Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - Application Development

357 Articles
article-image-what-is-multi-layered-software-architecture
Packt Editorial Staff
17 May 2018
7 min read
Save for later

What is a multi layered software architecture?

Packt Editorial Staff
17 May 2018
7 min read
Multi layered software architecture is one of the most popular architectural patterns today. It moderates the increasing complexity of modern applications. It also makes it easier to work in a more agile manner. That's important when you consider the dominance of DevOps and other similar methodologies today. Sometimes called tiered architecture, or n-tier architecture, a multi layered software architecture consists of various layers, each of which corresponds to a different service or integration. Because each layer is separate, making changes to each layer is easier than having to tackle the entire architecture. Let's take a look at how a multi layered software architecture works, and what the advantages and disadvantages of it are. This has been taken from the book Architectural Patterns. Find it here. What does a layered software architecture consist of? Before we get into a multi layered architecture, let's start with the simplest form of layered architecture - three tiered architecture. This is a good place to start because all layered software architecture contains these three elements. These are the foundations: Presentation layer: This is the first and topmost layer which is present in the application. This tier provides presentation services, that is presentation, of content to the end user through GUI. This tier can be accessed through any type of client device like desktop, laptop, tablet, mobile, thin client, and so on. For the content to the displayed to the user, the relevant web pages should be fetched by the web browser or other presentation component which is running in the client device. To present the content, it is essential for this tier to interact with the other tiers that are present preceding it. Application layer: This is the middle tier of this architecture. This is the tier in which the business logic of the application runs. Business logic is the set of rules that are required for running the application as per the guidelines laid down by the organization. The components of this tier typically run on one or more application servers. Data layer: This is the lowest tier of this architecture and is mainly concerned with the storage and retrieval of application data. The application data is typically stored in a database server, file server, or any other device or media that supports data access logic and provides the necessary steps to ensure that only the data is exposed without providing any access to the data storage and retrieval mechanisms. This is done by the data tier by providing an API to the application tier. The provision of this API ensures complete transparency to the data operations which are done in this tier without affecting the application tier. For example, updates or upgrades to the systems in this tier do not affect the application tier of this architecture. The diagram below shows how a simple layered architecture with 3 tiers works:   These three layers are essential. But other layers can be built on top of them. That's when we get into multi layered architecture. It's sometimes called n-tiered architecture because the number of tiers or layers (n) could be anything! It depends on what you need and how much complexity you're able to handle. Multi layered software architecture A multi layered software architecture still has the presentation layer and data layer. It simply splits up and expands the application layer. These additional aspects within the application layer are essentially different services. This means your software should now be more scalable and have extra dimensions of functionality. Of course, the distribution of application code and functions among the various tiers will vary from one architectural design to another, but the concept remains the same. The diagram below illustrates what a multi layered software architecture looks like. As you can see, it's a little more complex that a three-tiered architecture, but it does increase scalability quite significantly: What are the benefits of a layered software architecture? A layered software architecture has a number of benefits - that's why it has become such a popular architectural pattern in recent years. Most importantly, tiered segregation allows you to manage and maintain each layer accordingly. In theory it should greatly simplify the way you manage your software infrastructure. The multi layered approach is particularly good for developing web-scale, production-grade, and cloud-hosted applications very quickly and relatively risk-free. It also makes it easier to update any legacy systems - when you're architecture is broken up into multiple layers, the changes that need to be made should be simpler and less extensive than they might otherwise have to be. When should you use a multi layered software architecture? Clearly, the argument for a multi layered software architecture is pretty clear. However, there are some instances when it is particularly appropriate: If you are building a system in which it is possible to split the application logic into smaller components that could be spread across several servers. This could lead to the design of multiple tiers in the application tier. If the system under consideration requires faster network communications, high reliability, and great performance, then n-tier has the capability to provide that as this architectural pattern is designed to reduce the overhead which is caused by network traffic. An example of a multi layered software architecture We can illustrate the working of an multi layered architecture with the help of an example of a shopping cart web application which is present in all e-commerce sites. The shopping cart web application is used by the e-commerce site user to complete the purchase of items through the e-commerce site. You'd expect the application to have several features that allow the user to: Add selected items to the cart Change the quantity of items in their cart Make payments The client tier, which is present in the shopping cart application, interacts with the end user through a GUI. The client tier also interacts with the application that runs in the application servers present in multiple tiers. Since the shopping cart is a web application, the client tier contains the web browser. The presentation tier present in the shopping cart application displays information related to the services like browsing merchandise, buying them, adding them to the shopping cart, and so on. The presentation tier communicates with other tiers by sending results to the client tier and all other tiers which are present in the network. The presentation tier also makes calls to database stored procedures and web services. All these activities are done with the objective of providing a quick response time to the end user. The presentation tier plays a vital role by acting as a glue which binds the entire shopping cart application together by allowing the functions present in different tiers to communicate with each other and display the outputs to the end user through the web browser. In this multi layered architecture, the business logic which is required for processing activities like calculation of shipping cost and so on are pulled from the application tier to the presentation tier. The application tier also acts as the integration layer and allows the applications to communicate seamlessly with both the data tier and the presentation tier. The last tier which is the data tier is used to maintain data. This layer typically contains database servers. This layer maintains data independent from the application server and the business logic. This approach provides enhanced scalability and performance to the data tier. Read next Microservices and Service Oriented Architecture What is serverless architecture and why should I be interested?
Read more
  • 0
  • 1
  • 107301

article-image-java-multithreading-synchronize-threads-implement-critical-sections
Fatema Patrawala
30 May 2018
13 min read
Save for later

Java Multithreading: How to synchronize threads to implement critical sections and avoid race conditions

Fatema Patrawala
30 May 2018
13 min read
One of the most common situations in concurrent programming occurs when more than one execution thread shares a resource. In a concurrent application, it is normal for multiple threads to read or write the same data structure or have access to the same file or database connection. These shared resources can provoke error situations or data inconsistency, and we have to implement some mechanism to avoid these errors. These situations are called race conditions and they occur when different threads have access to the same shared resource at the same time. Therefore, the final result depends on the order of the execution of threads, and most of the time, it is incorrect. You can also have problems with change visibility. So if a thread changes the value of a shared variable, the changes would only be written in the local cache of that thread; other threads will not have access to the change (they will only be able to see the old value). We present to you a java multithreading tutorial taken from the book, Java 9 Concurrency Cookbook - Second Edition, written by Javier Fernández González. The solution to these problems lies in the concept of a critical section. A critical section is a block of code that accesses a shared resource and can't be executed by more than one thread at the same time. To help programmers implement critical sections, Java (and almost all programming languages) offers synchronization mechanisms. When a thread wants access to a critical section, it uses one of these synchronization mechanisms to find out whether there is any other thread executing the critical section. If not, the thread enters the critical section. If yes, the thread is suspended by the synchronization mechanism until the thread that is currently executing the critical section ends it. When more than one thread is waiting for a thread to finish the execution of a critical section, JVM chooses one of them and the rest wait for their turn. Java language offers two basic synchronization mechanisms: The  synchronized keyword The  Lock interface and its implementations In this article, we explore the use of synchronized keyword method to perform synchronization mechanism in Java. So let's get started: Synchronizing a method In this recipe, you will learn how to use one of the most basic methods of synchronization in Java, that is, the use of the synchronized keyword to control concurrent access to a method or a block of code. All the synchronized sentences (used on methods or blocks of code) use an object reference. Only one thread can execute a method or block of code protected by the same object reference. When you use the synchronized keyword with a method, the object reference is implicit. When you use the synchronized keyword in one or more methods of an object, only one execution thread will have access to all these methods. If another thread tries to access any method declared with the synchronized keyword of the same object, it will be suspended until the first thread finishes the execution of the method. In other words, every method declared with the synchronized keyword is a critical section, and Java only allows the execution of one of the critical sections of an object at a time. In this case, the object reference used is the own object, represented by the this keyword. Static methods have a different behavior. Only one execution thread will have access to one of the static methods declared with the synchronized keyword, but a different thread can access other non-static methods of an object of that class. You have to be very careful with this point because two threads can access two different synchronized methods if one is static and the other is not. If both methods change the same data, you can have data inconsistency errors. In this case, the object reference used is the class object. When you use the synchronized keyword to protect a block of code, you must pass an object reference as a parameter. Normally, you will use the this keyword to reference the object that executes the method, but you can use other object references as well. Normally, these objects will be created exclusively for this purpose. You should keep the objects used for synchronization private. For example, if you have two independent attributes in a class shared by multiple threads, you must synchronize access to each variable; however, it wouldn't be a problem if one thread is accessing one of the attributes and the other accessing a different attribute at the same time. Take into account that if you use the own object (represented by the this keyword), you might interfere with other synchronized code (as mentioned before, the this object is used to synchronize the methods marked with the synchronized keyword). In this recipe, you will learn how to use the synchronized keyword to implement an application simulating a parking area, with sensors that detect the following: when a car or a motorcycle enters or goes out of the parking area, an object to store the statistics of the vehicles being parked, and a mechanism to control cash flow. We will implement two versions: one without any synchronization mechanisms, where we will see how we obtain incorrect results, and one that works correctly as it uses the two variants of the synchronized keyword. The example of this recipe has been implemented using the Eclipse IDE. If you use Eclipse or a different IDE, such as NetBeans, open it and create a new Java project. How to do it... Follow these steps to implement the example: First, create the application without using any synchronization mechanism. Create a class named ParkingCash with an internal constant and an attribute to store the total amount of money earned by providing this parking service: public class ParkingCash { private static final int cost=2; private long cash; public ParkingCash() { cash=0; } Implement a method named vehiclePay() that will be called when a vehicle (a car or motorcycle) leaves the parking area. It will increase the cash attribute: public void vehiclePay() { cash+=cost; } Finally, implement a method named close() that will write the value of the cash attribute in the console and reinitialize it to zero: public void close() { System.out.printf("Closing accounting"); long totalAmmount; totalAmmount=cash; cash=0; System.out.printf("The total amount is : %d", totalAmmount); } } Create a class named ParkingStats with three private attributes and the constructor that will initialize them: public class ParkingStats { private long numberCars; private long numberMotorcycles; private ParkingCash cash; public ParkingStats(ParkingCash cash) { numberCars = 0; numberMotorcycles = 0; this.cash = cash; } Then, implement the methods that will be executed when a car or motorcycle enters or leaves the parking area. When a vehicle leaves the parking area, cash should be incremented: public void carComeIn() { numberCars++; } public void carGoOut() { numberCars--; cash.vehiclePay(); } public void motoComeIn() { numberMotorcycles++; } public void motoGoOut() { numberMotorcycles--; cash.vehiclePay(); } Finally, implement two methods to obtain the number of cars and motorcycles in the parking area, respectively. Create a class named Sensor that will simulate the movement of vehicles in the parking area. It implements the Runnable interface and has a ParkingStats attribute, which will be initialized in the constructor: public class Sensor implements Runnable { private ParkingStats stats; public Sensor(ParkingStats stats) { this.stats = stats; } Implement the run() method. In this method, simulate that two cars and a motorcycle arrive in and then leave the parking area. Every sensor will perform this action 10 times: @Override public void run() { for (int i = 0; i< 10; i++) { stats.carComeIn(); stats.carComeIn(); try { TimeUnit.MILLISECONDS.sleep(50); } catch (InterruptedException e) { e.printStackTrace(); } stats.motoComeIn(); try { TimeUnit.MILLISECONDS.sleep(50); } catch (InterruptedException e) { e.printStackTrace(); } stats.motoGoOut(); stats.carGoOut(); stats.carGoOut(); } } Finally, implement the main method. Create a class named Main with the main() method. It needs ParkingCash and ParkingStats objects to manage parking: public class Main { public static void main(String[] args) { ParkingCash cash = new ParkingCash(); ParkingStats stats = new ParkingStats(cash); System.out.printf("Parking Simulatorn"); Then, create the Sensor tasks. Use the availableProcessors() method (that returns the number of available processors to the JVM, which normally is equal to the number of cores in the processor) to calculate the number of sensors our parking area will have. Create the corresponding Thread objects and store them in an array: intnumberSensors=2 * Runtime.getRuntime() .availableProcessors(); Thread threads[]=new Thread[numberSensors]; for (int i = 0; i<numberSensors; i++) { Sensor sensor=new Sensor(stats); Thread thread=new Thread(sensor); thread.start(); threads[i]=thread; } Then wait for the finalization of the threads using the join() method: for (int i=0; i<numberSensors; i++) { try { threads[i].join(); } catch (InterruptedException e) { e.printStackTrace(); } } Finally, write the statistics of Parking: System.out.printf("Number of cars: %dn", stats.getNumberCars()); System.out.printf("Number of motorcycles: %dn", stats.getNumberMotorcycles()); cash.close(); } } In our case, we executed the example in a four-core processor, so we will have eight Sensor tasks. Each task performs 10 iterations, and in each iteration, three vehicles enter the parking area and the same three vehicles go out. Therefore, each Sensor task will simulate 30 vehicles. If everything goes well, the final stats will show the following: There are no cars in the parking area, which means that all the vehicles that came into the parking area have moved out Eight Sensor tasks were executed, where each task simulated 30 vehicles and each vehicle was charged 2 dollars each; therefore, the total amount of cash earned was 480 dollars When you execute this example, each time you will obtain different results, and most of them will be incorrect. The following screenshot shows an example: We had race conditions, and the different shared variables accessed by all the threads gave incorrect results. Let's modify the previous code using the synchronized keyword to solve these problems: First, add the synchronized keyword to the vehiclePay() method of the ParkingCash class: public synchronized void vehiclePay() { cash+=cost; } Then, add a synchronized block of code using the this keyword to the close() method: public void close() { System.out.printf("Closing accounting"); long totalAmmount; synchronized (this) { totalAmmount=cash; cash=0; } System.out.printf("The total amount is : %d",totalAmmount); } Now add two new attributes to the ParkingStats class and initialize them in the constructor of the class: private final Object controlCars, controlMotorcycles; public ParkingStats (ParkingCash cash) { numberCars=0; numberMotorcycles=0; controlCars=new Object(); controlMotorcycles=new Object(); this.cash=cash; } Finally, modify the methods that increment and decrement the number of cars and motorcycles, including the synchronized keyword. The numberCars attribute will be protected by the controlCars object, and the numberMotorcycles attribute will be protected by the controlMotorcycles object. You must also synchronize the getNumberCars() and getNumberMotorcycles() methods with the associated reference object: public void carComeIn() { synchronized (controlCars) { numberCars++; } } public void carGoOut() { synchronized (controlCars) { numberCars--; } cash.vehiclePay(); } public void motoComeIn() { synchronized (controlMotorcycles) { numberMotorcycles++; } } public void motoGoOut() { synchronized (controlMotorcycles) { numberMotorcycles--; } cash.vehiclePay(); } Execute the example now and see the difference when compared to the previous version. How it works... The following screenshot shows the output of the new version of the example. No matter how many times you execute it, you will always obtain the correct result: Let's see the different uses of the synchronized keyword in the example: First, we protected the vehiclePay() method. If two or more Sensor tasks call this method at the same time, only one will execute it and the rest will wait for their turn; therefore, the final amount will always be correct. We used two different objects to control access to the car and motorcycle counters. This way, one Sensor task can modify the numberCars attribute and another Sensor task can modify the numberMotorcycles attribute at the same time; however, no two Sensor tasks will be able to modify the same attribute at the same time, so the final value of the counters will always be correct. Finally, we also synchronized the getNumberCars() and getNumberMotorcycles() methods. Using the synchronized keyword, we can guarantee correct access to shared data in concurrent applications. As mentioned at the introduction of this recipe, only one thread can access the methods of an object that uses the synchronized keyword in their declaration. If thread (A) is executing a synchronized method and thread (B) wants to execute another synchronized method of the same object, it will be blocked until thread (A) is finished. But if thread (B) has access to different objects of the same class, none of them will be blocked. When you use the synchronized keyword to protect a block of code, you use an object as a parameter. JVM guarantees that only one thread can have access to all the blocks of code protected with this object (note that we always talk about objects, not classes). We used the TimeUnit class as well. The TimeUnit class is an enumeration with the following constants: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, and SECONDS. These indicate the units of time we pass to the sleep method. In our case, we let the thread sleep for 50 milliseconds. There's more... The synchronized keyword penalizes the performance of the application, so you must only use it on methods that modify shared data in a concurrent environment. If you have multiple threads calling a synchronized method, only one will execute them at a time while the others will remain waiting. If the operation doesn't use the synchronized keyword, all the threads can execute the operation at the same time, reducing the total execution time. If you know that a method will not be called by more than one thread, don't use the synchronized keyword. Anyway, if the class is designed for multithreading access, it should always be correct. You must promote correctness over performance. Also, you should include documentation in methods and classes in relation to their thread safety. You can use recursive calls with synchronized methods. As the thread has access to the synchronized methods of an object, you can call other synchronized methods of that object, including the method that is being executed. It won't have to get access to the synchronized methods again. We can use the synchronized keyword to protect access to a block of code instead of an entire method. We should use the synchronized keyword in this way to protect access to shared data, leaving the rest of the operations out of this block and obtaining better performance of the application. The objective is to have the critical section (the block of code that can be accessed only by one thread at a time) as short as possible. Also, avoid calling blocking operations (for example, I/O operations) inside a critical section. We have used the synchronized keyword to protect access to the instruction that updates the number of persons in the building, leaving out the long operations of the block that don't use shared data. When you use the synchronized keyword in this way, you must pass an object reference as a parameter. Only one thread can access the synchronized code (blocks or methods) of this object. Normally, we will use the this keyword to reference the object that is executing the method: synchronized (this) { // Java code } To summarize, we learnt to use the synchronized  keyword method for multithreading in Java to perform synchronization mechasim. You read an excerpt from the book Java 9 Concurrency Cookbook - Second Edition. This book will help you master the art of fast, effective Java development with the power of concurrent and parallel programming. Concurrency programming 101: Why do programmers hang by a thread? How to create multithreaded applications in Qt Getting Inside a C++ Multithreaded Application
Read more
  • 0
  • 0
  • 56785

article-image-why-does-the-c-programming-language-refuse-to-die
Kunal Chaudhari
23 Oct 2018
8 min read
Save for later

Why does the C programming language refuse to die?

Kunal Chaudhari
23 Oct 2018
8 min read
As a technology research analyst, I try to keep up the pace with the changing world of technology. It seems like every single day, there is a new programming language, framework, or tool emerging out of nowhere. In order to keep up, I regularly have a peek at the listicles on TIOBE, PyPL, and Stackoverflow along with some twitter handles and popular blogs, which keeps my FOMO (fear of missing out) in check. So here I was, strolling through the TIOBE index, to see if a new programming language is making the rounds or if any old timer language is facing its doomsday in the lower half of the table. The first thing that caught my attention was Python, which interestingly broke into the top 3 for the first time since it was ranked by TIOBE. I never cared to look at Java, since it has been claiming the throne ever since it became popular. But with my pupils dilated, I saw something which I would have never expected, especially with the likes of Python, C#, Swift, and JavaScript around. There it was, the language which everyone seemed to have forgotten about, C, sitting at the second position, like an old tower among the modern skyscrapers in New York. A quick scroll down shocked me even more: C was only recently named the language of 2017 by TIOBE. The reason it won was because of its impressive yearly growth of 1.69% and its consistency - C has been featured in the top 3 list for almost four decades now. This result was in stark contrast to many news sources (including Packt’s own research) that regularly place languages like Python and JavaScript on top of their polls. But surely this was an indicator of something. Why would a language which is almost 50 years old still hold its ground against the ranks of newer programming language? C has a design philosophy for the ages A solution to the challenges of UNIX and Assembly The 70s was a historic decade for computing. Many notable inventions and developments, particularly in the area of networking, programming, and file systems, took place. UNIX was one such revolutionary milestone, but the biggest problem with UNIX was that it was programmed in Assembly language. Assembly was fine for machines, but difficult for humans. Watch now: Learn and Master C Programming For Absolute Beginners So, the team working on UNIX, namely Dennis Ritchie, Ken Thompson, and Brian Kernighan decided to develop a language which could understand data types and supported data structures. They wanted C to be as fast as the Assembly but with the features of a high-level language. And that’s how C came into existence, almost out of necessity. But the principles on which the C programming language was built were not coincidental. It compelled the programmers to write better code and strive for efficiency rather than being productive by providing a lot of abstractions. Let’s discuss some features which makes C a language to behold. Portability leads to true ubiquity When you try to search for the biggest feature of C, almost instantly, you are bombarded with articles on portability. Which makes you wonder what is it about portability that makes C relevant in the modern world of computing. Well, portability can be defined as the measure of how easily software can be transferred from one computer environment or architecture to another. One can also argue that portability is directly proportional to how flexible your software is. Applications or software developed using C are considered to be extremely flexible because you can find a C compiler for almost every possible platform available today. So if you develop your application by simply exercising some discipline to write portable code, you have yourself an application which virtually runs on every major platform. Programmer-driven memory management It is universally accepted that C is a high-performance language. The primary reason for this is that it works very close to the machine, almost like an Assembly language. But very few people realize that versatile features like explicit memory management makes C one of the better-performing languages out there. Memory management allows programmers to scale down a program to run with a small amount of memory. This feature was important in the early days because the computers or terminals as they used to call it, were not as powerful as they are today. But the advent of mobile devices and embedded systems has renewed the interest of programmers in C language because these mobile devices demand that the programmers keep memory requirement to a minimum. Many of the programming languages today provide functionalities like garbage collection that takes care of the memory allocation. But C calls programmers’ bluff by asking them to be very specific. This makes their programs and its memory efficient and inherently fast. Manual memory management makes C one of the most suitable languages for developing other programming languages. This is because even in a garbage collector someone has to take care of memory allocation - that infrastructure is provided by C. Structure is all I got As discussed before, Assembly was difficult to work with, particularly when dealing with large chunks of code. C has a structured approach in its design which allows the programmers to break down the program into multiple blocks of code for execution, often called as procedures or functions. There are, of course, multiple ways in which software development can be approached. Structural programming is one such approach that is effective when you need to break down a problem into its component pieces and then convert it into application code. Although it might not be quite as in vogue as object-oriented programming is today, this approach is well suited to tasks like database scripting or developing small programs with logical sequences to carry out specific set of tasks. As one of the best languages for structural programming, it’s easy to see how C has remained popular, especially in the context of embedded systems and kernel development. Applications that stand the test of time If Beyoncé would have been a programmer, she definitely might have sang “Who runs the world? C developers”. And she would have been right. If you’re using a digital alarm clock, a microwave, or a car with anti-lock brakes, chances are that they have been programmed using C. Though it was never developed specifically for embedded systems, C has become the defacto programming language for embedded developers, systems programmers, and kernel development. C: the backbone of our operating systems We already know that the world famous UNIX system was developed in C, but is it the only popular application that has been developed using C? You’ll be astonished to see the list of applications that follows: The world desktop operating market is dominated by three major operating systems: Windows, MAC, and Linux. The kernel of all these OSes has been developed using the C programming language. Similarly, Android, iOS, and Windows are some of the popular mobile operating systems whose kernels were developed in C. Just like UNIX, the development of Oracle Database began on Assembly and then switched to C. It’s still widely regarded as one of the best database systems in the world. Not only Oracle but MySQL and PostgreSQL have also been developed using C - the list goes on and on. What does the future hold for C? So far we discussed the high points of C programming, it’s design principle and the applications that were developed using it. But the bigger question to ask is, what its future might hold. The answer to this question is tricky, but there are several indicators which show positive signs. IoT is one such domain where the C programming language shines. Whether or not beginner programmers should learn C has been a topic of debate everywhere. The general consensus says that learning C is always a good thing, as it builds up your fundamental knowledge of programming and it looks good on the resume. But IoT provides another reason to learn C, due to the rapid growth in the IoT industry. We already saw the massive number of applications built on C and their codebase is still maintained in it. Switching to a different language means increased cost for the company. Since it is used by numerous enterprises across the globe the demand for C programmers is unlikely to vanish anytime soon. Read Next Rust as a Game Programming Language: Is it any good? Google releases Oboe, a C++ library to build high-performance Android audio apps Will Rust Replace C++?
Read more
  • 0
  • 0
  • 49866

article-image-restful-java-web-services-swagger
Fatema Patrawala
22 May 2018
14 min read
Save for later

Documenting RESTful Java Web Services using Swagger

Fatema Patrawala
22 May 2018
14 min read
In the earlier days, many software solution providers did not really pay attention to documenting their RESTful web APIs. However, many API vendors soon realized the need for a good API documentation solution. Today, you will find a variety of approaches to documenting RESTful web APIs. There are some popular solutions available today for describing, producing, consuming, and visualizing RESTful web services. In this tutorial, we will explore Swagger which offers a specification and a complete framework implementation for describing, producing, consuming, and visualizing RESTful web services. The Swagger framework works with many popular programming languages, such as Java, Scala, Clojure, Groovy, JavaScript, and .NET. This tutorial is an extract taken from the book RESTFul Java Web Services - Third Edition, written by Bogunuva Mohanram Balachandar. This book will help you master core REST concepts and create RESTful web services in Java. A glance at the market adoption of Swagger The greatest strength of Swagger is its powerful API platform, which satisfies the client, documentation, and server needs. The Swagger UI framework serves as the documentation and testing utility. Its support for different languages and its matured tooling support have really grabbed the attention of many API vendors, and it seems to be the one with the most traction in the community today. Swagger is built using Scala. This means that when you package your application, you need to have the entire Scala runtime into your build, which may considerably increase the size of your deployable artifact (the EAR or WAR file). That said, Swagger is however improving with each release. For example, the Swagger 2.0 release allows you to use YAML for describing APIs. So, keep a watch on this framework. The Swagger framework has the following three major components: Server: This component hosts the RESTful web API descriptions for the services that the clients want to use Client: This component uses the RESTful web API descriptions from the server to provide an automated interfacing mechanism to invoke the REST APIs User interface: This part of the framework reads a description of the APIs from the server, renders it as a web page, and provides an interactive sandbox to test the APIs A quick overview of the Swagger structure Let's take a quick look at the Swagger file structure before moving further. The Swagger 1.x file contents that describe the RESTful APIs are represented as the JSON objects. With Swagger 2.0 release onwards, you can also use the YAML format to describe the RESTful web APIs. This section discusses the Swagger file contents represented as JSON. The basic constructs that we'll discuss in this section for JSON are also applicable for the YAML representation of APIs, although the syntax differs. When using the JSON structure for describing the REST APIs, the Swagger file uses a Swagger object as the root document object for describing the APIs. Here is a quick overview of the various properties that you will find in a Swagger object: The following properties describe the basic information about the RESTful web application: swagger: This property specifies the Swagger version. info: This property provides metadata about the API. host: This property locates the server where the APIs are hosted. basePath: This property is the base path for the API. It is relative to the value set for the host field. schemes: This property transfers the protocol for a RESTful web API, such as HTTP and HTTPS. The following properties allow you to specify the default values at the application level, which can be optionally overridden for each operation: consumes: This property specifies the default internet media types that the APIs consume. It can be overridden at the API level. produces: This property specifies the default internet media types that the APIs produce. It can be overridden at the API level. securityDefinitions: This property globally defines the security schemes for the document. These definitions can be referred to from the security schemes specified for each API. The following properties describe the operations (REST APIs): paths: This property specifies the path to the API or the resources. The path must be appended to the basePath property in order to get the full URI. definitions: This property specifies the input and output entity types for operations on REST resources (APIs). parameters: This property specifies the parameter details for an operation. responses: This property specifies the response type for an operation. security: This property specifies the security schemes in order to execute this operation. externalDocs: This property links to the external documentation. A complete Swagger 2.0 specification is available at Github. The Swagger specification was donated to the Open API initiative, which aims to standardize the format of the API specification and bring uniformity in usage. Swagger 2.0 was enhanced as part of the Open API initiative, and a new specification OAS 3.0 (Open API specification 3.0) was released in July 2017. The tools are still being worked on to support OAS3.0. I encourage you to explore the Open API Specification 3.0 available at Github. Overview of Swagger APIs The Swagger framework consists of many sub-projects in the Git repository, each built with a specific purpose. Here is a quick summary of the key projects: swagger-spec: This repository contains the Swagger specification and the project in general. swagger-ui: This project is an interactive tool to display and execute the Swagger specification files. It is based on swagger-js (the JavaScript library). swagger-editor: This project allows you to edit the YAML files. It is released as a part of Swagger 2.0. swagger-core: This project provides the scala and java library to generate the Swagger specifications directly from code. It supports JAX-RS, the Servlet APIs, and the Play framework. swagger-codegen: This project provides a tool that can read the Swagger specification files and generate the client and server code that consumes and produces the specifications. In the next section, you will learn how to use the swagger-core project offerings to generate the Swagger file for a JAX-RS application. Generating Swagger from JAX-RS Both the WADL and RAML tools that we discussed in the previous sections use the JAX-RS annotations metadata to generate the documentation for the APIs. The Swagger framework does not fully rely on the JAX-RS annotations but offers a set of proprietary annotations for describing the resources. This helps in the following scenarios: The Swagger core annotations provide more flexibility for generating documentations compliant with the Swagger specifications It allows you to use Swagger for generating documentations for web components that do not use the JAX-RS annotations, such as servlet and the servlet filter The Swagger annotations are designed to work with JAX-RS, improving the quality of the API documentation generated by the framework. Note that the swagger-core project is currently supported on the Jersey and Restlet implementations. If you are considering any other runtime for your JAX-RS application, check the respective product manual and ensure the support before you start using Swagger for describing APIs. Some of the commonly used Swagger annotations are as follows: The @com.wordnik.swagger.annotations.Api annotation marks a class as a Swagger resource. Note that only classes that are annotated with @Api will be considered for generating the documentation. The @Api annotation is used along with class-level JAX-RS annotations such as @Produces and @Path. Annotations that declare an operation are as follows: @com.wordnik.swagger.annotations.ApiOperation: This annotation describes a resource method (operation) that is designated to respond to HTTP action methods, such as GET, PUT, POST, and DELETE. @com.wordnik.swagger.annotations.ApiParam: This annotation is used for describing parameters used in an operation. This is designed for use in conjunction with the JAX-RS parameters, such as @Path, @PathParam, @QueryParam, @HeaderParam, @FormParam, and @BeanParam. @com.wordnik.swagger.annotations.ApiImplicitParam: This annotation allows you to define the operation parameters manually. You can use this to override the @PathParam or @QueryParam values specified on a resource method with custom values. If you have multiple ImplicitParam for an operation, wrap them with @ApiImplicitParams. @com.wordnik.swagger.annotations.ApiResponse: This annotation describes the status codes returned by an operation. If you have multiple responses, wrap them by using @ApiResponses. @com.wordnik.swagger.annotations.ResponseHeader: This annotation describes a header that can be provided as part of the response. @com.wordnik.swagger.annotations.Authorization: This annotation is used within either Api or ApiOperation to describe the authorization scheme used on a resource or an operation. Annotations that declare API models are as follows: @com.wordnik.swagger.annotations.ApiModel: This annotation describes the model objects used in the application. @com.wordnik.swagger.annotations.ApiModelProperty: This annotation describes the properties present in the ApiModel object. A complete list of the Swagger core annotations is available at Github. Having learned the basics of Swagger, it is time for us to move on and build a simple example to get a feel of the real-life use of Swagger in a JAX-RS application. As always, this example uses the Jersey implementation of JAX-RS. Specifying dependency to Swagger To use Swagger in your Jersey 2 application, specify the dependency to swagger-jersey2-jaxrs jar. If you use Maven for building the source, the dependency to the swagger-core library will look as follows: <dependency> <groupId>com.wordnik</groupId> <artifactId>swagger-jersey2-jaxrs</artifactId> <version>1.5.1-M1</version> <!-use the appropriate version here, 1.5.x supports Swagger 2.0 spec --> </dependency> You should be careful while choosing the swagger-core version for your product. Note that swagger-core 1.3 produces the Swagger 1.2 definitions, whereas swagger-core 1.5 produces the Swagger 2.0 definitions. The next step is to hook the Swagger provider components into your Jersey application. This is done by configuring the Jersey servlet (org.glassfish.jersey.servlet.ServletContainer) in web.xml, as shown here: <servlet> <servlet-name>jersey</servlet-name> <servlet-class> org.glassfish.jersey.servlet.ServletContainer </servlet-class> <init-param> <param-name>jersey.config.server.provider.packages </param-name> <param-value> com.wordnik.swagger.jaxrs.json, com.packtpub.rest.ch7.swagger </param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>jersey</servlet-name> <url-pattern>/webresources/*</url-pattern> </servlet-mapping> To enable the Swagger documentation features, it is necessary to load the Swagger framework provider classes from the com.wordnik.swagger.jaxrs.listing package. The package names of the JAX-RS resource classes and provider components are configured as the value for the jersey.config.server.provider.packages init parameter. The Jersey framework scans through the configured packages for identifying the resource classes and provider components during the deployment of the application. Map the Jersey servlet to a request URI so that it responds to the REST resource calls that match the URI. If you prefer not to use web.xml, you can also use the custom application subclass for (programmatically) specifying all the configuration entries discussed here. To try this option, refer to Github. Configuring the Swagger definition After specifying the Swagger provider components, the next step is to configure and initialize the Swagger definition. This is done by configuring the com.wordnik.swagger.jersey.config.JerseyJaxrsConfig servlet in web.xml, as follows: <servlet> <servlet-name>Jersey2Config</servlet-name> <servlet-class> com.wordnik.swagger.jersey.config.JerseyJaxrsConfig </servlet-class> <init-param> <param-name>api.version</param-name> <param-value>1.0.0</param-value> </init-param> <init-param> <param-name>swagger.api.basepath</param-name> <param-value> http://localhost:8080/hrapp/webresources </param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> Here is a brief overview of the initialization parameters used for JerseyJaxrsConfig: api.version: This parameter specifies the API version for your application swagger.api.basepath: This parameter specifies the base path for your application With this step, we have finished all the configuration entries for using Swagger in a JAX-RS (Jersey 2 implementation) application. In the next section, we will see how to use the Swagger metadata annotation on a JAX-RS resource class for describing the resources and operations. Adding a Swagger annotation on a JAX-RS resource class Let's revisit the DepartmentResource class used in the previous sections. In this example, we will enhance the DepartmentResource class by adding the Swagger annotations discussed earlier. We use @Api to mark DepartmentResource as the Swagger resource. The @ApiOperation annotation describes the operation exposed by the DepartmentResource class: import com.wordnik.swagger.annotations.Api; import com.wordnik.swagger.annotations.ApiOperation; import com.wordnik.swagger.annotations.ApiParam; import com.wordnik.swagger.annotations.ApiResponse; import com.wordnik.swagger.annotations.ApiResponses; //Other imports are removed for brevity @Stateless @Path("departments") @Api(value = "/departments", description = "Get departments details") public class DepartmentResource { @ApiOperation(value = "Find department by id", notes = "Specify a valid department id", response = Department.class) @ApiResponses(value = { @ApiResponse(code = 400, message = "Invalid department id supplied"), @ApiResponse(code = 404, message = "Department not found") }) @GET @Path("{id}") @Produces("application/json") public Department findDepartment( @ApiParam(value = "The department id", required = true) @PathParam("id") Integer id){ return findDepartmentEntity(id); } //Rest of the codes are removed for brevity } To view the Swagger documentation, build the source and deploy it to the server. Once the application is deployed, you can navigate to http://<host>:<port>/<application-name>/<application-path>/swagger.json to view the Swagger resource listing in the JSON format. The Swagger URL for this example will look like the following: http://localhost:8080/hrapp/webresource/swagger.json The following sample Swagger representation is for the DepartmentResource class discussed in this section: { "swagger": "2.0", "info": { "version": "1.0.0", "title": "" }, "host": "localhost:8080", "basePath": "/hrapp/webresources", "tags": [ { "name": "user" } ], "schemes": [ "http" ], "paths": { "/departments/{id}": { "get": { "tags": [ "user" ], "summary": "Find department by id", "description": "", "operationId": "loginUser", "produces": [ "application/json" ], "parameters": [ { "name": "id", "in": "path", "description": "The department id", "required": true, "type": "integer", "format": "int32" } ], "responses": { "200": { "description": "successful operation", "schema": { "$ref": "#/definitions/Department" } }, "400": { "description": "Invalid department id supplied" }, "404": { "description": "Department not found" } } } } }, "definitions": { "Department": { "properties": { "departmentId": { "type": "integer", "format": "int32" }, "departmentName": { "type": "string" }, "_persistence_shouldRefreshFetchGroup": { "type": "boolean" } } } } } As mentioned at the beginning of this section, from the Swagger 2.0 release onward it supports the YAML representation of APIs. You can access the YAML representation by navigating to swagger.yaml. For instance, in the preceding example, the following URI gives you the YAML file: http://<host>:<port>/<application-name>/<application-path>/swagger.yaml The complete source code for this example is available at the Packt website. You can download the example from the Packt website link that we mentioned at the beginning of this book, in the Preface section. In the downloaded source code, see the rest-chapter7-service-doctools/rest-chapter7-jaxrs2swagger project. Generating a Java client from Swagger The Swagger framework is packaged with the Swagger code generation tool as well (swagger-codegen-cli), which allows you to generate client libraries by parsing the Swagger documentation file. You can download the swagger-codegen-cli.jar file from the Maven central repository by searching for swagger-codegen-cli in search maven. Alternatively, you can clone the Git repository and build the source locally by executing mvn install. Once you have swagger-codegen-cli.jar locally available, run the following command to generate the Java client for the REST API described in Swagger: java -jar swagger-codegen-cli.jar generate -i <Input-URI-or-File-location-for-swagger.json> -l <client-language-to-generate> -o <output-directory> The following example illustrates the use of this tool: java -jar swagger-codegen-cli-2.1.0-M2.jar generate -i http://localhost:8080/hrapp/webresources/swagger.json -l java -o generated-sources/java When you run this tool, it scans through the RESTful web API description available at http://localhost:8080/hrapp/webresources/swagger.json and generates a Java client source in the generated-sources/java folder. Note that the Swagger code generation process uses the mustache templates for generating the client source. If you are not happy with the generated source, Swagger lets you specify your own mustache template files. Use the -t flag to specify your template folder. To learn more, refer to the README.md file at Github. To learn more grab this latest edition of RESTful Java Web Services to build robust, scalable and secure RESTful web services using Java APIs. Getting started with Django RESTful Web Services How to develop RESTful web services in Spring Testing RESTful Web Services with Postman
Read more
  • 0
  • 0
  • 49304

article-image-step-by-step-guide-to-creating-odoo-addon-modules
Sugandha Lahoti
19 Jun 2018
15 min read
Save for later

A step by step guide to creating Odoo Addon Modules

Sugandha Lahoti
19 Jun 2018
15 min read
Odoo uses a client/server architecture in which clients are web browsers accessing the Odoo server via RPC. Both the server and client extensions are packaged as modules which are optionally loaded in a database. Odoo modules can either add brand new business logic to an Odoo system or alter and extend existing business logic. Everything in Odoo starts and ends with modules. In this article, we will cover the basics of creating Odoo Addon Modules. Recipes that we will cover in this. Creating and installing a new addon module Completing the addon module manifest Organizing the addon module file structure Adding Models Our main goal here is to understand how an addon module is structured and the typical incremental workflow to add components to it. This post is an excerpt from the book Odoo 11 Development Cookbook - Second Edition by Alexandre Fayolle and Holger Brunn. With this book, you can create fast and efficient server-side applications using the latest features of Odoo v11. For this article, you should have Odoo installed. You are also expected to be comfortable in discovering and installing extra addon modules. Creating and installing a new addon module In this recipe, we will create a new module, make it available in our Odoo instance, and install it. Getting ready We will need an Odoo instance ready to use. For explanation purposes, we will assume Odoo is available at ~/odoo-dev/odoo, although any other location of your preference can be used. We will also need a location for our Odoo modules. For the purpose of this recipe, we will use a local-addons directory alongside the odoo directory, at ~/odoo-dev/local-addons. How to do it... The following steps will create and install a new addon module: Change the working directory in which we will work and create the addons directory where our custom module will be placed: $ cd ~/odoo-dev $ mkdir local-addons Choose a technical name for the new module and create a directory with that name for the module. For our example, we will use my_module: $ mkdir local-addons/my_module A module's technical name must be a valid Python identifier; it must begin with a letter, and only contain letters (preferably lowercase), numbers, and underscore characters. Make the Python module importable by adding an __init__.py file: $ touch local-addons/my_module/__init__.py Add a minimal module manifest for Odoo to detect it. Create a __manifest__.py file with this line: {'name': 'My module'} Start your Odoo instance including our module directory in the addons path: $ odoo/odoo-bin --addons-path=odoo/addon/,local-addons/ If the --save option is added to the Odoo command, the addons path will be saved in the configuration file. Next time you start the server, if no addons path option is provided, this will be used. Make the new module available in your Odoo instance; log in to Odoo using admin, enable the Developer Mode in the About box, and in the Apps top menu, select Update Apps List. Now, Odoo should know about our Odoo module. Select the Apps menu at the top and, in the search bar in the top-right, delete the default Apps filter and search for my_module. Click on its Install button, and the installation will be concluded. How it works... An Odoo module is a directory containing code files and other assets. The directory name used is the module's technical name. The name key in the module manifest is its title. The __manifest__.py file is the module manifest. It contains a Python dictionary with information about the module, the modules it depends on, and the data files that it will load. In the example, a minimal manifest file was used, but in real modules, we will want to add a few other important keys. These are discussed in the Completing the module manifest recipe, which we will see next. The module directory must be Python-importable, so it also needs to have an __init__.py file, even if it's empty. To load a module, the Odoo server will import it. This will cause the code in the __init__.py file to be executed, so it works as an entry point to run the module Python code. Due to this, it will usually contain import statements to load the module Python files and submodules. Known modules can be installed directly from the command line using the --init or -i option. This list is initially set when you create a new database, from the modules found on the addons path provided at that time. It can be updated in an existing database with the Update Module List menu. Completing the addon module manifest The manifest is an important piece for Odoo modules. It contains important information about the module and declares the data files that should be loaded. Getting ready We should have a module to work with, already containing a __manifest__.py manifest file. You may want to follow the previous recipe to provide such a module to work with. How to do it... We will add a manifest file and an icon to our addon module: To create a manifest file with the most relevant keys, edit the module __manifest__.py file to look like this: { 'name': "Title", 'summary': "Short subtitle phrase", 'description': """Long description""", 'author': "Your name", 'license': "AGPL-3", 'website': "http://www.example.com", 'category': 'Uncategorized', 'version': '11.0.1.0.0', 'depends': ['base'], 'data': ['views.xml'], 'demo': ['demo.xml'], } To add an icon for the module, choose a PNG image to use and copy it to static/description/icon.png. How it works... The remaining content is a regular Python dictionary, with keys and values. The example manifest we used contains the most relevant keys: name: This is the title for the module. summary: This is the subtitle with a one-line description. description: This is a long description written in plain text or the ReStructuredText (RST) format. It is usually surrounded by triple quotes, and is used in Python to delimit multiline texts. For an RST quickstart reference, visit http://docutils.sourceforge.net/docs/user/rst/quickstart.html. author: This is a string with the name of the authors. When there is more than one, it is common practice to use a comma to separate their names, but note that it still should be a string, not a Python list. license: This is the identifier for the license under which the module is made available. It is limited to a predefined list, and the most frequent option is AGPL-3. Other possibilities include LGPL-3, Other OSI approved license, and Other proprietary. website: This is a URL people should visit to know more about the module or the authors. category: This is used to organize modules in areas of interest. The list of the standard category names available can be seen at https://github.com/odoo/odoo/blob/11.0/odoo/addons/base/module/module_data.xml. However, it's also possible to define other new category names here. version: This is the modules' version numbers. It can be used by the Odoo app store to detect newer versions for installed modules. If the version number does not begin with the Odoo target version (for example, 11.0), it will be automatically added. Nevertheless, it will be more informative if you explicitly state the Odoo target version, for example, using 11.0.1.0.0 or 11.0.1.0 instead of 1.0.0 or 1.0. depends: This is a list with the technical names of the modules it directly depends on. If none, we should at least depend on the base module. Don't forget to include any module defining XML IDs, Views, or Models referenced by this module. That will ensure that they all load in the correct order, avoiding hard-to-debug errors. data: This is a list of relative paths to the data files to load with module installation or upgrade. The paths are relative to the module root directory. Usually, these are XML and CSV files, but it's also possible to have YAML data files. demo: This is the list of relative paths to the files with demonstration data to load. These will only be loaded if the database was created with the Demo Data flag enabled. The image that is used as the module icon is the PNG file at static/description/icon.png. Odoo is expected to have significant changes between major versions, so modules built for one major version are likely to not be compatible with the next version without conversion and migration work. Due to this, it's important to be sure about a module's Odoo target version before installing it. There's more… Instead of having the long description in the module manifest, it's possible to have it in its own file. Since version 8.0, it can be replaced by a README file, with either a .txt, .rst, or an .md (Markdown) extension. Otherwise, include a description/index.html file in the module. This HTML description will override a description defined in the manifest file. There are a few more keys that are frequently used: application: If this is True, the module is listed as an application. Usually, this is used for the central module of a functional area auto_install: If this is True, it indicates that this is a "glue" module, which is automatically installed when all of its dependencies are installed installable: If this is True (the default value), it indicates that the module is available for installation Organizing the addon module file structure An addon module contains code files and other assets such as XML files and images. For most of these files, we are free to choose where to place them inside the module directory. However, Odoo uses some conventions on the module structure, so it is advisable to follow them. Getting ready We are expected to have an addon module directory with only the __init__.py and __manifest__.py files. In this recipe, we suppose this is local-addons/my_module. How to do it... To create the basic skeleton for the addon module, perform the given steps: Create the directories for code files: $ cd local-addons/my_module $ mkdir models $ touch models/__init__.py $ mkdir controllers $ touch controllers/__init__.py $ mkdir views $ mkdir security $ mkdir data $ mkdir demo $ mkdir i18n $ mkdir -p static/description Edit the module's top __init__.py file so that the code in subdirectories is loaded: from . import models from . import controllers This should get us started with a structure containing the most used directories, similar to this one: . ├── __init__.py ├── __manifest__.py │ ├── controllers │ └── __init__.py ├── data ├── demo ├── i18n ├── models │ └── __init__.py ├── security ├── static │ └── description └── views How it works... To provide some context, an Odoo addon module can have three types of files:  The Python code is loaded by the __init__.py files, where the .py files and code subdirectories are imported. Subdirectories containing code Python, in turn, need their own __init__.py. Data files that are to be declared in the data and demo keys of the __manifest__.py module manifest in order to be loaded are usually XML and CSV files for the user interface, fixture data, and demonstration data. There can also be YAML files, which can include some procedural instructions that are run when the module is loaded, for instance, to generate or update records programmatically rather than statically in an XML file. Web assets such as JavaScript code and libraries, CSS, and QWeb/HTML templates also play an important part. There are declared through an XML file extending the master templates to add these assets to the web client or website pages. The addon files are to be organized in these directories: models/ contains the backend code files, creating the Models and their business logic. A file per Model is recommended, with the same name as the model, for example, library_book.py for the library.book model. views/ contains the XML files for the user interface, with the actions, forms, lists, and so on. As with models, it is advised to have one file per model. Filenames for website templates are expected to end with the _template suffix. data/ contains other data files with module initial data. demo/ contains data files with demonstration data, useful for tests, training, or module evaluation. i18n/ is where Odoo will look for the translation .pot and .po files. These files don't need to be mentioned in the manifest file. security/ contains the data files defining access control lists, usually a ir.model.access.csv file, and possibly an XML file to define access Groups and Record Rules for row level security. controllers/ contains the code files for the website controllers, and for modules providing that kind of feature. static/ is where all web assets are expected to be placed. Unlike other directories, this directory name is not just a convention, and only files inside it can be made available for the Odoo web pages. They don't need to be mentioned in the module manifest, but will have to be referred to in the web template. When adding new files to a module, don't forget to declare them either in the __manifest__.py (for data files) or __init__.py (for code files); otherwise, those files will be ignored and won't be loaded. Adding models Models define the data structures to be used by our business applications. This recipe shows how to add a basic model to a module. We will use a simple book library example to explain this; we want a model to represent books. Each book has a name and a list of authors. Getting ready We should have a module to work with. We will use an empty my_module for our explanation. How to do it... To add a new Model, we add a Python file describing it and then upgrade the addon module (or install it, if it was not already done). The paths used are relative to our addon module location (for example, ~/odoo-dev/local-addons/my_module/): Add a Python file to the models/library_book.py module with the following code: from odoo import models, fields class LibraryBook(models.Model): _name = 'library.book' name = fields.Char('Title', required=True) date_release = fields.Date('Release Date') author_ids = fields.Many2many( 'res.partner', string='Authors' ) Add a Python initialization file with code files to be loaded by the models/__init__.py module with the following code: from . import library_book Edit the module Python initialization file to have the models/ directory loaded by the module: from . import models Upgrade the Odoo module, either from the command line or from the apps menu in the user interface. If you look closely at the server log while upgrading the module, you should see this line: odoo.modules.registry: module my_module: creating or updating database table After this, the new library.book model should be available in our Odoo instance. If we have the technical tools activated, we can confirm that by looking it up at Settings | Technical | Database Structure | Models. How it works... Our first step was to create a Python file where our new module was created. Odoo models are objects derived from the Odoo Model Python class. When a new model is defined, it is also added to a central model registry. This makes it easier for other modules to make modifications to it later. Models have a few generic attributes prefixed with an underscore. The most important one is _name, providing a unique internal identifier to be used throughout the Odoo instance. The model fields are defined as class attributes. We began defining the name field of the Char type. It is convenient for models to have this field, because by default, it is used as the record description when referenced from other models. We also used an example of a relational field, author_ids. It defines a many-to-many relation between Library Books and the partners. A book can have many authors and each author can have written many books. Next, we must make our module aware of this new Python file. This is done by the __init__.py files. Since we placed the code inside the models/ subdirectory, we need the previous __init__ file to import that directory, which should, in turn, contain another __init__ file importing each of the code files there (just one, in our case). Changes to Odoo models are activated by upgrading the module. The Odoo server will handle the translation of the model class into database structure changes. Although no example is provided here, business logic can also be added to these Python files, either by adding new methods to the Model's class or by extending the existing methods, such as create() or write(). Thus we learned about the structure of an Odoo addon module and learned, step-by-step, how to create a simple module from scratch. To know more about, how to define access rules for your data;  how to expose your data models to end users on the back end and on the front end; and how to create beautiful PDF versions of your data, read this book Odoo 11 Development Cookbook - Second Edition. ERP tool in focus: Odoo 11 Building Your First Odoo Application How to Scaffold a New module in Odoo 11
Read more
  • 0
  • 0
  • 49047

article-image-introducing-liferay-your-intranet
Packt
04 Sep 2015
32 min read
Save for later

Introducing Liferay for Your Intranet

Packt
04 Sep 2015
32 min read
In this article by Navin Agarwal, author of the book Liferay Portal 6.2 Enterprise Intranets, we will learn that Liferay is an enterprise application solution. It provides a lot of functionalities, which helps an organization to grow and is a one-solution package as a portal and content management solution. In this article, we will look at the following topics: The complete features you want your organization's intranet solution to have Reasons why Liferay is an excellent choice to build your intranet Where and how Liferay is used besides intranet portals Easy integration with other open source tools and applications Getting into more technical information about what Liferay is and how it works So, let's start looking at exactly what kind of site we're going to build. (For more resources related to this topic, see here.) Liferay Portal makes life easy We're going to build a complete corporate intranet solution using Liferay. Let's discuss some of the features your intranet portal will have. Hosted discussions Are you still using e-mail for group discussions? Then, it's time you found a better way! Running group discussions over e-mail clogs up the team's inbox—this means you have to choose your distribution list in advance, and that makes it hard for team members to opt in and out of the discussion. Using Liferay, we will build a range of discussion boards for discussion within and between teams. The discussions are archived in one place, which means that it's always possible to go back and refer to them later. On one level, it's just more convenient to move e-mail discussions to a discussion forum designed for the purpose. But once the forum is in place, you will find that a more productive group discussion takes place here than it ever did over e-mail. Collaborative documents using wikis Your company probably has guideline documents that should be updated regularly but swiftly lose their relevance as practices and procedures change. Even worse, each of your staff will know useful, productive tricks and techniques—but there's probably no easy way to record that knowledge in a way that is easy for others to find and use. We will see how to host wikis within Liferay. A wiki enables anybody to create and edit web pages and link all of those web pages together without requiring any HTML or programming skills. You can put your guideline documents into a wiki, and as practices change, your frontline staff can quickly and effortlessly update the guideline documentation. Wikis can also act as a shared notebook, enabling team members to collaborate and share ideas and findings and work together on documents. Team and individual blogs Your company probably needs frequent, chronological publications of personal thoughts and web links in the intranet. Your company probably has teams and individuals working on specific projects in order to share files and blogs about a project process and more. By using the Liferay Blog features, you can use HTML text editors to create or update files and blogs and to provide RSS feeds. Liferay provides an easy way for teams and individuals to share files with the help of blogs. Blogs provide a straightforward blogging solution with features such as RSS, user and guest comments, browsable categories, tags and labels, and a rating system. Liferay's RSS with the subscription feature provides the ability to frequently read RSS feeds from within the portal framework. At the same time, What You See Is What You Get (WYSIWYG) editors provide the ability to edit web content, including the blogs' content. Less technical people can use the WYSIWYG editor instead of sifting through complex code. Shared calendars Many companies require calendar information and share the calendar among users from different departments. We will see how to share a calendar within Liferay. The shared calendar can satisfy the basic business requirements incorporated into a featured business intranet, such as scheduling meetings, sending meeting invitations, checking for attendees' availability, and so on. Therefore, you can provide an environment for users to manage events and share calendars. Document management – CMS When there is a need for document sharing and document management, Liferay's Documents and Media library helps you with lots of features. The Documents and Media portlet allows you to add folders and subfolders for documents and media files, and also allows users to publish documents. It serves as a repository for all types of files and makes Content management systems (CMSes) available for intranets. The Documents and Media library portlet is equipped with customizable folders and acts as a web-based solution to share documents and media files among all your team members—just as a shared drive would. All the intranet users will be able to access the files from anywhere, and the content is accessible only by those authorized by administrators. All the files are secured by the permission layer by the administrator. Web content management – WCM Your company may have a lot of images and documents, and you may need to manage all these images and documents as well. Therefore, you require the ability to manage a lot of web content and then publish web content in intranets. We will see how to manage web content and how to publish web content within Liferay. Liferay Journal (Web Content) not only provides high availability to publish, manage, and maintain web content and documents, but it also separates content from the layout. Liferay WCM allows us to create, edit, and publish web content (articles). It also allows quick changes in the preview of the web content by changing the layout. It has built-in functionality, such as workflow, search, article versioning, scheduling, and metadata. Personalization and internalization All users can get a personal space that can be either made public (published as a website with a unique, friendly URL) or kept private. You can also customize how the space looks, what tools and applications are included, what goes into Documents and Media, and who can view and access all of this content. In addition, Liferay supports multiple languages, where you can select your own language. Multilingual organizations get out-of-the-box support for up to 45 languages. Users can toggle among different language settings with just one click and produce/publish multilingual documents and web content. Users can make use of the internalization feature to define the specific site in a localized language. Workflow, staging, scheduling, and publishing You can use a workflow to manage definitions, instances, and predetermined sequences of connected steps. Workflow can be used for web content management, assets, and so on. Liferay's built-in workflow engine is called Kaleo. It allows users to set up the review and publishing process on the web content article of any document that needs to end up on the live site. Liferay 6.2 integrates with the powerful features of the workflow and data capabilities of dynamic data lists in Kaleo Forms; it's only available in Liferay Enterprise Edition. Staging environments are integrated with Liferay's workflow engine. To have a review process for staged pages, you need to make sure you have a workflow engine configured and you have a staging setup in the workflow. As a content creator, you can update what you've created and publish it in a staging workflow. Other users can then review and modify it. Moreover, content editors can make a decision on whether to publish web content from staging to live, that is, you can easily create and manage everything from a simple article of text and images to fully functional websites in staging and then publish them live. Before going live, you can schedule web content as well. For instance, you can publish web content immediately or schedule it for publishing on a specific date. Social networks and Social Office Liferay Portal supports social networks—you can easily manage your Google Plus, Facebook, MySpace, Twitter, and other social network accounts in Liferay. In addition, you can manage your instant messenger accounts, such as AIM, ICQ, Jabber, MSN, Skype, YM, and so on smoothly from inside Liferay. Liferay Social Office gives us a social collaboration on top of the portal—a fully virtual workspace that streamlines communication and builds up group cohesion. It provides holistic enhancement to the way you and your colleagues work together. All components in Social Office are tied together seamlessly, getting everyone on the same page by sharing the same look and feel. More importantly, the dynamic activity tracking gives us a bird's-eye view of who has been doing what and when within each individual site. Using Liferay Social Office, you can enhance your existing personal workflow with social tools, keep your team up to date, and turn collective knowledge into collective action. Note that Liferay 6.2 supports the Liferay Social Office 3.0 current version. Liferay Sync and Marketplace Liferay Sync is Liferay's newest product, designed to make file sharing as easy as a simple drag and drop! Liferay Sync is an add-on product for Liferay 6.1 CE, EE, and later versions, which makes it a more raw boost product and enables the end user to publish and access documents and files from multiple environments and devices, including Windows and MacOS systems, and iOS-based mobile platforms. Liferay Sync is one of the best features, and it is fully integrated into the Liferay platform. Liferay 6.1 introduced the new concept of the marketplace, which leverages the developers to develop any components or functionality and release and share it with other users. It's a user-friendly and one-stop place to share apps. Liferay Marketplace provides the portal product with add-on features with a new hub to share, browse, and download Liferay-compatible applications. In Liferay 6.2, Marketplace comes under App Manager, where all the app-related controls can be possible. More features The intranet also arranges staff members into teams and sites, provides a way of real-time IM and chatting, and gives each user an appropriate level of access. This means that they can get all the information they need and edit and add content as necessary but won't be able to mess with sensitive information that they have no reason to see. In particular, the portal provides an integrating framework so that you can integrate external applications easily. For example, you can integrate external applications with the portal, such as Alfresco, OpenX, LDAP, SSO CAS, Orbeon Forms, Konakart, PayPal, Solr, and so on. In a word, the portal offers compelling benefits to today's enterprises—reduced operational costs, improved customer satisfaction, and streamlined business processes. Everything in one place All of these features are useful on their own. However, it gets better when you consider that all of these features will be combined into one easy-to-use searchable portal. A user of the intranet, for example, can search for a topic—let's say financial report—and find the following in one go: Any group discussions about financial reports Blog entries within the intranet concerning financial reports Documents and files—perhaps the financial reports themselves Wiki entries with guidelines on preparing financial reports Calendar entries for meetings to discuss the financial report Of course, users can also restrict their search to just one area if they already know exactly what they are looking for. Liferay provides other features, such as tagging, in order to make it even easier to organize information across the whole intranet. We will do all of this and more. Introducing Palm Tree Publications We are going to build an intranet for a fictional company as an example, focusing on how to install, configure, and integrate it with other applications and also implement portals and plugins (portlets, themes, layout templates, hooks, and webs) within Liferay. By applying the instructions to your own business, you will be able to build an intranet to meet your own company's needs. "Palm Tree Publications" needs an intranet of its own, which we will call bookpub.com. The enterprise's global headquarters are in the United States. It has several departments—editorial, website, engineering, marketing, executive, and human resources. Each department has staff in the U.S., Germany, and India or in all three places. The intranet site provides a site called "Book Street and Book Workshop" consisting of users who have an interest in reading books. The enterprise needs to integrate collaboration tools, such as wikis, discussion forums, blogs, instant messaging, mail, RSS, shared calendars, tagging, and so on. Palm Tree Publications has more advanced needs too: a workflow to edit, approve, and publish books. Furthermore, the enterprise has a lot of content, such as books stored and managed alfresco currently. In order to build the intranet site, the following functionality should be considered: Installing the portal, experiencing the portal and portlets, and customizing the portal and personal web pages Bringing the features of enabling document sharing, calendar sharing, and other collaboration within a business to the users of the portal Discussion forums—employees should be able to discuss book ideas and proposals Wikis—keeping track of information about editorial guidance and other resources that require frequent editing Dissemination of information via blogs—small teams working on specific projects share files and blogs about a project process Sharing a calendar among employees Web content management creation by the content author and getting approved by the publisher Document repository—using effective content management systems (CMSes), a natural fit for a portal for secure access, permissions, and distinct roles (such as writers, editors, designers, administrators, and so on) Collaborative chat and instant messaging, social network, Social Office, and knowledge management tools Managing a site named Book Street and Book Workshop that consists of users who have the same interest in reading books as staging, scheduling, and publishing web content related to books Federated search for discussion forum entries, blog posts, wiki articles, users in the directory, and content in both the Document and Media libraries; search by tags Integrating back-of-the-house software applications, such as Alfresco, Orbeon Forms, the Drools rule server, Jasper Server, and BI/Reporting Pentaho; strong authentication and authorization with LDAP; and single authentication to access various company sites besides the intranet site The enterprise can have the following groups of people: Admin: This group installs systems, manages membership, users, user groups, organizations, roles and permissions, security on resources, workflow, servers and instances, and integrates with third-party systems Executives: Executive management handles approvals Marketing: This group handles websites, company brochures, marketing campaigns, projects, and digital assets Sales: This group makes presentations, contracts, documents, and reports Website editors: This group manages pages of the intranet—writes articles, reviews articles, designs the layout of articles, and publishes articles Book editors: This group writes, reviews, and publishes books and approves and rejects the publishing of books Human resources: This group manages corporate policy documents Finance: This group manages accounts documents, scanned invoices and checks accounts Corporate communications: This group manages external public relations, internal news releases, and syndication Engineering: This group sets up the development environment and collaborates on engineering projects and presentation templates Introducing Liferay Portal's architecture and framework Liferay Portal's architecture supports high availability for mission-critical applications using clustering and the fully distributed cache and replication support across multiple servers. The following diagram has been taken from the Liferay forum written by Jorge Ferrer. This diagram depicts the various architectural layers and functionalities of portlets: Figure 1.1: The Liferay architecture The preceding image was taken from https://www.liferay.com/web/jorge.ferrer/blog/-/blogs/liferay-s-architecture-the-beginning-of-a-blog-series site blog. The Liferay Portal architecture is designed in such a way that it provides tons of features at one place: Frontend layer: This layer is the end user's interface Service layer: This contains the great majority of the business logic for the portal platform and all of the portlets included out of the box Persistence layer: Liferay relies on Hibernate to do most of its database access Web services API layer: This handles web services, such as JSON and SOAP In Liferay, the service layer, persistence layer, and web services API layer are built automatically by that wonderful tool called Service Builder. Service Builder is the tool that glues together all of Liferay's layers and that hides the complexities of using Spring or Hibernate under the hood. Service-oriented architecture Liferay Portal uses service-oriented architecture (SOA) design principles throughout and provides the tools and framework to extend SOA to other enterprise applications. Under the Liferay enterprise architecture, not only can the users access the portal from traditional and wireless devices, but developers can also access it from the exposed APIs via REST, SOAP, RMI, XML-RPC, XML, JSON, Hessian, and Burlap. Liferay Portal is designed to deploy portlets that adhere to the portlet API compliant with both JSR-168 and JSR-286. A set of useful portlets are bundled with the portal, including Documents and Media, Calendar, Message Boards, Blogs, Wikis, and so on. They can be used as examples to add custom portlets. In a word, the key features of Liferay include using SOA design principles throughout, such as reliable security, integrating the portal with SSO and LDAP, multitier and limitless clustering, high availability, caching pages, dynamic virtual hosting, and so on. Understanding Enterprise Service Bus Enterprise Service Bus (ESB) is a central connection manager that allows applications and services to be added quickly to an enterprise infrastructure. When an application needs to be replaced, it can easily be disconnected from the bus at a single point. Liferay Portal uses Mule or ServiceMix as ESB. Through ESB, the portal can integrate with SharePoint, BPM (such as the jBPM workflow engine and Intalio | BPMS engine), BI Xforms reporting, JCR repository, and so on. It supports JSR 170 for content management systems with the integration of JCR repositories, such as Jackrabbit. It also uses Hibernate and JDBC to connect to any database. Furthermore, it supports an event system with synchronous and asynchronous messaging and a lightweight message bus. Liferay Portal uses the Spring framework for its business and data services layers. It also uses the Spring framework for its transaction management. Based on service interfaces, portal-impl is implemented and exposed only for internal usage—for example, they are used for the extension environment. portal-kernel and portal-service are provided for external usage (or for internal usage)—for example, they are used for the Plugins SDK environment. Custom portlets, both JSR-168 and JSR-286, and web services can be built based on portal-kernel and portal-service. In addition, the Web 2.0 Mail portlet and the Web 2.0 Chat portlet are supported as well. More interestingly, scheduled staging and remote staging and publishing serve as a foundation through the tunnel web for web content management and publishing. Liferay Portal supports web services to make it easy for different applications in an enterprise to communicate with each other. Java, .NET, and proprietary applications can work together easily because web services use XML standards. It also supports REST-style JSON web services for lightweight, maintainable code and supports AJAX-based user interfaces. Liferay Portal uses industry-standard, government-grade encryption technologies, including advanced algorithms, such as DES, MD5, and RSA. Liferay was benchmarked as one of the most secure portal platforms using LogicLibrary's Logiscan suite. Liferay offers customizable single sign-on (SSO) that integrates into Yale CAS, JAAS, LDAP, NTLM, CA Siteminder, Novell Identity Manager, OpenSSO, and more. Open ID, OpenAuth, Yale CAS, Siteminder, and OpenAM integration are offered by it out of the box. In short, Liferay Portal uses ESB in general with an abstraction layer on top of an enterprise messaging system. It allows integration architects to exploit the value of messaging systems, such as reporting, e-commerce, and advertisements. Understanding the advantages of using Liferay to build an intranet Of course, there are lots of ways to build a company intranet. What makes Liferay such a good choice to create an intranet portal? It has got the features we need All of the features we outlined for our intranet come built into Liferay: discussions, wikis, calendars, blogs, and so on are part of what Liferay is designed to do. It is also designed to tie all of these features together into one searchable portal, so we won't be dealing with lots of separate components when we build and use our intranet. Every part will work together with others. Easy to set up and use Liferay has an intuitive interface that uses icons, clear labels, and drag and drop to make it easy to configure and use the intranet. Setting up the intranet will require a bit more work than using it, of course. However, you will be pleasantly surprised by how simple it is—no programming is required to get your intranet up and running. Free and open source How much does Liferay cost? Nothing! It's a free, open source tool. Here, being free means that you can go to Liferay's website and download it without paying anything. You can then go ahead and install it and use it. Liferay comes with an enterprise edition too, for which users need to pay. In addition, Liferay provides full support and access to additional enterprise edition plugins/applications. Liferay makes its money by providing additional services, including training. However, the standard use of Liferay is completely free. Now you probably won't have to pay another penny to get your intranet working. Being open source means that the program code that makes Liferay work is available to anybody to look at and change. Even if you're not a programmer, this is still good for you: If you need Liferay to do something new, then you can hire a programmer to modify Liferay to do it. There are lots of developers studying the source code, looking for ways to make it better. Lots of improvements get incorporated into Liferay's main code. Developers are always working to create plugins—programs that work together with Liferay to add new features. Probably, for now, the big deal here is that it doesn't cost any money. However, as you use Liferay more, you will come to understand the other benefits of open source software for you. Grows with you Liferay is designed in a way that means it can work with thousands and thousands of users at once. No matter how big your business is or how much it grows, Liferay will still work and handle all of the information you throw at it. It also has features especially suited to large, international businesses. Are you opening offices in non-English speaking countries? No problem! Liferay has internationalization features tailored to many of the world's popular languages. Works with other tools Liferay is designed to work with other software tools—the ones that you're already using and the ones that you might use in the future—for instance: You can hook up Liferay to your LDAP directory server and SSO so that user details and login credentials are added to Liferay automatically Liferay can work with Alfresco—a popular and powerful Enterprise CMS (used to provide extremely advanced document management capabilities, which are far beyond what Liferay does on its own) Based on "standards" This is a more technical benefit; however, it is a very useful one if you ever want to use Liferay in a more specialized way. Liferay is based on standard technologies that are popular with developers and other IT experts and that confer the following benefits on users: Built using Java: Java is a popular programming language that can run on just about any computer. There are millions of Java programmers in the world, so it won't be too hard to find developers who can customize Liferay. Based on tried and tested components: With any tool, there's a danger of bugs. Liferay uses lots of well-known, widely tested components to minimize the likelihood of bugs creeping in. If you are interested, here are some of the well-known components and technologies Liferay uses—Apache ServiceMix, Mule, ehcache, Hibernate, ICEfaces, Java J2EE/JEE, jBPM, Activiti, JGroups, Alloy UI, Lucene, PHP, Ruby, Seam, Spring and AOP, Struts and Tiles, Tapestry, Velocity, and FreeMarker. Uses standard ways to communicate with other software: There are various standards established to share data between pieces of software. Liferay uses these so that you can easily get information from Liferay into other systems. The standards implemented by Liferay include AJAX, iCalendar and Microformat, JSR-168, JSR-127, JSR-170, JSR-286 (Portlet 2.0), JSR-314 (JSF 2.0), OpenSearch, the Open platform with support for web services, including JSON, Hessian, Burlap, REST, RMI, and WSRP, WebDAV, and CalDAV. Makes publication and collaboration tools Web Content Accessibility Guidelines 2.0 (WCAG 2.0) compliant: The new W3C recommendation is to make web content accessible to a wide range of people with disabilities, including blindness and low vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited movement, speech disabilities, photosensitivity, and combinations of these. For example, the portal integrates CKEditor-standards support, such as W3C (WAI-AA and WCAG), 508 (Section 508). Alloy UI: The Liferay UI supports HTML 5, CSS 3, and Yahoo! User Interface Library 3 (YUI 3). Supports Apache Ant 1.8 and Maven 2: Liferay Portal can be built through Apache Ant by default, where you can build services; clean, compile, and build JavaScript CMD; build language native to ASCII, deploy, fast deploy; and so on. Moreover, Liferay supports Maven 2 SDK, providing Community Edition (CE) releases through public maven repositories as well as Enterprise Edition (EE) customers to install maven artifacts in their local maven repository. Bootstrap: Liferay 6.2 provides support for Twitter Bootstrap out of the box. With its fully responsive UI, the benefit of bootstrap is that it will support any device to render the content. Even content authors can use bootstrap markup and styles to make the content nicer. Many of these standards are things that you will never need to know much about, so don't worry if you've never heard of them. Liferay is better for using them, but mostly, you won't even know they are there. Other advantages of Liferay Liferay isn't just for intranets! Users and developers are building all kinds of different websites and systems based on Liferay. Corporate extranets An intranet is great for collaboration and information sharing within a company. An extranet extends this facility to suppliers and customers, who usually log in over the Internet. In many ways, this is similar to an intranet—however, there are a few technical differences. The main difference is that you create user accounts for people who are not part of your company. Collaborative websites Collaborative websites not only provide a secure and administrated framework, but they also empower users with collaborative tools, such as blogs, instant e-mail, message boards, instant messaging, shared calendars, and so on. Moreover, they encourage users to use other tools, such as tag administration, fine-grained permissions, delegable administrator privileges, enterprise taxonomy, and ad hoc user groups. By means of these tools, as an administrator, you can ultimately control what people can and cannot do in Liferay. In many ways, this is similar to an intranet too; however, there are a few technical differences. The main difference is that you use collaborative tools simply, such as blogs, instant e-mail, message boards, instant messaging, shared calendars, and so on. Content management and web publishing You can also use Liferay to run your public company website with content management and web publishing. Content management and web publishing are useful features in websites. It is a fact that the volume of digital content for any organization is increasing on a daily basis. Therefore, an effective CMS is a vital part of any organization. Meanwhile, document management is also useful and more effective when repositories have to be assigned to different departments and groups within the organization. Content management and document management are effective in Liferay. Moreover, when managing and publishing content, we may have to answer many questions, such as "who should be able to update and delete a document from the system?". Fortunately, Liferay's security and permissions model can satisfy the need for secure access and permissions and distinct roles (for example, writer, editor, designer, and administrator). Furthermore, Liferay integrates with the workflow engine. Thus, users can follow a flow to edit, approve, and publish content in the website. Content management and web publishing are similar to an intranet; however, there are a few technical differences. The main difference is that you can manage content and publish web content smoothly. Infrastructure portals Infrastructure portals integrate all possible functions, as we stated previously. This covers collaboration and information sharing within a company in the form of collaborative tools, content management, and web publishing. In infrastructure portals, users can create a unified interface to work with content, regardless of source via content interaction APIs. Furthermore, using the same API and the same interface as that of the built-in CMS, users can also manage content and publish web content from third-party systems, such as Alfresco, Vignette, Magnolia, FatWire, Microsoft SharePoint, and so on. Infrastructure portals are similar to an intranet; there are a few technical differences though. The main difference is that you can use collaborative tools, manage content, publish web content, and integrate other systems in one place. Why do you need a portal? The main reason is that a portal can serve as a framework to aggregate content and applications. A portal normally provides a secure and manageable framework where users can easily make new and existing enterprise applications available. In order to build an infrastructure portal smoothly, Liferay Portal provides an SOA-based framework to integrate third-party systems. Out-of-the-box portlets and features Liferay provides out-of-the-box (OOTB) portlets that have key features and can be used in the enterprise intranet very efficiently. These portlets are very scalable and powerful and provide the developer with the tools to customize it very easily. Let's see some of the most frequently used portlets in Liferay Portal. Content management Content management is a common feature in any web-based portal or website: The Web Content portlet has the features of full web publishing, office integration, and the asset library, which contains documents, images, and videos. This portlet also has the structure and templates that help with the designing of the web content's look and feel. Structure can be designed with the help of a visual editor with drag and drop. It has the integrated help feature with tooltips to name the attributes of the fields. The Asset Publisher portlet provides you with the feature to select any type of content/asset, such as wiki pages, web content, calendar events, message board messages, documents, media documents, and many more. It also allows us to use filter on them by types, categories, tags, and sources. The display settings provide configurable settings, which helps the content to be displayed to the end users perfectly. The Document and Media portlet is one of the most usable portlets to store any type of document. It allows you to store and manage your documents. It allows you to manage Liferay documents from your own machine's filesystem with the help of WebDAV integration. It has lots of new, built-in features, such as the inline document preview, image preview, and video player. Document metadata is displayed in document details, which makes it easier for you to review the metadata of the document. Also, Document and Media has features named checkin and checkout that helps editing the document in a group very easily. The Document and Media portlet has the multi-repository integration feature, which allows you to configure or mount any other repository very easily, such as SharePoint, Documentum, and Alfresco, utilizing the CMIS standard. Collaboration Collaboration features are generally ways in which users communicate with each other, such as the ones shown in the following list: The Dynamic data list portlet provides you with the facility of not writing a single line of code to create the form or data list. Say, for example, your corporate intranet needs the job posting done on a daily basis by the HR administrator. The administrator needs to develop the custom portlet to fulfill that requirement. Now, the dynamic data list portlet will allow the administrator to create a form for job posting. It's very easy to create and display new data types. The Blog portlet is one of the best features of Liferay. Blog portlets have two other related portlets, namely Recent Bloggers and Blogs Aggregator. The blog portlet provides the best possible ways for chronological publications of personal thoughts and web links in the intranet. Blog portlets can be placed for users of different sites/departments under the respective site//department page. The Calendar portlet provides the feature to create the event and schedule the event. It has many features that help the users in viewing the meeting schedule. The Message Board portlet is a full-featured forum solution with threaded views, categories, RSS capability, avatars, file attachments, previews, dynamic lists of recent posts, and forum statistics. Message Board portlets work with the fine-grained permissions and role-based access control model to give detailed levels of control to administrators and users. The Wiki portlet, like the Message Boards portlet, provides a straightforward wiki solution for both intranet and extranet portals that provides knowledge management among the users. It has all of the features you would expect in a state-of-the-art wiki. Again, it has the features of a file attachment preview, publishing the content, and versioning, and works with a fine-grained permission and role-based access control model. This again takes all the features of the Liferay platform. The Social Activity portlet allows you to tweak the measurements used to calculate user involvement within a site. The contribution and participation values determine the reward value of an action. It uses the blog entry, wiki, and message board points to calculate the user involvement in the site. The Marketplace portlet is placed inside the control panel. It's a hub for the applications provided by Liferay and other partners. You can find that many applications are free, and for certain applications, you need to pay an amount. It's more like an app store. This feature was introduced in Liferay Version 6.1. In the Liferay 6.2 control panel, under the Apps | Store link section, you will see apps that are stored in the Marketplace portlet. Liferay 6.2 comes with a new control panel that is very easy to manage for the portal's Admin users. Liferay Sync is not a portlet; it's a new feature of Liferay that allows you to synchronize documents of Liferay Document and Media with your local system. Liferay provide the Liferay Sync application, which has to be installed in your local system or mobile device. News RSS portlets provide RSS feeds. RSS portlets are used for the publishers by letting them syndicate content automatically. They benefit readers who want to subscribe to timely updates from their favorite websites or to aggregate feeds from many sites into one place. A Liferay RSS portlet is fully customizable, and it allows you to set the URL from which site you would like to get feeds. Social Activities portlets display portal-wide user activity, such as posting on message boards, creating wikis, and adding documents to Documents and Media. There are more portlets for social categories, such as User Statistics portlets, Group Statistics portlets, and Requests portlets. All these portlets are used for the social media. Tools The Search portlet provides faceted search features. When a search is performed, facet information will appear based on the results of the search. The number of each asset type and the most frequently occurring tags and categories as well as their frequency will all appear in the left-hand side column of the portlet. It searches through Bookmarks, Blogs Entries, Web Content Articles, Document Library Files, Users, Message Board, and Wiki. Finding more information on Liferay In this article, we looked at what Liferay can do for your corporate intranet and briefly saw why it's a good choice. If you want more background information on Liferay, the best place to start is the Liferay corporate website (http://www.liferay.com) itself. You can find the latest news and events, various training programs offered worldwide, presentations, demonstrations, and hosted trails. More interestingly, Liferay eats its own dog food; corporate websites within forums (called message boards), blogs, and wikis are built by Liferay using its own products. It is a real demo of Liferay Portal's software. Liferay is 100 percent open source and all downloads are available from the Liferay Portal website at http://www.liferay.com/web/guest/downloads/portal and the SourceForge website at http://sourceforge.net/projects/lportal/files. The source code repository is available at https://github.com/liferay. The Liferay website's wiki (http://www.liferay.com/web/guest/community/wiki) contains documentation, including a tutorial, user guide, developer guide, administrator guide, roadmap, and so on. The Liferay website's discussion forums can be accessed at http://www.liferay.com/web/guest/community/forums and the blogs at http://www.liferay.com/community/blogs/highlighted. The official plugins and the community plugins are available at http://www.liferay.com/marketplace and are the best place to share your thoughts, get tips and tricks about Liferay implementation, and use and contribute community plugins. If you would like to file a bug or know more about the fixes in a specific release, then you must visit the bug-tracking system at http://issues.liferay.com/. Summary In this article, we looked at what Liferay can offer your intranet and what we should consider while designing the company's enterprise site. We saw that our final intranet will provide shared documents, discussions, collaborative wikis, and more in a single, searchable portal. Well, Liferay is a great choice for an intranet because it provides so many features and is easy to use, free and open source, extensible, and well-integrated with other tools and standards. We also saw the other kinds of sites Liferay is good for, such as extranets, collaborative websites, content management, web publishing, and infrastructure portals. For the best example of an intranet and extranet, you can visit www.liferay.com. It will provide you with more background information. Resources for Article: Further resources on this subject: Working with a Liferay User / User Group / Organization[article] Liferay, its Installation and setup[article] Building your First Liferay Site [article]
Read more
  • 0
  • 6
  • 48713
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-mixing-aspnet-webforms-and-aspnet-mvc
Packt
12 Oct 2009
6 min read
Save for later

Mixing ASP.NET Webforms and ASP.NET MVC

Packt
12 Oct 2009
6 min read
Ever since Microsoft started working on the ASP.NET MVC framework, one of the primary concerns was the framework's ability to re-use as many features as possible from ASP.NET Webforms. In this article by Maarten Balliauw, we will see how we can mix ASP.NET Webforms and ASP.NET MVC in one application and how data is shared between both these technologies. (For more resources on .NET, see here.) Not every ASP.NET MVC web application will be built from scratch. Several projects will probably end up migrating from classic ASP.NET to ASP.NET MVC. The question of how to combine both technologies in one application arises—is it possible to combine both ASP.NET Webforms and ASP.NET MVC in one web application? Luckily, the answer is yes. Combining ASP.NET Webforms and ASP.NET MVC in one application is possible—in fact, it is quite easy. The reason for this is that the ASP.NET MVC framework has been built on top of ASP.NET. There's actually only one crucial difference: ASP.NET lives in System.Web, whereas ASP.NET MVC lives in System.Web, System.Web.Routing, System.Web.Abstractions, and System.Web.Mvc. This means that adding these assemblies as a reference in an existing ASP.NET application should give you a good start on combining the two technologies. Another advantage of the fact that ASP.NET MVC is built on top of ASP.NET is that data can be easily shared between both of these technologies. For example, the Session state object is available in both the technologies, effectively enabling data to be shared via the Session state. Plugging ASP.NET MVC into an existing ASP.NET application An ASP.NET Webforms application can become ASP.NET MVC enabled by following some simple steps. First of all, add a reference to the following three assemblies to your existing ASP.NET application: System.Web.Routing System.Web.Abstractions System.Web.Mvc After adding these assembly references, the ASP.NET MVC folder structure should be created. Because the ASP.NET MVC framework is based on some conventions (for example, controllers are located in Controllers), these conventions should be respected. Add the folder Controllers, Views, and Views | Shared to your existing ASP.NET application. The next step in enabling ASP.NET MVC in an ASP.NET Webforms application is to update the web.config file, with the following code: < ?xml version="1.0"?> <configuration> <system.web> <compilation debug="false"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.Abstractions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </assemblies> </compilation> <pages> <namespaces> <add namespace="System.Web.Mvc"/> <add namespace="System.Web.Mvc.Ajax"/> <add namespace="System.Web.Mvc.Html" /> <add namespace="System.Web.Routing"/> <add namespace="System.Linq"/> <add namespace="System.Collections.Generic"/> </namespaces> </pages> <httpModules> <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, System.Web.Routing, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </httpModules> </system.web> </configuration> Note that your existing ASP.NET Webforms web.config should not be replaced by the above web.config! The configured sections should be inserted into an existing web.config file in order to enable ASP.NET MVC. There's one thing left to do: configure routing. This can easily be done by adding the default ASP.NET MVC's global application class contents into an existing (or new) global application class, Global.asax. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using System.Web.Routing; namespace MixingBothWorldsExample { public class Global : System.Web.HttpApplication { public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.IgnoreRoute("{resource}.aspx/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = "" } // Parameter defaults ); } protected void Application_Start() { RegisterRoutes(RouteTable.Routes); } } } This code registers a default ASP.NET MVC route, which will map any URL of the form /Controller/Action/Idinto a controller instance and action method. There's one difference with an ASP.NET MVC application that needs to be noted—a catch-all route is defined in order to prevent a request for ASP.NET Webforms to be routed into ASP.NET MVC. This catch-all route looks like this: routes.IgnoreRoute("{resource}.aspx/{*pathInfo}"); This is basically triggered on every request ending in .aspx. It tells the routing engine to ignore this request and leave it to ASP.NET Webforms to handle things. With the ASP.NET MVC assemblies referenced, the folder structure created, and the necessary configurations in place, we can now start adding controllers and views. Add a new controller in the Controllers folder, for example, the following simpleHomeController: using System.Web.Mvc; namespace MixingBothWorldsExample.Controllers { public class HomeController : Controller { public ActionResult Index() { ViewData["Message"] = "This is ASP.NET MVC!"; return View(); } } } The above controller will simply render a view, and pass it a message through the ViewData dictionary. This view, located in Views | Home | Index.aspx, would look like this: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Index.aspx.cs" Inherits="MixingBothWorldsExample.Views.Home.Index" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head id="Head1" runat="server"> <title></title> </head> <body> <div> <h1><%=Html.Encode(ViewData["Message"]) %></h1> </div> </body> </html> The above view renders a simple HTML page and renders the ViewData dictionary's message as the page title.
Read more
  • 0
  • 1
  • 46362

article-image-understanding-the-foundation-of-protocol-oriented-design
Expert Network
30 Jun 2021
7 min read
Save for later

Understanding the Foundation of Protocol-oriented Design

Expert Network
30 Jun 2021
7 min read
When Apple announced Swift 2 at the World Wide Developers Conference (WWDC) in 2016, they also declared that Swift was the world’s first protocol-oriented programming (POP) language. From its name, we might assume that POP is all about protocol; however, that would be a wrong assumption. POP is about so much more than just protocol; it is actually a new way of not only writing applications but also thinking about programming. This article is an excerpt from the book Mastering Swift, 6th Edition by Jon Hoffman. In this article, we will discuss a protocol-oriented design and how we can use protocols and protocol extensions to replace superclasses. We will look at how to define animal types for a video game in a protocol-oriented way. Requirements When we develop applications, we usually have a set of requirements that we need to develop against. With that in mind, let’s define the requirements for the animal types that we will be creating in this article: We will have three categories of animals: land, sea, and air. Animals may be members of multiple categories. For example, an alligator can be a member of both the land and sea categories. Animals may attack and/or move when they are on a tile that matches the categories they are in. Animals will start off with a certain number of hit points, and if those hit points reach 0 or less, then they will be considered dead. POP Design We will start off by looking at how we would design the animal types needed and the relationships between them. Figure 1 shows our protocol-oriented design: Figure 1: Protocol-oriented design In this design, we use three techniques: protocol inheritance, protocol composition, and protocol extensions. Protocol inheritance Protocol inheritance is where one protocol can inherit the requirements from one or more additional protocols. We can also inherit requirements from multiple protocols, whereas a class in Swift can have only one superclass. Protocol inheritance is extremely powerful because we can define several smaller protocols and mix/match them to create larger protocols. You will want to be careful not to create protocols that are too granular because they will become hard to maintain and manage. Protocol composition Protocol composition allows types to conform to more than one protocol. With protocol-oriented design, we are encouraged to create multiple smaller protocols with very specific requirements. Let’s look at how protocol composition works. Protocol inheritance and composition are really powerful features but can also cause problems if used wrongly. Protocol composition and inheritance may not seem that powerful on their own; however, when we combine them with protocol extensions, we have a very powerful programming paradigm. Let’s look at how powerful this paradigm is. Protocol-oriented design — putting it all together We will begin by writing the Animal superclass as a protocol: protocol Animal { var hitPoints: Int { get set } } In the Animal protocol, the only item that we are defining is the hitPoints property. If we were putting in all the requirements for an animal in a video game, this protocol would contain all the requirements that would be common to every animal. We only need to add the hitPoints property to this protocol. Next, we need to add an Animal protocol extension, which will contain the functionality that is common for all types that conform to the protocol. Our Animal protocol extension would contain the following code: extension Animal { mutating func takeHit(amount: Int) { hitPoints -= amount } func hitPointsRemaining() -> Int { return hitPoints } func isAlive() -> Bool { return hitPoints > 0 ? true : false } } The Animal protocol extension contains the same takeHit(), hitPointsRemaining(), and isAlive() methods. Any type that conforms to the Animal protocol will automatically inherit these three methods. Now let’s define our LandAnimal, SeaAnimal, and AirAnimal protocols. These protocols will define the requirements for the land, sea, and air animals respectively: protocol LandAnimal: Animal { var landAttack: Bool { get } var landMovement: Bool { get } func doLandAttack() func doLandMovement() } protocol SeaAnimal: Animal { var seaAttack: Bool { get } var seaMovement: Bool { get } func doSeaAttack() func doSeaMovement() } protocol AirAnimal: Animal { var airAttack: Bool { get } var airMovement: Bool { get } func doAirAttack() func doAirMovement() } These three protocols only contain the functionality needed for their particular type of animal. Each of these protocols only contains four lines of code. This makes our protocol design much easier to read and manage. The protocol design is also much safer because the functionalities for the various animal types are isolated in their own protocols rather than being embedded in a giant superclass. We are also able to avoid the use of flags to define the animal category and, instead, define the category of the animal by the protocols it conforms to. In a full design, we would probably need to add some protocol extensions for each of the animal types, but we do not need them for our example here. Now, let’s look at how we would create our Lion and Alligator types using protocol-oriented design: struct Lion: LandAnimal { var hitPoints = 20 let landAttack = true let landMovement = true func doLandAttack() { print(“Lion Attack”) } func doLandMovement() { print(“Lion Move”) } } struct Alligator: LandAnimal, SeaAnimal { var hitPoints = 35 let landAttack = true let landMovement = true let seaAttack = true let seaMovement = true func doLandAttack() { print(“Alligator Land Attack”) } func doLandMovement() { print(“Alligator Land Move”) } func doSeaAttack() { print(“Alligator Sea Attack”) } func doSeaMovement() { print(“Alligator Sea Move”) } } Notice that we specify that the Lion type conforms to the LandAnimal protocol, while the Alligator type conforms to both the LandAnimal and SeaAnimal protocols. As we saw previously, having a single type that conforms to multiple protocols is called protocol composition and is what allows us to use smaller protocols, rather than one giant monolithic superclass. Both the Lion and Alligator types originate from the Animal protocol; therefore, they will inherit the functionality added with the Animal protocol extension. If our animal type protocols also had extensions, then they would also inherit the function added by those extensions. With protocol inheritance, composition, and extensions, our concrete types contain only the functionality needed by the particular animal types that they conform to. Since the Lion and Alligator types originate from the Animal protocol, we can use polymorphism. Let’s look at how this works: var animals = [Animal]() animals.append(Alligator()) animals.append(Alligator()) animals.append(Lion()) for (index, animal) in animals.enumerated() { if let _ = animal as? AirAnimal { print(“Animal at \(index) is Air”) } if let _ = animal as? LandAnimal { print(“Animal at \(index) is Land”) } if let _ = animal as? SeaAnimal { print(“Animal at \(index) is Sea”) } } In this example, we create an array that will contain Animal types named animals. We then create two instances of the Alligator type and one instance of the Lion type that are added to the animals array. Finally, we use a for-in loop to loop through the array and print out the animal type based on the protocol that the instance conforms to. Upgrade your knowledge and become an expert in the latest version of the Swift programming language with Mastering Swift 5.3, 6th Edition by Jon Hoffman. About Jon Hoffman has over 25 years of experience in the field of information technology. He has worked in the areas of system administration, network administration, network security, application development, and architecture. Currently, Jon works as an Enterprise Software Manager for Syn-Tech Systems.
Read more
  • 0
  • 0
  • 42891

article-image-nhibernate-30-testing-using-nhibernate-profiler-and-sqlite
Packt
06 Oct 2010
6 min read
Save for later

NHibernate 3.0: Testing Using NHibernate Profiler and SQLite

Packt
06 Oct 2010
6 min read
  NHibernate 3.0 Cookbook Get solutions to common NHibernate problems to develop high-quality performance-critical data access applications Master the full range of NHibernate features Reduce hours of application development time and get better application architecture and performance Create, maintain, and update your database structure automatically with the help of NHibernate Written and tested for NHibernate 3.0 with input from the development team distilled in to easily accessible concepts and examples Part of Packt's Cookbook series: each recipe is a carefully organized sequence of instructions to complete the task as efficiently as possible Read more about this book (For more resources on NHibernate, see here.) Using NHibernate Profiler NHibernate Profiler from Hibernating Rhinos is the number one tool for analyzing and visualizing what is happening inside your NHibernate application, and for discovering issues you may have. In this recipe, I'll show you how to get up and running with NHibernate Profiler. Getting ready Download NHibernate Profiler from http://nhprof.com, and unzip it. As it is a commercial product, you will also need a license file. You may request a 30-day trial license from the NHProf website. Using our Eg.Core model, set up a new NHibernate console application with log4net. (Download code). How to do it... Add a reference to HibernatingRhinos.Profiler.Appender.dll from the NH Profiler download. In the session-factory element of App.config, set the property generate_statistics to true. Add the following code to your Main method: log4net.Config.XmlConfigurator.Configure();HibernatingRhinos.Profiler.Appender. NHibernate.NHibernateProfiler.Initialize();var nhConfig = new Configuration().Configure();var sessionFactory = nhConfig.BuildSessionFactory();using (var session = sessionFactory.OpenSession()){ var books = from b in session.Query<Book>() where b.Author == "Jason Dentler" select b; foreach (var book in books) Console.WriteLine(book.Name);} Run NHProf.exe from the NH Profiler download, and activate the license. Build and run your console application. Check the NH Profiler. It should look like the next screenshot. Notice the gray dots indicating alerts next to the Session #1 and Recent Statements. Select Session #1 from the Sessions list at the top left pane. Select the statement from the top right pane. Notice the SQL statement in the following screenshot: Click on See the 1 row(s) resulting from this statement. Enter your database connection string in the field provided, and click on OK. Close the query results window. Switch to the Alerts tab, and notice the alert: Use of implicit transaction is discouraged. Click on the Read more link for more information and suggested solutions to this particular issue. Switch to the Stack Trace tab, as shown in the next screenshot: Double-click on the NHProfTest.NHProfTest.Program.Main stack frame to jump to that location inside Visual Studio. Using the following code, wrap the foreach loop in a transaction and commit the transaction: using (var tx = session.BeginTransaction()){ foreach (var book in books) Console.WriteLine(book.Name); tx.Commit();} In NH Profiler, right-click on Sessions on the top left pane, and select Clear All Sessions. Build and run your application. Check NH Profiler for alerts. How it works... NHibernate Profiler uses a custom log4net appender to capture data about NHibernate activities inside your application and transmit that data to the NH Profiler application. Setting generate_statistics allows NHibernate to capture many key data points. These statistics are displayed in the lower, left-hand side of the pane of NHibernate Profiler. We initialize NHibernate Profiler with a call to NHibernateProfiler.Initialize(). For best results, do this when your application begins, just after you have configured log4net. There's more... NHibernate Profiler also supports offline and remote profiling, as well as command-line options for use with build scripts and continuous integration systems. In addition to NHibernate warnings and errors, NH Profiler alerts us to 12 common misuses of NHibernate, which are as follows: Transaction disposed without explicit rollback or commit: If no action is taken, transactions will rollback when disposed. However, this often indicates a missing commit rather than a desire to rollback the transaction Using a single session on multiple threads is likely a bug: A Session should only be used by one thread at a time. Sharing a session across threads is usually a bug, not an explicit design choice with proper locking. Use of implicit transaction is discouraged: Nearly all session activity should happen inside an NHibernate transaction. Excessive number of rows: In nearly all cases, this indicates a poorly designed query or bug. Large number of individual writes: This indicates a failure to batch writes, either because adonet.batch_size is not set, or possibly because an Identity-type POID generator is used, which effectively disables batching. Select N+1: This alert indicates a particular type of anti-pattern where, typically, we load and enumerate a list of parent objects, lazy-loading their children as we move through the list. Instead, we should eagerly fetch those children before enumerating the list Superfluous updates, use inverse="true": NH Profiler detected an unnecessary update statement from a bi-directional one-to-many relationship. Use inverse="true" on the many side (list, bag, set, and others) of the relationship to avoid this. Too many cache calls per session: This alert is targeted particularly at applications using a distributed (remote) second-level cache. By design, NHibernate does not batch calls to the cache, which can easily lead to hundreds of slow remote calls. It can also indicate an over reliance on the second-level cache, whether remote or local. Too many database calls per session: This usually indicates a misuse of the database, such as querying inside a loop, a select N+1 bug, or an excessive number of writes. Too many joins: A query contains a large number of joins. When executed in a batch, multiple simple queries with only a few joins often perform better than a complex query with many joins. This alert can also indicate unexpected Cartesian products. Unbounded result set: NH Profiler detected a query without a row limit. When the application is moved to production, these queries may return huge result sets, leading to catastrophic performance issues. As insurance against these issues, set a reasonable maximum on the rows returned by each query Different parameter sizes result in inefficient query plan cache usage: NH Profiler detected two identical queries with different parameter sizes. Each of these queries will create a query plan. This problem grows exponentially with the size and number of parameters used. Setting prepare_sql to true allows NHibernate to generate queries with consistent parameter sizes. See also Configuring NHibernate with App.config Configuring log4net logging
Read more
  • 0
  • 0
  • 42449

article-image-reactos-0-4-12-releases-with-kernel-improvements-intel-e1000-nic-driver-support-and-more
Bhagyashree R
25 Sep 2019
2 min read
Save for later

ReactOS 0.4.12 releases with kernel improvements, Intel e1000 NIC driver support, and more

Bhagyashree R
25 Sep 2019
2 min read
Earlier this week, the ReactOS team announced the release of ReactOS 0.4.12. This release comes with a bunch of kernel improvements, Intel e1000 NIC driver support, font improvements, and more. Key updates in ReactOS 0.4.12 Kernel updates The filesystem infrastructure of ReactOS 0.4.12 has received quite a few improvements to enable Microsoft filesystem drivers. The team has also worked on the common cache module that has deep ties to the memory manager. The team has also improved device power management, fixed support for PXE booting, and overhauled the write-protection functionality. Window snapping ReactOS 0.4.12 comes with support for window snapping. So, users will now be able to align windows to sides or maximize and minimize them by dragging in specific directions. This release also comes with the keyboard shortcuts that accompany this feature. Intel e1000 NIC driver ReactOS 0.4.12 has a new driver to support the Network Interface Card (NIC) out of the box. Now, end-users do not need to manually find and install a driver. This new driver will also be compatible with e1000 NICs. Improvements related to font In ReactOS 0.4.12, font rendering is made more robust and correct. This release fixes a series of problems that badly affected text rendering for buttons in a range of applications,  from iTunes to various .NET applications. User-mode DLLs In this release, the team has made a range of improvements to user-mode components. The common controls (comctl) library is used by most of the Windows applications to draw various generic user interface elements. The team has fixed an issue related to it “reading extremely dryly.” Other updates include drivers for MIDI instruments and animated rotation bar in the startup/shutdown dialog. Check out the official announcement to know more about ReactOS 0.4.12 in detail. ReactOS 0.4.11 is now out with kernel improvements, manifests support, and more! Btrfs now boots ReactOS, a free and open-source alternative for Windows NT ReactOS version 0.4.9 released with Self-hosting and FastFAT crash fixes Understanding network port numbers, TCP, UDP, and ICMP on an operating system Google’s secret Operating System ‘Fuchsia’ will run Android Applications: 9to5Google Report  
Read more
  • 0
  • 0
  • 42233
article-image-how-to-scaffold-a-new-module-in-odoo-11
Sugandha Lahoti
25 May 2018
2 min read
Save for later

How to Scaffold a New module in Odoo 11

Sugandha Lahoti
25 May 2018
2 min read
The latest version of Odoo ERP, Odoo 11, brings a plethora of features to Odoo targeting business application development. The market for Odoo is growing enormously and if you have thought about developing in Odoo, now is the best time to start. This hands-on video course, Odoo 11 Development Essentials, by Riste Kabranov, will help you get started with Odoo to build powerful applications. What is Scaffolding? With Scaffolding, you can automatically create a skeleton structure to simplify bootstrapping of new modules in Odoo. Since it’s an automatic process, you don’t need to spend efforts in setting up basic structures and look for starting requirements. Oddo has a scaffold command that creates the skeleton for a new module based on a template. By default, the new module is created in the current working directory, but we can provide a specific directory where to create the module, passing it as an additional parameter. A step-by-step guide to scaffold a new module in Odoo 11: Step 1 In the first step, you need to navigate to /opt/odoo/odoo and create a folder name custom_addons. Step 2 In the second step, you scaffold a new module into the custom_addons. For this, Locate odoo-bin Use ./odoo-bin scaffold module_name folder_name to scaffold a new empty module Check if the new module is there and consists all the files needed. Check out the video for a more detailed walkthrough! This video tutorial has been taken from Odoo 11 Development Essentials. To learn how to build and customize business applications with Odoo, buy the full video course. ERP tool in focus: Odoo 11 Building Your First Odoo Application Top 5 free Business Intelligence tools
Read more
  • 0
  • 0
  • 41854

article-image-getting-started-rstudio
Packt
16 Feb 2016
5 min read
Save for later

Getting Started with RStudio

Packt
16 Feb 2016
5 min read
The number of users adopting the R programming language has been increasing faster and faster in the last few years. The functions of the R console are limited when it comes to managing a lot of files, or when we want to work with version control systems. This is the reason, in combination with the increasing adoption rate, why a need for a better development environment arose. To serve this need, a team of R fans began to develop an integrated development environment (IDE) to make it easier to work on bigger projects and to collaborate with others. This IDE has the name, RStudio. In this article, we will see how to work with RStudio and projects (For more resources related to this topic, see here.) Working with RStudio and projects In the times before RStudio, it was very hard to manage bigger projects with R in the R console, as you had to create all the folder structures on your own. When you work with projects or open a project, RStudio will instantly take several actions. For example, it will start a new and clean R session, it will source the .Rprofile file in the project's main directory, and it will set the current working directory to the project directory. So, you have a complete working environment individually for every project. RStudio will even adjust its own settings, such as active tabs, splitter positions, and so on, to where they were when the project was closed. But just because you can create projects with RStudio easily, it does not mean that you should create a project for every single time that you write R code. For example, if you just want to do a small analysis, we would recommend that you create a project where you save all your smaller scripts. Creating a project with RStudio RStudio offers you an easy way to create projects. Just navigate to File | New Project and you will see a popup window as with the options shown in the following screenshot: These options let you decide from where you want to create your project. So, if you want to start it from scratch and create a new directory, associate your new project to an existing one, or if you want to create a project from a version control repository, you can avail of the respective options. For now, we will focus on creating a new directory. The following screenshot shows you the next options available: Locating your project A very important question you have to ask yourself when creating a new project is where you want to save it? There are several options and details you have to pay attention to especially when it comes to collaboration and different people working on the same project. You can save your project locally, on a cloud storage or with the help of a revision control system such as Git. Creating your first project To begin your first project, choose the New Directory option we described before and create an empty project. Then, choose a name for the directory and the location that you want to save it in. You should create a projects folder on your Dropbox. The first project will be a small data analysis based on a dataset that was extracted from the 1974 issue of the Motor Trend US magazine. It comprises fuel consumption and ten aspects of automobile design and performance, such as the weight or number of cylinders for 32 automobiles, and is included in the base R package. So, we do not have to install a separate package to work with this dataset, as it is automatically loaded when you start R: As you can see, we left the Use packrat with this project option unchecked. Packrat is a dependency management tool that makes your R code more isolated, portable, and reproducible by giving your project its own privately managed package library. This is especially important when you want to create projects in an organizational context where the code has to run on various computer systems, and has to be usable for a lot of different users. This first project will just run locally and will not focus on a specific combination of package versions. Organizing your folders RStudio creates an empty directory for you that includes just the file, Motor-Car-Trend-Analysis.Rproj. This file will store all the information on your project that RStudio will need for loading. But to stay organized, we have to create some folders in the directory. Create the following folders: data: This includes all the data that we need for our analysis code: This includes all the code files for cleaning up data, generating plots, and so on plots: This includes all graphical outputs reports: This comprises all the reports that we create from our dataset Saving the data The Motor Trend Car Road Tests dataset is part of the dataset package, which is one of the preinstalled packages in R. But, we will save the data in a CSV file in our data folder, after extracting the data from the mtcars variable, to make sure our analysis is reproducible. Put the following line of code in a new R script and save it as data.R in the code folder: #write data into csv file write.csv(mtcars, file = "data/cars.csv", row.names=FALSE) Analyzing the data The analysis script will first have to load the data from the CSV file with the following line: cars_data <- read.csv(file = "data/cars.csv", header = TRUE, sep = ",") Summary To learn more about RStudio, the following books published by Packt Publishing (https://www.packtpub.com/) are recommended: Mastering Machine Learning with R (https://www.packtpub.com/big-data-and-business-intelligence/mastering-machine-learning-r) R Data Analysis Cookbook (https://www.packtpub.com/big-data-and-business-intelligence/r-data-analysis-cookbook) Mastering Data Analysis with R (https://www.packtpub.com/big-data-and-business-intelligence/mastering-data-analysis-r) Resources for Article: Further resources on this subject: RefresheR [article] Deep learning in R [article] Aspects of Data Manipulation in R [article]
Read more
  • 0
  • 0
  • 41798

article-image-building-your-first-odoo-application
Packt
02 Jan 2017
22 min read
Save for later

Building Your First Odoo Application

Packt
02 Jan 2017
22 min read
In this article by, Daniel Reis, the author of the book Odoo 10 Development Essentials, we will create our first Odoo application and learn the steps needed make it available to Odoo and install it. (For more resources related to this topic, see here.) Inspired by the notable http://todomvc.com/ project, we will build a simple To-Do application. It should allow us to add new tasks, mark them as completed, and finally clear the task list from all the already completed tasks. Understanding applications and modules It's common to hear about Odoo modules and applications. But what exactly is the difference between them? Module add-ons are building blocks for Odoo applications. A module can add new features to Odoo, or modify existing ones. It is a directory containing a manifest, or descriptor file, named __manifest__.py, plus the remaining files that implement its features. Applications are the way major features are added to Odoo. They provide the core elements for a functional area, such as Accounting or HR, based on which additional add-on modules modify or extend features. Because of this, they are highlighted in the Odoo Apps menu. If your module is complex, and adds new or major functionality to Odoo, you might consider creating it as an application. If you module just makes changes to existing functionality in Odoo, it is likely not an application. Whether a module is an application or not is defined in the manifest. Technically is does not have any particular effect on how the add-on module behaves. It is only used for highlight on the Apps list. Creating the module basic skeleton We should have the Odoo server at ~/odoo-dev/odoo/. To keep things tidy, we will create a new directory alongside it to host our custom modules, at ~/odoo-dev/custom-addons. Odoo includes a scaffold command to automatically create a new module directory, with a basic structure already in place. You can learn more about it with: $ ~/odoo-dev/odoo/odoo-bin scaffold --help You might want to keep this in mind when you start working your next module, but we won't be using it right now, since we will prefer to manually create all the structure for our module. An Odoo add-on module is a directory containing a __manifest__.py descriptor file. In previous versions, this descriptor file was named __openerp__.py. This name is still supported, but is deprecated. It also needs to be Python-importable, so it must also have an __init__.py file. The module's directory name is its technical name. We will use todo_app for it. The technical name must be a valid Python identifier: it should begin with a letter and can only contain letters, numbers, and the underscore character. The following commands create the module directory and create an empty __init__.py file in it, ~/odoo-dev/custom-addons/todo_app/__init__.py. In case you would like to do that directly from the command line, this is what you would use: $ mkdir ~/odoo-dev/custom-addons/todo_app $ touch ~/odoo-dev/custom-addons/todo_app/__init__.py Next, we need to create the descriptor file. It should contain only a Python dictionary with about a dozen possible attributes; of this, only the name attribute is required. A longer description attribute and the author attribute also have some visibility and are advised. We should now add a __manifest__.py file alongside the __init__.py file with the following content: { 'name': 'To-Do Application', 'description': 'Manage your personal To-Do tasks.', 'author': 'Daniel Reis', 'depends': ['base'], 'application': True, } The depends attribute can have a list of other modules that are required. Odoo will have them automatically installed when this module is installed. It's not a mandatory attribute, but it's advised to always have it. If no particular dependencies are needed, we should depend on the core base module. You should be careful to ensure all dependencies are explicitly set here; otherwise, the module may fail to install in a clean database (due to missing dependencies) or have loading errors, if by chance the other required modules are loaded afterwards. For our application, we don't need any specific dependencies, so we depend on the base module only. To be concise, we chose to use very few descriptor keys, but in a real word scenario, we recommend that you also use the additional keys since they are relevant for the Odoo apps store: summary: This is displayed as a subtitle for the module. version: By default, is 1.0. It should follow semantic versioning rules (see http://semver.org/ for details). license: By default, is LGPL-3. website: This is a URL to find more information about the module. This can help people find more documentation or the issue tracker to file bugs and suggestions. category: This is the functional category of the module, which defaults to Uncategorized. The list of existing categories can be found in the security groups form (Settings | User | Groups), in the Application field drop-down list. These other descriptor keys are also available: installable: It is by default True but can be set to False to disable a module. auto_install: If the auto_install module is set to True, this module will be automatically installed, provided all its dependencies are already installed. It is used for the Glue modules. Since Odoo 8.0, instead of the description key, we can use a README.rst or README.md file in the module's top directory. A word about licenses Choosing a license for your work is very important, and you should consider carefully what is the best choice for you, and its implications. The most used licenses for Odoo modules are the GNU Lesser General Public License (LGLP) and the Affero General Public License (AGPL). The LGPL is more permissive and allows commercial derivate work, without the need to share the corresponding source code. The AGPL is a stronger open source license, and requires derivate work and service hosting to share their source code. Learn more about the GNU licenses at https://www.gnu.org/licenses/. Adding to the add-ons path Now that we have a minimalistic new module, we want to make it available to the Odoo instance. For that, we need to make sure the directory containing the module is in the add-ons path, and then update the Odoo module list. We will position in our work directory and start the server with the appropriate add-ons path configuration: $ cd ~/odoo-dev $ ./odoo/odoo-bin -d todo --addons-path="custom-addons,odoo/addons" --save The --save option saves the options you used in a config file. This spares us from repeating them every time we restart the server: just run ./odoo-bin and the last saved options will be used. Look closely at the server log. It should have an INFO ? odoo: addons paths:[...] line. It should include our custom-addons directory. Remember to also include any other add-ons directories you might be using. For instance, if you also have a ~/odoo-dev/extra directory containing additional modules to be used, you might want to include them also using the option: --addons-path="custom-addons,extra,odoo/addons" Now we need the Odoo instance to acknowledge the new module we just added. Installing the new module In the Apps top menu, select the Update Apps List option. This will update the module list, adding any modules that may have been added since the last update to the list. Remember that we need the developer mode enabled for this option to be visible. That is done in the Settings dashboard, in the link at the bottom right, below the Odoo version number information . Make sure your web client session is working with the right database. You can check that at the top right: the database name is shown in parenthesis, right after the user name. A way to enforce using the correct database is to start the server instance with the additional option --db-filter=^MYDB$. The Apps option shows us the list of available modules. By default it shows only application modules. Since we created an application module we don't need to remove that filter to see it. Type todo in the search and you should see our new module, ready to be installed. Now click on the module's Install button and we're ready! The Model layer Now that Odoo knows about our new module, let's start by adding a simple model to it. Models describe business objects, such as an opportunity, sales order, or partner (customer, supplier, and so on.). A model has a list of attributes and can also define its specific business. Models are implemented using a Python class derived from an Odoo template class. They translate directly to database objects, and Odoo automatically takes care of this when installing or upgrading the module. The mechanism responsible for this is Object Relational Model (ORM). Our module will be a very simple application to keep to-do tasks. These tasks will have a single text field for the description and a checkbox to mark them as complete. We should later add a button to clean the to-do list from the old completed tasks. Creating the data model The Odoo development guidelines state that the Python files for models should be placed inside a models subdirectory. For simplicity, we won't be following this here, so let's create a todo_model.py file in the main directory of the todo_app module. Add the following content to it: # -*- coding: utf-8 -*- from odoo import models, fields class TodoTask(models.Model): _name = 'todo.task' _description = 'To-do Task' name = fields.Char('Description', required=True) is_done = fields.Boolean('Done?') active = fields.Boolean('Active?', default=True) The first line is a special marker telling the Python interpreter that this file has UTF-8 so that it can expect and handle non-ASCII characters. We won't be using any, but it's a good practice to have it anyway. The second line is a Python import statement, making available the models and fields objects from the Odoo core. The third line declares our new model. It's a class derived from models.Model. The next line sets the _name attribute defining the identifier that will be used throughout Odoo to refer to this model. Note that the actual Python class name , TodoTask in this case, is meaningless to other Odoo modules. The _name value is what will be used as an identifier. Notice that this and the following lines are indented. If you're not familiar with Python, you should know that this is important: indentation defines a nested code block, so these four lines should all be equally indented. Then we have the _description model attribute. It is not mandatory, but it provides a user friendly name for the model records, that can be used for better user messages. The last three lines define the model's fields. It's worth noting that name and active are special field names. By default, Odoo will use the name field as the record's title when referencing it from other models. The active field is used to inactivate records, and by default, only active records will be shown. We will use it to clear away completed tasks without actually deleting them from the database. Right now, this file is not yet used by the module. We must tell Python to load it with the module in the __init__.py file. Let's edit it to add the following line: from . import todo_model That's it. For our Python code changes to take effect the server instance needs to be restarted (unless it was using the --dev mode). We won't see any menu option to access this new model, since we didn't add them yet. Still we can inspect the newly created model using the Technical menu. In the Settings top menu, go to Technical | Database Structure | Models, search for the todo.task model on the list and then click on it to see its definition: If everything goes right, it is confirmed that the model and fields were created. If you can't see them here, try a server restart with a module upgrade, as described before. We can also see some additional fields we didn't declare. These are reserved fields Odoo automatically adds to every new model. They are as follows: id: A unique, numeric identifier for each record in the model. create_date and create_uid: These specify when the record was created and who created it, respectively. write_date and write_uid: These confirm when the record was last modified and who modified it, respectively. __last_update: This is a helper that is not actually stored in the database. It is used for concurrency checks. The View layer The View layer describes the user interface. Views are defined using XML, which is used by the web client framework to generate data-aware HTML views. We have menu items that can activate the actions that can render views. For example, the Users menu item processes an action also called Users, that in turn renders a series of views. There are several view types available, such as the list and form views, and the filter options made available are also defined by particular type of view, the search view. The Odoo development guidelines state that the XML files defining the user interface should be placed inside a views/ subdirectory. Let's start creating the user interface for our To-Do application. Adding menu items Now that we have a model to store our data, we should make it available on the user interface. For that we should add a menu option to open the To-do Task model so that it can be used. Create the views/todo_menu.xml file to define a menu item and the action performed by it: <?xml version="1.0"?> <odoo> <!-- Action to open To-do Task list --> <act_window id="action_todo_task" name="To-do Task" res_model="todo.task" view_mode="tree,form" /> <!-- Menu item to open To-do Task list --> <menuitem id="menu_todo_task" name="Todos" action="action_todo_task" /> </odoo> The user interface, including menu options and actions, is stored in database tables. The XML file is a data file used to load those definitions into the database when the module is installed or upgraded. The preceding code is an Odoo data file, describing two records to add to Odoo: The <act_window> element defines a client-side window action that will open the todo.task model with the tree and form views enabled, in that order The <menuitem> defines a top menu item calling the action_todo_task action, which was defined before Both elements include an id attribute. This id , also called an XML ID, is very important: it is used to uniquely identify each data element inside the module, and can be used by other elements to reference it. In this case, the <menuitem> element needs to reference the action to process, and needs to make use of the <act_window> id for that. Our module does not know yet about the new XML data file. This is done by adding it to the data attribute in the __manifest__.py file. It holds the list of files to be loaded by the module. Add this attribute to the descriptor's dictionary: 'data': ['views/todo_menu.xml'], Now we need to upgrade the module again for these changes to take effect. Go to the Todos top menu and you should see our new menu option available: Even though we haven't defined our user interface view, clicking on the Todos menu will open an automatically generated form for our model, allowing us to add and edit records. Odoo is nice enough to automatically generate them so that we can start working with our model right away. Odoo supports several types of views, but the three most important ones are: tree (usually called list views), form, and search views. We'll add an example of each to our module. Creating the form view All views are stored in the database, in the ir.ui.view model. To add a view to a module, we declare a <record> element describing the view in an XML file, which is to be loaded into the database when the module is installed. Add this new views/todo_view.xml file to define our form view: <?xml version="1.0"?> <odoo> <record id="view_form_todo_task" model="ir.ui.view"> <field name="name">To-do Task Form</field> <field name="model">todo.task</field> <field name="arch" type="xml"> <form string="To-do Task"> <group> <field name="name"/> <field name="is_done"/> <field name="active" readonly="1"/> </group> </form> </field> </record> </odoo> Remember to add this new file to the data key in manifest file, otherwise our module won't know about it and it won't be loaded. This will add a record to the ir.ui.view model with the identifier view_form_todo_task. The view is for the todo.task model and is named To-do Task Form. The name is just for information; it does not have to be unique, but it should allow one to easily identify which record it refers to. In fact the name can be entirely omitted, in that case it will be automatically generated from the model name and the view type. The most important attribute is arch, and contains the view definition, highlighted in the XML code above. The <form> tag defines the view type, and in this case contains three fields. We also added an attribute to the active field to make it read-only. Adding action buttons Forms can have buttons to perform actions. These buttons are able to trigger workflow actions, run window actions—such as opening another form, or run Python functions defined in the model. They can be placed anywhere inside a form, but for document-style forms, the recommended place for them is the <header> section. For our application, we will add two buttons to run the methods of the todo.task model: <header> <button name="do_toggle_done" type="object" string="Toggle Done" class="oe_highlight" /> <button name="do_clear_done" type="object" string="Clear All Done" /> </header> The basic attributes of a button comprise the following: The string attribute that has the text to be displayed on the button The type attribute referring to the action it performs The name attribute referring to the identifier for that action The class attribute, which is an optional attribute to apply CSS styles, like in regular HTML The complete form view At this point, our todo.task form view should look like this: <form> <header> <button name="do_toggle_done" type="object" string="Toggle Done" class="oe_highlight" /> <button name="do_clear_done" type="object" string="Clear All Done" /> </header> <sheet> <group name="group_top"> <group name="group_left"> <field name="name"/> </group> <group name="group_right"> <field name="is_done"/> <field name="active" readonly="1" /> </group> </group> </sheet> </form> Remember that for the changes to be loaded to our Odoo database, a module upgrade is needed. To see the changes in the web client, the form needs to be reloaded: either click again on the menu option that opens it or reload the browser page (F5 in most browsers). The action buttons won't work yet, since we still need to add their business logic. The business logic layer Now we will add some logic to our buttons. This is done with Python code, using the methods in the model's Python class. Adding business logic We should edit the todo_model.py Python file to add to the class the methods called by the buttons. First we need to import the new API, so add it to the import statement at the top of the Python file: from odoo import models, fields, api The action of the Toggle Done button will be very simple: just toggle the Is Done? flag. For logic on records, use the @api.multi decorator. Here, self will represent a recordset, and we should then loop through each record. Inside the TodoTask class, add this: @api.multi def do_toggle_done(self): for task in self: task.is_done = not task.is_done return True The code loops through all the to-do task records, and for each one, modifies the is_done field, inverting its value. The method does not need to return anything, but we should have it to at least return a True value. The reason is that clients can use XML-RPC to call these methods, and this protocol does not support server functions returning just a None value. For the Clear All Done button, we want to go a little further. It should look for all active records that are done and make them inactive. Usually, form buttons are expected to act only on the selected record, but in this case, we will want it also act on records other than the current one: @api.model def do_clear_done(self): dones = self.search([('is_done', '=', True)]) dones.write({'active': False}) return True On methods decorated with @api.model, the self variable represents the model with no record in particular. We will build a dones recordset containing all the tasks that are marked as done. Then, we set on the active flag to False on them. The search method is an API method that returns the records that meet some conditions. These conditions are written in a domain, which is a list of triplets. The write method sets the values at once on all the elements of a recordset. The values to write are described using a dictionary. Using write here is more efficient than iterating through the recordset to assign the value to each of them one by one. Set up access security You might have noticed that upon loading, our module is getting a warning message in the server log: The model todo.task has no access rules, consider adding one. The message is pretty clear: our new model has no access rules, so it can't be used by anyone other than the admin super user. As a super user, the admin ignores data access rules, and that's why we were able to use the form without errors. But we must fix this before other users can use our model. Another issue yet to address is that we want the to-do tasks to be private to each user. Odoo supports row-level access rules, which we will use to implement that. Adding access control security To get a picture of what information is needed to add access rules to a model, use the web client and go to Settings | Technical | Security | Access Controls List: Here we can see the ACL for some models. It indicates, per security group, what actions are allowed on records. This information has to be provided by the module using a data file to load the lines into the ir.model.access model. We will add full access to the Employee group on the model. Employee is the basic access group nearly everyone belongs to. This is done using a CSV file named security/ir.model.access.csv. Let's add it with the following content: id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create,perm_unlink acess_todo_task_group_user,todo.task.user,model_todo_task,base.group_user,1,1,1,1 The filename corresponds to the model to load the data into, and the first line of the file has the column names. These are the columns provided by the CSV file: id: It is the record external identifier (also known as XML ID). It should be unique in our module. name: This is a description title. It is only informative and it's best if it's kept unique. Official modules usually use a dot-separated string with the model name and the group. Following this convention, we used todo.task.user. model_id: This is the external identifier for the model we are giving access to. Models have XML IDs automatically generated by the ORM: for todo.task, the identifier is model_todo_task. group_id: This identifies the security group to give permissions to. The most important ones are provided by the base module. The Employee group is such a case and has the identifier base.group_user. The last four perm fields flag the access to grant read, write, create, or unlink (delete) access. We must not forget to add the reference to this new file in the __manifest__.py descriptor's data attribute It should look like this: 'data': [ 'security/ir.model.access.csv', 'views/todo_view.xml', 'views/todo_menu.xml', ], As before, upgrade the module for these additions to take effect. The warning message should be gone, and we can confirm that the permissions are OK by logging in with the user demo (password is also demo). If we run our tests now it they should only fail the test_record_rule test case. Summary We created a new module from the start, covering the most frequently used elements in a module: models, the three basic types of views (form, list, and search), business logic in model methods, and access security. Always remember, when adding model fields, an upgrade is needed. When changing Python code, including the manifest file, a restart is needed. When changing XML or CSV files, an upgrade is needed; also, when in doubt, do both: restart the server and upgrade the modules. Resources for Article: Further resources on this subject: Getting Started with Odoo Development [Article] Introduction to Odoo [Article] Web Server Development [Article]
Read more
  • 0
  • 0
  • 41462
article-image-implementing-an-api-design-first-approach-for-building-apis
Packt Editorial Staff
15 Jun 2018
9 min read
Save for later

Implement an API Design-first approach for building APIs [Tutorial]

Packt Editorial Staff
15 Jun 2018
9 min read
The Monster Records & Associates (MRA) –a fictional music records company, having realised that its biggest asset is in fact its data, embarked on a digital transformation with the aim to offer its product and offerings completely online and via APIs. This article is an excerpt taken from the book Implementing Oracle API Platform Cloud Service, written  by Andy Bell, Sander Rensen, Luis Weir, Phil Wilkins. In this post we are is going to take  you through an interesting MRA case study who adopted an API design-first approach for building its APIs. We will go through the process and steps performed by MRA for this implementation. The Problem Scenario MRA had embarked on a digital transformation journey with the objective to become a digital organisation capable of offering tailored (à la carte) offerings to artists such as handling of an artist’s online presence to on-demand distribution of an artist's digital media to Music Streaming Services such as Spotify, Apple Music, Google Play Music, Amazon Prime Music, Pandora, Deezer to name a few. Having fully acknowledged that their most valuable asset is in fact their media data, MRA wanted to materialise in such assets and determined that the quickest and most effective way to achieve this was by exposing a public API capable of providing access, on-demand, to MRA's Media Catalogue assets such as artists, songs and albums. Figure 1: MRA's Media Catalogue API The idea being, once such assets became accessible via an API, streaming services could, on-demand and 24x7, explore MRA's repertoire, purchase rights-to-use and start streaming. In addition, the API could also open the door to a brand new global audience: millions of app developers constantly innovating. If only a fraction of such a huge audience leveraged MRA's Media Catalogue API, it would still represent a considerable success for MRA. However, as with everything, there is a challenge to realise such vision. MRA like many other organizations, had a level of experience with systems integrations and Service Oriented Architectures (SOA). One of the lessons learnt from SOA however was that the cycles for designing, building, prototyping, and testing SOAP-based Web Services could be quite lengthy and expensive. An API differentiates from a service in that the former represents the RESTful interface a consumer application interacts with, whereas the latter is the actual implementation (the code) behind an API. A HTTP endpoint exposed by a service is defined as an unmanaged API. When a service endpoint is accessed via an API Gateway where policies such as app-key validation, authentication/authorization and other policies are enforced, then it becomes a managed API. The book, Implementing Oracle API Platform Cloud Service, refers to managed APIs as simply APIs and unmanaged APIs as simply service endpoints. Especially when it came to capturing and accommodating the feedback from Client Application Developers (API consumers), MRA had very bad experiences as in the majority of occasions they came to realize very late in the software lifecycle that the Web Service developed did not meet the expectations of its consumers. Figure 2: feedback-loops in traditional web service design Refactoring web services in this approach wasn't just time consuming but also an expensive exercise as both the Service design (WSDL) and code had to be refactored and re-tested in order to accommodate the feedback received and before application developers could try a service again. Naturally service designers and developers avoided as much as possible making changes, thus challenging feedback received from application developers, which in turn created friction amongst both teams but in some occasions meant application developers finding alternative routes to solve their needs rather than using the web service. This was the worst possible scenario as it meant that the investments made in implementing a web service could've been wasted. API design-first process Learning from experiences and acknowledging the challenges that such waterfall like process imposed to a digital transformation initiative, MRA were quite keen to adopt a more agile, interactive but also quicker way to deliver modern RESTful based APIs. The idea was clear. By engaging application developers (API consumers) in the initial stages of the design process, feedback would be captured and reflected back in the interface design (API) early as well. Not only this would shorten feedback loops, but ensure that once the underlying services are implemented, it would expose an interface already endorsed and tested by its consumers, as opposed to risk building a service that won't satisfy the client expectations and needs late in the process. Figure 3: API design-first approach vs traditional service design The implication of this approach though, is that the tooling and notation to define the API, had to be both simple, yet rich in capability such as the task of designing and mocking API endpoints is quick and easy, given that if the process becomes cumbersome it would defeat its purpose. We elaborate on the different steps undertaken by MRA when designing its Media Catalogue API using Apiary and related tools in the book, Implementing Oracle API Platform Cloud Service. Here are the steps: Defining the API type Defining the API’s domain semantics Creating the API definition with its main resources Trying the API mock Defining MSON Data Structures Pushing the API Blueprint to GitHub Publishing the API mock in Oracle API Platform CS Setting up Dredd for continuous testing of API endpoints against the API blueprint Defining the API type: A fundamental step when designing any API is to first define what the type is. This is important as it will determine the guiding principles to consider when doing the design. We have three types of APIs: Single-Purpose APIs: These are APIs that serve a unique and specific purpose, typically derived from an unambiguous need associated with a user journey or use case. Multi-Purpose APIs: These APIs are more generic in nature and are meant to satisfy not just one but multiple use cases and scenarios. They are not bound (coupled) to a specific user journey or system of engagement (for example, a mobile app) therefore ideal for reuse enterprise-wide. MRA’s Media Catalogue API: MRA's Media Catalogue API was specifically targeted at two main audiences: Music Streaming Services and Application Developers in general. Therefore, the API had to be both Public and Multi-Purpose. Defining the API’s domain semantics: This step elaborates proper understanding of the API's bounded context, Media Catalogue. To do so, entities, key attributes, and relationships within the bounded context itself were identified and also defined using semantics appropriate for the purpose of the API. Creating the API definition with its main resources: This step shows how to create an API and define its main resources, parameters, and sample payloads.It involves steps followed by MRA when creating the Media Catalogue API definition and its associated API mock. Trying the API mock: This part describes how Apiary's automatically generated API mocks can be used to satisfy one of the most important steps in API design-first: try an API early in the lifecycle, before the API is actually implemented. This is a critical step as collecting feedback from API consumers early can potentially save numerous hours in code refactoring later in the project. Defining MSON Data Structures: The Markdown Syntax for Object Notation (MSON) is a plain-text syntax for the description and validation of Data Structures in API Blueprint. It provides a way to represent objects (for example, an artist) in a human-readable plain text form. This part involves steps to define the Artist, Album and Song objects using the MSON notation. Pushing the API Blueprint to GitHub: API Blueprints can be pushed into GitHub repositories, so they can be version controlled but most importantly it can follow a similar GitHub cycle as any other code asset. This step is also required in order to configure Dredd to validate API endpoints against API blueprint definitions. Publishing the API mock in Oracle API Platform CS: Although Apiary provides an API mock URL that can be can be accessed directly, it is recommended that instead, the API mock is published and accessed via the Oracle API Platform Cloud Service. Setting up Dredd for continuous testing of API endpoints against the API blueprint: The last step of the API design-first process is to configure Dredd to continuously validate that an API endpoint exposed through the API Gateway is always compliant with its corresponding API Blueprint definition. The idea is to ensure that Client Application code is not broken once an API Policy is changed to point to a Backend Service once it has been built and deployed. We discussed the API design-first approach for building its APIs. MRA's business scenario demanded the need for more efficient and leaner process for implementing APIs. We saw how an API design-first process could effectively help organizations such as MRA gain greater speed, agility, and efficiencies. Here’s a summary of the basic steps to realize such process. Choose your API type: We introduced the conceptual concepts such as Single Purpose and Multi-Purpose APIs to decide on what type of API to adopt. Define your APIs: The need for creating an API definition and an API mock in Apiary based on API Blueprints and the Markdown Syntax for Object Notation (MSON). Create & publish API: Creation and publication of an API using the Oracle API Platform Cloud Service. Continuously test: Finally, the configuration of Dredd to verify API endpoints compliance with the API definition. You just enjoyed an excerpt from the book Implementing Oracle API Platform Cloud Services. Grab the latest edition of this book to work with the newest Oracle APIs, and interface with an increasingly complex array of services your clients want. What are the best programming languages for building APIs? Glancing at the Fintech growth story – Powered by ML, AI & APIs What RESTful APIs can do for Cloud, IoT, social media and other emerging technologies  
Read more
  • 0
  • 0
  • 40577

article-image-architects-love-api-driven-architecture
Aaron Lazar
07 Jun 2018
6 min read
Save for later

8 Reasons why architects love API driven architecture

Aaron Lazar
07 Jun 2018
6 min read
Everyday, we see a new architecture popping up, being labeled as a modern architecture for application development. That’s what happened with Microservices in the beginning, and then all went for a toss when they were termed as a design pattern rather than an architecture on a whole. APIs are growing in popularity and are even being used as a basis to draw out the architecture of applications. We’re going to try and understand what some of the top factors are, which make Architects (and Developers) appreciate API driven architectures over the other “modern” and upcoming architectures. Before we get to the reasons, let’s understand where I’m coming from in the first place. So, we recently published our findings from the Skill Up survey that we conducted for 8,000 odd IT pros. We asked them various questions ranging from what their favourite tools were, to whether they felt they knew more than what their managers did. Of the questions, one of them was directed to find out which of the modern architectures interested them the most. The choices were among Chaos Engineering, API Driven Architecture and Evolutionary Architecture. Source: Skill Up 2018 From the results, it's evident that they’re more inclined towards API driven Architecture. Or maybe, those who didn’t really find the architecture of their choice among the lot, simply chose API driven to be the best of the lot. But why do architects love API driven development? Anyway, I’ve been thinking about it a bit and thought I would come up with a few reasons as to why this might be so. So here goes… Reason #1: The big split between the backend and frontend Also known as Split Stack Development, API driven architecture allows for the backend and frontend of the application to be decoupled. This allows developers and architects to mitigate any dependencies that each end might have or rather impose on the other. Instead of having the dependencies, each end communicates with the other via APIs. This is extremely beneficial in the sense that each end can be built in completely different tools and technologies. For example, the backend could be in Python/Java, while the front end is built in JavaScript. Reason #2: Sensibility in scalability When APIs are the foundation of an architecture, it enables the organisation to scale the app by simply plugging in services as and when needed, instead of having to modify the app itself. This is a great way to plugin and plugout functionality as and when needed without disrupting the original architecture. Reason #3: Parallel Development aka Agile When different teams work on the front and back end of the application, there’s no reason for them to be working together. That doesn’t mean they don’t work together at all, rather, what I mean is that the only factor they have to agree upon is the API structure and nothing else. This is because of Reason #1, where both layers of the architecture are disconnected or decoupled. This enables teams to be more flexible and agile when developing the application. It is only at the testing and deployment stages that the teams will collaborate more. Reason #4: API as a product This is more of a business case, rather than developer centric, but I thought I should add it in anyway. So, there’s something new that popped up on the Thoughtworks Radar, a few months ago - API-as-a-product.  As a matter of fact, you could consider this similar to API-as-a-Service. Organisations like Salesforce have been offering their services in the form of APIs. For example, suppose you’re using Salesforce CRM and you want to extend the functionality, all you need to do is use the APIs for extending the system. Google is another good example of a company that offers APIs as products. This is a great way to provide extensibility instead of having a separate application altogether. Individual APIs or groups of them can be priced with subscription plans. These plans contain not only access to the APIs themselves, but also a defined number of calls or data that is allowed. Reason #5: Hiding underlying complexity In an API driven architecture, all components that are connected to the API are modular, exist on their own and communicate via the API. The modular nature of the application makes it easier to test and maintain. Moreover, if you’re using or consuming someone else’s API, you needn’t learn/decipher the entire code’s working, rather you can just plug in the API and use it. That reduces complexity to a great extent. Reason #6: Business Logic comes first API driven architecture allows developers to focus on the Business Logic, rather than having to worry about structuring the application. The initial API structure is all that needs to be planned out, after which each team goes forth and develops the individual APIs. This greatly reduces development time as well. Reason #7: IoT loves APIs API architecture makes for a great way to build IoT applications, as IoT needs a great deal of scalability. An application that is built on a foundation of APIs is a dream for IoT developers as devices can be easily connected to the mother app. I expect everything to be connected via APIs in the next 5 years. If it doesn’t happen, you can always get back at me in the comments section! ;) Reason #8: APIs and DevOps are a match made in Heaven APIs allow for a more streamlined deployment pipeline, while also eliminating the production of duplicate assets by development teams. Moreover, deployments can reach production a lot faster through these slick pipelines, thus increasing efficiency and reducing costs by a great deal. The merger of DevOps and API driven architecture, however, is not a walk in the park, as it requires a change in mindset. Teams need to change culturally, to become enablers of reusable, self-service consumption. The other side of the coin Well, there’s always two sides to the coin, and there are some drawbacks to API driven architecture. For starters, you’ll have APIs all over the place! While that was the point in the first place, it becomes really tedious to manage all those APIs. Secondly, when you have things running in parallel, you require a lot of processing power - more cores, more infrastructure. Another important issue is regarding security. With so many cyber attacks, and privacy breaches, an API driven architecture only invites trouble with more doors for hackers to open. So apart from the above flipside, those were some of the reasons I could think of, as to why Architects would be interested in an API driven architecture. APIs give customers, i.e both internal and external stakeholders, the freedom to leverage enterprise’s assets, while customizing as required. In a way, APIs aren’t just ways to offer integration and connectivity for large enterprise apps. Rather, they should be looked at as a way to drive faster and more modern software architecture and delivery. What are web developers favorite front-end tools? The best backend tools in web development The 10 most common types of DoS attacks you need to know
Read more
  • 0
  • 0
  • 40172
Modal Close icon
Modal Close icon