Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The C++ Programmer's Mindset

You're reading from   The C++ Programmer's Mindset Learn computational, algorithmic, and systems thinking to become a better C++ programmer

Arrow left icon
Product type Paperback
Published in Nov 2025
Publisher Packt
ISBN-13 9781835888421
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Thinking Computationally 2. Abstraction in Detail FREE CHAPTER 3. Algorithmic Thinking and Complexity 4. Understanding the Machine 5. Data Structures 6. Reusing Your Code and Modularity 7. Outlining the Challenge 8. Building a Simple Command-Line Interface 9. Reading Data from Different Formats 10. Finding Information in Text 11. Clustering Data 12. Reflecting on What We Have Built 13. The Problems of Scale 14. Dealing with GPUs and Specialized Hardware 15. Profiling Your Code 16. Unlock Your Exclusive Benefits 17. Other Books You May Enjoy 18. Index

Computing complexity

Computational or algorithmic complexity is a measure of how the running time of an algorithm grows depending on the size of the inputs. This is a theoretical computation that is independent of the specific hardware or implementation. Computational complexity is the primary means of comparing the efficiency of different algorithms (for achieving the same aim). The analysis of algorithmic complexity can be rather tricky, so we won’t go into too much detail here.

Complexity is usually recorded in “big-oh” notation, such as , , , and . The number that appears here is the term that dominates the theoretical execution time for large enough . Here, represents constant complexity, where the operation takes a constant amount of time regardless of the size of the input; means the running time is related to the size of the inputs in a linear manner. Quadratic complexity means that the theoretical running time is dominated by the square of the...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
The C++ Programmer's Mindset
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Modal Close icon
Modal Close icon