flexible, high-performance infrastructure for aligning large models through RL at industrial scale.Topics Catching Fire in Data Circles 🔥💬🔳 Automate Models Training: An MLOps Pipeline with Tekton and Buildpacks. This tutorial introduces an automated MLOps pipeline for training GPT-2 models using Tekton and Buildpacks, without writing a Dockerfile. It demonstrates how to containerize training workflows and orchestrate CI/CD pipelines in Kubernetes. Using Buildpacks, the training code is converted into a secure container image, while Tekton Pipelines manages sequential tasks for building and executing training. A shared PersistentVolume ensures smooth data flow across steps. The pipeline is lightweight, reproducible, and perfect for integrating experimentation into production-grade ML workflows. This example highlights the growing importance of efficient, code-light automation in model development.🔳 Prescriptive Modeling Unpacked: A Complete Guide to Intervention with Bayesian Modeling. This guide explores how prescriptive modeling, using Bayesian methods, enables data-driven intervention in complex systems rather than just prediction. Moving beyond forecasting, it identifies causal drivers in systems and quantifies the effects of changes. With hands-on examples in predictive maintenance and Bayesian networks via the bnlearn Python library, the article walks through building causal models, inferring interventions, and applying them to real-world scenarios like water infrastructure. It also covers structure learning, synthetic data generation, and practical cost-benefit considerations, making it a comprehensive resource for actionable analytics in operations and engineering.🔳 How OpenAI responding to The New York Times’ data demands in order to protect user privacy? OpenAI is actively resisting a legal demand from The New York Times to indefinitely retain ChatGPT and API user data, a move it argues undermines its privacy commitments. The order excludes Enterprise and Zero Data Retention API users. OpenAI is appealing the decision, maintaining data will remain securely stored, restricted to legal teams, and used only to meet legal obligations. Deleted chats, normally erased within 30 days, are affected by the hold, but OpenAI vows to fight further access requests and uphold user privacy throughout the legal process. Training policies and business data protections remain unchanged.🔳 What execs want to know about multi-agentic systems with AI? This field report highlights key lessons from enterprise adoption of Multi-Agent Systems (MAS). While MAS can transform complex processes through coordinated AI agents, many leaders limit its value by simply automating legacy workflows. Success requires reimagining processes, designing thoughtful agent collaboration, and embedding governance and ethics from the start. Common missteps include neglecting collaboration logic, delaying ethical safeguards, and underestimating the shift needed to harness MAS fully. Executives most often ask how to measure ROI beyond cost, how to balance human and AI roles, and how to manage ethical risks. Effective MAS design relies on clear goals, rigorous testing, and human-AI orchestration.New Case Studies from the Tech Titans 🚀💡🔳 10,000x Faster Bayesian Inference: Multi-GPU SVI vs. Traditional MCMC. Bayesian inference has traditionally been limited by high computational demands, especially in large-scale applications. This guide demonstrates how Stochastic Variational Inference (SVI) on multi-GPU setups can dramatically accelerate Bayesian modeling, achieving up to a 10,000x speedup over traditional CPU-based MCMC. Using JAX and NumPyro, data is efficiently sharded and replicated across GPUs, enabling scalable inference for millions of observations and parameters. Benchmarks show multi-GPU SVI reduces training time from days to minutes, making large hierarchical Bayesian models feasible for production. This approach is ideal for practitioners seeking rapid, scalable, and approximate Bayesian solutions in real-world settings.🔳 BenchmarkQED: Automated benchmarking of RAG systems:BenchmarkQED is an automated benchmarking suite designed to rigorously evaluate retrieval-augmented generation (RAG) systems. Developed to support tools like GraphRAG, it includes components for query generation (AutoQ), evaluation (AutoE), and dataset structuring (AutoD). BenchmarkQED enables consistent testing across local-to-global query types, using synthetic queries and LLM-based judgments. LazyGraphRAG, evaluated with this suite, consistently outperforms traditional and advanced RAG methods, even those with massive 1M-token contexts, across comprehensiveness, diversity, empowerment, and relevance. BenchmarkQED and its datasets, now open-source, offer a scalable, structured path for testing next-gen RAG capabilities in real-world QA applications.🔳 OpenAI on Countering Malicious AI – June 2025 OpenAI’s June 2025 report highlights how its teams are actively detecting and disrupting malicious uses of AI. In line with its mission to ensure AI benefits humanity, the company outlines efforts to block harmful applications such as cyber espionage, social engineering, scams, and influence operations. By leveraging AI to augment internal investigative teams, OpenAI has rapidly identified and neutralized threats over the past three months. The report reinforces the importance of democratic AI governance and common-sense safeguards to prevent misuse by authoritarian regimes and bad actors while supporting global safety and accountability.🔳 Deploying Llama4 and DeepSeek on AI Hypercomputer: Google has released new optimized recipes for deploying Meta’s Llama4 and DeepSeek models using its AI Hypercomputer platform. These guides streamline the setup of powerful MoE-based LLMs like Llama-4-Scout and DeepSeek-R1 across Trillium TPUs and A3 GPUs. Using inference engines like JetStream, MaxText, vLLM, and SGLang, developers can now efficiently run large models with multi-host support, minimal configuration, and reproducible performance. Recipes cover tasks such as model checkpoint conversion, TPU/GPU provisioning, and benchmarking (e.g., MMLU), enabling scalable, high-throughput inference for cutting-edge open-source LLMs in production-grade environments.🔳 New MCP integrations to Google Cloud Databases: Google Cloud has announced new MCP Toolbox integrations for databases, designed to supercharge AI-assisted development. The open-source Model Context Protocol (MCP) server now supports seamless connections between AI coding assistants (like Claude Code, Cline, and Cursor) and databases such as BigQuery, AlloyDB, Cloud SQL, Spanner, and others. These new capabilities enable developers to perform tasks like schema design, data exploration, code refactoring, and integration testing using natural language prompts within their IDEs. The result: faster, smarter development workflows, with AI handling the SQL and schema logic, dramatically reducing setup and iteration time.Blog Pulse: What’s Moving Minds 🧠✨🔳 Mastering SQL Window Functions: Mastering SQL Window Functions offers a clear and practical introduction to using window functions for powerful row-wise analysis without collapsing data. Unlike traditional aggregations, window functions (like SUM() OVER or RANK() OVER) preserve individual records while enabling calculations across partitions. Examples include calculating totals per brand, ranking by price, and computing year-wise averages, all while retaining full row-level detail. These functions are essential for tasks like ranking, comparisons, and cumulative metrics, making them a vital tool in modern analytics workflows. However, they may incur performance costs on large datasets, so use them judiciously.🔳 Automate customer support with Amazon Bedrock, LangGraph, and Mistral models: This walkthrough demonstrates how to build an intelligent, multimodal customer support workflow using Amazon Bedrock, LangGraph, and Mistral models. By combining large language models with structured orchestration and image-processing capabilities, the solution automates tasks such as ticket categorization, transaction and order extraction, damage assessment, and personalized response generation. LangGraph enables complex, stateful agent workflows while Amazon Bedrock provides secure, scalable access to LLMs and Guardrails for responsible AI. With integrations for Jira, SQLite, and vision models like Pixtral, this framework delivers real-time, context-aware support automation with observability and safety built in.🔳 Run the Full DeepSeek-R1-0528 Model Locally: DeepSeek-R1-0528, a powerful reasoning model requiring 715GB of disk space, is now runnable locally thanks to Unsloth's 1.78-bit quantization, reducing its size to 162GB. This guide explains how to deploy the quantized version using Ollama and Open WebUI. With at least 64GB RAM (CPU) or a 24GB GPU (for better speed), users can serve the model via ollama run, launch Open WebUI in Docker, and interact with the model through a local browser. While GPU usage offers ~5 tokens/sec, CPU-only fallback is much slower (~1 token/sec). Setup is demanding, but viable with persistence.🔳 How to Build an Asynchronous AI Agent Network Using Gemini for Research, Analysis, and Validation Tasks? The Gemini Agent Network Protocol offers a modular framework for building cooperative AI agents, Analyzer, Researcher, Synthesizer, and Validator, using Google’s Gemini models. This tutorial walks through creating asynchronous workflows where each agent performs role-specific tasks such as breaking down complex queries, gathering data, synthesizing information, and verifying results. By using Python's asyncio for concurrency and google.generativeai for model interaction, the network dynamically routes tasks and messages. With detailed role prompts and shared memory for dialogue context, it allows for efficient multi-agent collaboration. Users can simulate scenarios such as analyzing quantum computing’s impact on cybersecurity and observe real-time agent participation metrics.🔳 Build a Gemini-Powered DataFrame Agent for Natural Language Data Analysis with Pandas and LangChain: This tutorial demonstrates how to combine Google’s Gemini models with Pandas and LangChain to create an intelligent, natural-language-driven data analysis agent. Using the Titanic dataset as a case study, the setup allows users to query the data conversationally, eliminating the need for repetitive boilerplate code. The Gemini-Pandas agent can answer simple questions such as dataset size, compute survival rates, or identify correlations. It can also handle advanced analyses like age-fare correlation, survival segmentation, and multi-DataFrame comparisons. Custom analyses, such as building passenger risk scores or evaluating deck-wise survival trends, are also supported. With just a few lines of Python and LangChain tooling, analysts can turn datasets into a conversational playground for insight discovery.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0}#converted-body .list_block ol,#converted-body .list_block ul,.body [class~=x_list_block] ol,.body [class~=x_list_block] ul,u+.body .list_block ol,u+.body .list_block ul{padding-left:20px} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 1
  • 0

Merlyn from Packt
24 Jul 2025
11 min read
Save for later

Amazon’s Mitra – Tabular Foundation Model, Qwen3-Coder-480B-A35B-Instruct, NVIDIA’s Cosmos DiffusionRenderer, DeepSeek R1 on Vertex AI

Merlyn from Packt
24 Jul 2025
11 min read
Torchvista, AWS Data Processing MCP Server, Amazon Q + DLC MCP, Streamlit + MCP, ChatGPT AgentBecome an AI Generalist that makes $100K (in 16 hours)Still don’t use AI to automate your work & make big $$? You’re way behind in the AI race. But worry not:Join the World’s First 16-Hour LIVE AI Upskilling Sprint for professionals, founders, consultants & business owners like you. Register Now (Only 500 free seats)Date: Saturday and Sunday, 10 AM - 7 PM.Rated 4.9/10 by global learners – this will truly make you an AI Generalist that can build, solve & work on anything with AI.In just 16 hours & 5 sessions, you will:✅ Learn the basics of LLMs and how they work.✅ Master prompt engineering for precise AI outputs.✅ Build custom GPT bots and AI agents that save you 20+ hours weekly.✅ Create high-quality images and videos for content, marketing, and branding.✅ Automate tasks and turn your AI skills into a profitable career or business.All by global experts from companies like Amazon, Microsoft, SamurAI and more. And it’s ALL. FOR. FREE. 🤯 🚀$5100+ worth of AI tools across 2 days — Day 1: 3000+ Prompt Bible, Day 2: Roadmap to make $10K/month with AI, additional bonus: Your Personal AI Toolkit Builder.Register Now (Only 500 free seats)SponsoredSubscribe|Submit a tip|Advertise with usWelcome to DataPro #143: From Bits to Brains - The Tools Driving the Next Wave of Intelligent Systems 🧠📡What if your database could talk back with charts, or your containers built themselves when you spoke? What if your AI agent could say “I don’t know” and actually mean it?This week, we dive into a new breed of tools designed not just to build smarter systems, but to understand, reason, and scale them. These aren’t just marginal upgrades, they’re foundational shifts in how we build and interact with AI.Start with Mitra: Amazon’s tabular foundation model that ditches real-world data for synthetic priors (think causal graphs + tree ensembles) and still manages SOTA across tabular benchmarks via in-context learning.Then check out Qwen3-Coder-480B-A35B-Instruct, a Claude-class code model with 256K native context and 1M with Yarn, engineered for repository-scale agentic reasoning.Want BI that speaks SQL and your language? Wren AI is your GenBI agent, natural language in, SQL and insights out, thanks to a semantic layer, LLM integrations, and plug-and-play APIs.Visual domains aren’t left out. Cosmos DiffusionRenderer from NVIDIA reinvents video re-lighting with neural inverse rendering, 70GB models, and GPU-optimized pipelines for stunning realism.If you’re building with agents, 7 MCP Best Practices are a must-read, from schema validation to Dockerized deployments to performance tuning at scale.Meanwhile, ChatGPT Agent blurs the line between reasoning and doing, browsing, coding, and summarizing, all on its own virtual machine.But let’s not forget the human side. How Not to Mislead with Your Data is a masterclass on spotting narrative bias in data storytelling, and the ethical stakes behind our charts.And yes, Cloud SQL meets Vertex AI now means vector search and Gemini are just SQL calls away. You can embed, search, and analyze, all inside your relational DB.In the wild, Streamlit + MCP brings it all together in a sleek client interface that lets users query DeepWiki or HuggingFace-backed agents via natural language, no frontend dev required.AWS Data Processing MCP Server takes that to an enterprise level, streamlining schema discovery, query generation, and job monitoring across Glue, Athena, and EMR, all via natural language.Then, go deep with Amazon Q + DLC MCP: a system that automates PyTorch/TensorFlow container orchestration with a single prompt. Think: “Deploy PyTorch for multi-node training”, and it just happens.Finally, DeepSeek R1 on Vertex AI means no GPUs needed, just an API call. Run it on-demand, serverless, pay-as-you-go, no infrastructure stress.Still thinking of attention heads asdot products? Transformers as Addition Machines reframes attention with mechanistic interpretation, revealing layer-by-layer logic circuits.Or maybe you prefer pictures, Torchvista lets you trace PyTorch forward passes as interactive graphs inside your notebook, a dream for debugging or demystifying hidden layers.Semantic communication is making machines communicate with meaning, not bits. It’s the end of false alarms and overfitting to known categories, and it's all because of the knowledge graphs that reason over context and uncertainty.And if you’re ready to start building today, Google Cloud’s top 25 guides are a treasure trove: from RAG, RLHF, and agent orchestration to CI/CD pipelines and multi-agent chat apps, code included, no excuses.We’re in the midst of a shift: From models that classify to systems that reason. From dashboards to agents. From pixels to meaning.This issue is your map. Dive in, experiment, build.Sponsored: Your data, built your way with Twilio Segment — a customer data platform designed to cut through the chaos, unify your stack, and free you to focus on innovation over integration. Learn more.Cheers,Merlyn ShelleyGrowth Lead, PacktTop Tools Driving New Research 🔧📊⏩ Mitra: Mixed synthetic priors for enhancing tabular foundation models. Amazon’s Mitra is a tabular foundation model (TFM) that uses in-context learning to generalize across tabular tasks without retraining. Pretrained on synthetic data from causal models and tree-based methods, rather than real-world data, Mitra achieves state-of-the-art results across benchmarks like TabRepo and TabArena. It’s open source via AutoGluon 1.4.⏩ Qwen/Qwen3-Coder-480B-A35B-Instruct · Qwen3-Coder-480B-A35B-Instruct is Qwen’s most advanced code model, delivering Claude Sonnet-level performance on agentic coding and browser-use tasks. It supports 256K token context (extendable to 1M), tool calling, and repository-scale understanding. Built with 480B parameters (35B active), it uses in-context prompting and excels at function-call reasoning, agent frameworks, and long-horizon completions.⏩ Wren AI is your GenBI Agent: Wren AI is a GenBI agent that lets you query databases in natural language to generate SQL, charts, and AI-driven insights instantly. It features a semantic layer for governed accuracy, integrates with top LLMs, supports embedding via API, and connects to major data sources. Fast setup, cloud and open-source options included.⏩ nv-tlabs/cosmos1-diffusion-renderer: Cosmos DiffusionRenderer is NVIDIA’s latest video diffusion framework for high-quality image and video de-lighting and re-lighting. Built on DiffusionRenderer and powered by Cosmos, it features neural inverse and forward rendering with significant improvements in realism and control. It supports GPU-efficient inference, 70GB models, and full relighting pipelines for both static images and dynamic videos.Topics Catching Fire in Data Circles 🔥💬⏩ 7 MCP Server Best Practices for Scalable AI Integrations in 2025: Model Context Protocol (MCP) servers are becoming essential for secure, scalable, and agentic AI integrations. This guide outlines 7 best practices, toolset design, proactive security, schema validation, local/remote testing, Docker packaging, performance tuning, and documentation, that reduce errors, boost developer adoption, and power industry-wide AI success across finance, healthcare, e-commerce, and more.⏩ ChatGPT Agent: Bridging Research and Action: ChatGPT Agent introduces a powerful leap in agentic AI: it can now think and act on your behalf using its own virtual computer, navigating websites, running code, analyzing data, and producing editable outputs like slides and spreadsheets. It integrates browsing, terminals, APIs, and tool access to complete complex real-world tasks autonomously.⏩ How Not to Mislead with Your Data-Driven Story? Data storytelling helps us understand the world, but it can also mislead. This piece explores how persuasive narratives, even with accurate data, can distort truth. It highlights narrative bias risks like selection, framing, and interpretation, and urges data professionals to balance emotional storytelling with clarity, ethics, and rigorous data literacy.⏩ Integrate your Cloud SQL for MySQL instance with Vertex AI and vector search: Google Cloud’s Cloud SQL for MySQL now supports vector embeddings and Vertex AI integration, empowering developers to run AI-powered search and analysis directly in SQL. You can generate, store, and search vector embeddings with native SQL functions, perform ANN search, and invoke Gemini or custom Vertex AI models to assess customer sentiment or predict behavior, all within your database.New Case Studies from the Tech Titans 🚀💡⏩ MCP Client Development with Streamlit: Build Your AI-Powered Web App. This tutorial walks you through building a Streamlit-based MCP client interface that connects to remote MCP servers like DeepWiki and HuggingFace. The client lets users input topics and receive AI-generated summaries or recommendations via OpenAI’s API. It covers setup, secure key handling, MCP tool integration, and UI design, enabling rapid, modular deployment of AI-powered web tools.⏩ Accelerating development with the AWS Data Processing MCP Server and Agent: The AWS Data Processing MCP Server simplifies complex analytics workflows by enabling AI-driven natural language interactions with services like AWS Glue, Athena, and EMR. Built on the Model Context Protocol (MCP), it abstracts multi-service orchestration, automating tasks like schema discovery, query generation, reporting, and monitoring. Developers can integrate it via Amazon Q CLI or Claude Desktop to streamline onboarding, accelerate insight generation, and enhance observability.⏩ Streamline deep learning environments with Amazon Q Developer and MCP: Amazon Q + the DLC MCP Server radically simplifies how AI/ML teams manage Deep Learning Containers. Instead of manually customizing, testing, and deploying DLCs for PyTorch or TensorFlow, developers can now use natural language via Amazon Q CLI to automate everything, from image selection to ECR deployment, distributed training, and environment troubleshooting. It turns container operations into secure, conversational workflows.⏩ Deepseek R1 is available for everyone in Vertex AI Model Garden: DeepSeek R1 is now available on Vertex AI’s Model-as-a-Service (MaaS) platform, enabling businesses to access this powerful open model without managing GPU infrastructure. With just a few clicks or API calls, teams can test and deploy DeepSeek via a serverless, pay-as-you-go model. Vertex AI handles security, scalability, and compliance, accelerating AI innovation with zero infrastructure overhead.Blog Pulse: What’s Moving Minds 🧠✨⏩ Transformers (and Attention) are Just Fancy Addition Machines: Mechanistic interpretation is a novel AI interpretability approach that goes beyond tools like SHAP and LIME by uncovering how neural networks compute, not just what features influence outputs. It traces how features are encoded and transformed across layers, especially in transformers. By reimagining multi-head attention as additive rather than concatenative, it enables circuit-level analysis of neuron behavior. This method reveals the internal logic of models, opening doors to deeper understanding, debugging, and trust in complex AI systems.⏩ Torchvista: Building an Interactive Pytorch Visualization Package for Notebooks. Torchvista is an open-source tool for interactively visualizing the forward pass of PyTorch models inside web-based notebooks like Colab or Jupyter. Unlike static tools, it offers zoomable, modular graph views, supports error-tolerant partial visualizations, and requires just a one-line trace_model() call. It traces tensor flows and module hierarchies during forward execution and renders them as interactive, nested graphs using JS libraries like D3 and Graphviz, making complex models understandable, debuggable, and more accessible for iterative development and exploration.⏩ From Rules to Relationships: How Machines Are Learning to Understand EachOther? Semantic communication shifts focus from transmitting raw bits to conveying meaning, crucial in modern, machine-heavy networks. Traditional SKB systems compress messages via fixed categories, but fail in unfamiliar scenarios. Knowledge graph-based semantic communication fixes this by modeling relationships between entities, enabling contextual reasoning. This allows systems to intelligently handle edge cases (e.g., maintenance workers during off-hours) by inferring intent and suggesting verification over false alarms. Though graph systems require more compute and expertise, they vastly improve real-world accuracy, adaptability, and decision-making in noisy, dynamic environments.⏩ 25 top how-to guides for Google Cloud: The best way to learn AI is to build it, and Google Cloud now offers a curated collection of 25+ hands-on how-to guides to help you do just that. From deploying large models like Llama 3 and DeepSeek on high-performance infrastructure, to creating advanced gen AI apps, fine-tuning with RAG and RLHF, and integrating agents with real-world systems, this living resource accelerates your AI journey. Each guide includes code, tools, and best practices, ready to help you build smarter, faster, and at scale.See you next time!*{box-sizing:border-box}body{margin:0;padding:0}a[x-apple-data-detectors]{color:inherit!important;text-decoration:inherit!important}#MessageViewBody a{color:inherit;text-decoration:none}p{line-height:inherit}.desktop_hide,.desktop_hide table{mso-hide:all;display:none;max-height:0;overflow:hidden}.image_block img+div{display:none}sub,sup{font-size:75%;line-height:0} @media (max-width: 100%;display:block}.mobile_hide{min-height:0;max-height:0;max-width: 100%;overflow:hidden;font-size:0}.desktop_hide,.desktop_hide table{display:table!important;max-height:none!important}}
Read more
  • 0
  • 0