
Virtual Switching in an Era of Advanced Edges
Justin Pettit Jesse Gross Ben Pfaff Martin Casado

jpettit@nicira.com jesse@nicira.com blp@nicira.com casado@nicira.com
Nicira Networks, Palo Alto, CA, 650 473-9777

Simon Crosby
simon.crosby@citrix.com

Citrix Systems, Ft. Lauderdale, FL, 954 267-3000

Abstract—CPU virtualization has evolved rapidly over
the last decade, but virtual networks have lagged behind.
The greater context and ability to apply policies early
make edge switching attractive. However, the perception
of a lack of features and high CPU utilization can cause
it to be prematurely dismissed. Advanced edge switches,
such as Open vSwitch, answer many of the shortcomings
in simple hypervisor bridges. We revisit the role of edge
switching in light of these new options that have capabilities
formerly only available in high-end hardware switches. We
find that edge switching provides an attractive solution in
many environments. As features are added and the ability
to offload more to hardware improves, these advanced edge
switches will become even more compelling.

I. INTRODUCTION

Compute virtualization is having a profound effect on
networking. It challenges the traditional architecture by
creating a new access layer within the end-host, and
by enabling end-host migration, joint tenancy of shared
physical infrastructure, and non-disruptive failover be-
tween failure domains (such as different subnets). It also
promises to enable new paradigms within networking by
providing richer edge semantics, such as host movement
events and address assignments.

Traditional networking presents many adoption hur-
dles to compute virtualization. Classic IP does not sup-
port mobility in a scalable manner. Flat networks such as
Ethernet do not scale without segmenting into multiple
logical subnets, generally through VLANs. Network
configuration state such as isolation, QoS, and security
policies does not dynamically adapt to network topology
changes. Thus, not only does virtual machine (VM)
migration break network configuration, physical network
policies still demand per-box configuration within cloud
environments – a far cry from the resource pool model
which is so common in scale-out cloud deployments.
New protocols such as Trill [1] address some of these
issues, but still fail to meet all of the challenges posed
by virtualization, such as managing end-to-end configu-
ration state during mobility.

Over the last few years, both academia and industry
have proposed approaches to better adapt networks to

virtual environments. In general, these proposals add
additional context to packets, so that the network can
begin enforcing forwarding and policy over the logical
realm.

Network architecture must change in two ways to
accomplish this. First, network elements must be able to
identify the logical context. This can be accomplished
by adding or overloading a tag in a packet header to
identify a virtual machine or a virtual network. Second,
the network must adapt to changes in the virtualization
layer, either reacting to changes inferred from network
activity or to signals from the virtualization layer.

The existing approaches to making these changes can
be characterized by the network entity that does the first
lookup over the logical context. In one approach, the
end-host implements the virtual network control logic
and the hypervisor forwards packets [2], [3], [4]. In the
other approach, packets immediately pass to the first-hop
switch, bypassing the end-host’s networking logic [5],
[6]. Both approaches can use advanced NIC (Network
Interface Card) features for acceleration.

The rationale for performing packet lookup and policy
enforcement at the first hop switch is simple: switches
already contain specialized hardware to enforce complex
network functions at wire speeds. Thus, much of the
recent public discourse and standardization efforts have
focused on this approach.

However, the increase in core count, processor speed,
and the availability of NICs with on-board network logic,
coupled with the flexibility of software makes switching
at the end-host an attractive alternative. Yet, little has
been written about the relative merits of this approach.

In this paper, we draw on our experiences imple-
menting and deploying Open vSwitch [4] to present the
case for edge-based switching. It is not our intention to
argue that this is preferable to other approaches; there
are good arguments on either side. Rather, we focus on
the implications of virtual switch design, and discuss
how developments in NIC technology will continue to
address performance and cost concerns. We believe that
the combination of software switching with hardware



Fig. 1. Structure of a virtual network.

offload (either in the NIC or first-hop switch), strikes
a practical balance between flexibility and performance.

We construct the discussion as follows. The next
section provides some background on the emergence of
the virtual networking layer. Section III discusses switch
design within the hypervisor, using Open vSwitch as a
concrete example. We then discuss cost and performance
issues in Section IV. Section V looks at alternatives to
edge switching, followed by speculation about future
trends in Section VI. We conclude in Section VII.

II. EVOLUTION OF THE EDGE

On any particular virtualized server, the virtual net-
work resources of VMs must share a limited number of
physical network interfaces. In commodity hypervisors,
an individual VM has one or more virtual network inter-
face cards (VIFs). The network traffic on any given VIF
is bridged by the hypervisor, using software or hardware
or both, to a physical network interface (PIF). Figure 1
shows how physical and virtual network resources are
related.

The 80x86 hypervisors introduced in the late 1990s
implemented simple network bridges in software [7].
These bridges had no network manageability features
and no ability to apply policies to traffic. For this pur-
pose, the most troublesome traffic was that between VMs
on the same physical host. This traffic passed directly
from VM to VM, without ever traveling over a physical
wire, so network administrators had no opportunity to
monitor or control it.

This drawback was only a minor issue at the time,
because the low degree of server consolidation meant
that the complexity of virtual networks was limited.
Since then, however, the number of VMs per server
has increased greatly, and now 40 or more VMs on
a host is not uncommon. At this scale, network and
server administrators must have tools to manage and
view virtual networks.

This paper discusses the advanced edge switch ap-
proach to solving this virtual network management prob-

lem. This approach takes advantage of the unique insight
available to a hypervisor bridge, since as a hypervisor
component it can directly associate network packets
with VMs and their configuration. These switches add
features for visibility and control formerly found only
in high-end enterprise switches. They increase visibility
into inter-VM traffic through standard methods such as
NetFlow and mirroring. Advanced edge switches also
implement traffic policies to enforce security and quality-
of-service requirements.

To make management of numerous switches practi-
cal, advanced edge switches support centralized policy
configuration. This allows administrators to manage a
collection of bridges on separate hypervisors as if it
were a single distributed virtual switch. Policies and
configuration are centrally applied to virtual interfaces
and migrate with their VMs.

Advanced edge switches can use NIC features that
improve performance and latency, such as TCP seg-
mentation and checksum offloading now available even
in commodity cards. More advanced technologies such
as support for offloading GRE and IPsec tunnels are
becoming available, while SR-IOV NICs allow VMs to
directly send and receive packets.

Advanced edge switches are making inroads in the
latest generation of hypervisors, as the VMware vSwitch,
Cisco Nexus 1000V, and Open vSwitch. The following
section highlights Open vSwitch, an open source virtual
switch containing many of the advanced features that we
feel define this new generation of edge switches.

III. OPEN VSWITCH

Overview

Open vSwitch is a multilayer virtual switch designed
with flexibility and portability in mind. It supports the
features required of an advanced edge switch: visibility
into the flow of traffic through NetFlow, sFlow, and
mirroring (SPAN and RSPAN); fine-grained ACLs (Ac-
cess Control Lists) and QoS (Quality-of-Service) policies
over a 12-tuple of L2 through L4 headers; and support
for centralized control. It also provides port bonding,
GRE and IPsec tunneling, and per-VM traffic policing.

The Open vSwitch architecture has been previously
described [8]. Since then, a configuration database has
been introduced, which allows for the use of multi-
ple simultaneous front-ends. The primary interfaces use
JSON-RPC to communicate over local sockets on the
system or to remote systems through a SSL tunnel.1 We
anticipate adding other front-ends, including an IOS-like
CLI, SNMP, and NETCONF.

1This remote interface will likely be standardized as the OpenFlow
switch management protocol in the near future. Combined with the
already defined datapath control protocol, the pair would comprise the
OpenFlow protocol suite.

2



Fig. 2. Open vSwitch integration with XenServer. Each unprivileged
virtual machine (DomU) has one or more virtual network interfaces
(VIFs). VIFs communicate with the Open vSwitch “fast path” kernel
module ovs_mod running in the control VM (Dom0). The kernel
module depends on the userspace ovs-vswitchd “slow path,” which
also implements the OpenFlow and configuration database protocols.
XAPI, the XenServer management stack, also runs in Dom0 userspace.

Open vSwitch is backwards-compatible with the
Linux bridge, which many Linux-based hypervisors use
for their edge switch. This allows it to be a drop-in
replacement in many virtual environments. It is currently
being used in deployments based on Xen, XenServer,
KVM, and VirtualBox. The Xen Cloud Platform and
upcoming versions of XenServer will ship with Open
vSwitch as the default switch.

Open vSwitch is also being ported to non-Linux hy-
pervisors and hardware switches, due to its commercial-
friendly license, modular design, and increasing feature
set.

Integration with XenServer

Open vSwitch works seamlessly with XenServer, as
shown in Figure 2. As mentioned earlier, future versions
of XenServer will ship with Open vSwitch as the default.
It is also fully compatible with XenServer 5.6, the
currently shipping version.

XenServer is built around a programmatic interface
known as XAPI [9] (XenServer API). XAPI is respon-
sible for managing all aspects of a XenServer, including
VMs, storage, pools, and networking. XAPI provides an
external interface for configuring the system as well as
a plug-in architecture that allows applications to be built
around XenServer events.

XAPI notifies Open vSwitch of events that may be
of interest. The most important of these are related to
network configuration. Internal and external networks
may be created at any time. External networks sup-
port additional configuration such as port bonding and
VLANs. These networks are essentially learning do-
mains for which virtual interfaces may be attached.

XAPI notifies Open vSwitch when bridges should
be created and interfaces should be attached to them.
When it receives such a notification, Open vSwitch
queries XAPI to determine greater context about what is
being requested. For example, when a virtual interface
is attached to a bridge, it determines the VM associated
with it. Open vSwitch stores this information in its con-
figuration database, which notifies any remote listeners,
such as a central controller.

Centralized Control

A common component of advanced edge switches is
the ability to be centrally managed. Open vSwitch pro-
vides this through support of the OpenFlow [10] protocol
suite. OpenFlow is an open standard that permits switch
configuration and dataplane manipulation to be managed
in a centralized manner.

At Synergy 2010 [11], Citrix demonstrated an ap-
plication that treats all the Open vSwitches within a
XenServer pool as a single distributed virtual switch.
It supports the ability to implement policies over the
visibility, ACL, and traffic policing support outlined
earlier.

These policies may be defined over pools, hypervisors,
VMs, and virtual interfaces in a cascading manner.
Appropriate policies are generated and attached to virtual
interfaces. As VMs migrate around the network, the poli-
cies assigned to their virtual interfaces follow them. Due
to the tight integration with XenServer, Open vSwitch is
able to work in tandem with the control application to
enforce these policies.

IV. IMPLICATIONS OF END-HOST SWITCHING

In this section, we look at the implications of end-
host switching. We focus on issues of cost, performance,
visibility, and control associated with such an approach.

Cost

Advanced edge switching is primarily a software
feature. Deploying it requires installing software in the
hypervisor layer (assuming it is not installed by default),
and upgrades require only a software update.

Some deployments of advanced edge switches may
benefit from purchasing and deploying advanced NICs
to increase performance. We expect these NIC features to
naturally migrate into lower-end hardware over time, as
has happened with hardware checksumming and other
features once considered advanced. As edge switches
continue to add new features, some of these may not
be initially supported in hardware, but the switch can
fall back to software-only forwarding until a newer NIC
is available.

Otherwise, deployment of advanced edge switching
has minimal hardware cost. Implementation of advanced

3



edge switching using a flow-based protocol, such as
OpenFlow, requires adding an extra server to the network
to act as the controller. Depending on deployment size,
a VM may be suitable for use as a controller.

Performance

Edge switches have been demonstrated to be capa-
ble of 40 Gbps or higher switching performance [12].
However, raw forwarding rates for edge switches can
be deceptive, since CPU cycles spent switching packets
are CPU cycles that could be used elsewhere. An edge
switch’s greatest strength is in VM-to-VM traffic, which
never needs to hit the wire. The communications path
is defined by the memory interface, with its high band-
width, low latency, and negligible error rate, rather than
network capabilities. Throughput is higher, errors due to
corruption, congestion, and link failure are avoided, and
computing checksums is unnecessary.

The CPU cost of switching at the edge can be
minimized by offloading some or all of the work to
the NIC. Already common techniques such as TCP
segmentation offloading (TSO) provide some assistance,
while newer methods such as SR-IOV allow virtual
machines to directly access the hardware, completely
avoiding any CPU load from switching. Future increases
in performance and newer types of offloading will further
diminish the impact of network processing on the end
host. Section VI includes a discussion of future direc-
tions for NIC offloading.

The edge’s visibility into the source of virtual network
traffic gives it the ability to affect traffic before it enters
the network, protecting oversubscribed uplinks. It is
particularly important to be able to throttle traffic for
untrusted VMs, such as those in a commercial cloud
environment.

Visibility

Traditional hypervisor switches provide network ad-
ministrators very little insight into the traffic that flows
through them. As a result, it is logical to use hardware
switches for monitoring, but VM-to-VM traffic that does
not pass over a physical wire cannot be tracked this way.

Advanced edge switches provide monitoring tools
without a need for high-end physical switches. For
example, Open vSwitch supports standard interfaces for
monitoring tools, including NetFlow, sFlow, and port
mirroring (SPAN and RSPAN). Software switches can
inspect a diverse set of packet headers in order to gen-
erate detailed statistics for nearly any protocol. Adding
support for new types of traffic requires only a software
update.

Independent of the capabilities of different pieces of
hardware and software, some locations are better suited
to collecting information than others. The closer the

measurement point is to the component being measured,
the richer the information available, as once data has
been aggregated or removed it cannot be recovered. An
edge switch directly interacts with all virtual machines
and can gather any data it needs without intermediate
layers or inferences. In contrast, hardware switches must
rely on a hypervisor component for certain types of data
or go without that information. A common example is
the switch ingress port: packets must be explicitly tagged
with the port or else it must be inferred from the MAC
address, a dangerous proposition given untrusted hosts.

Control

Managing edge switches is potentially a daunting task.
Instead of simply configuring a group of core switches
within the network, each edge becomes another network
device that needs to be maintained. As mentioned earlier,
advanced edge switches provide methods for remote
configuration, which can make these disparate switches
appear as a single distributed virtual switch.

Given the visibility advantages of the edge described
in the previous section, these switches are in a prime
position to enforce network policy. The available rich
sources of information give network administrators the
ability to make fine-grained rules for handling traffic. In
addition, by applying policy at the edge of the network it
is possible to drop unwanted traffic as soon as possible,
avoiding wasting the resources of additional network
elements.

Advanced edge switches run on general-purpose com-
puting platforms with large amounts of memory, en-
abling them to support a very large number of ACL
rules of any form. While complex sets of rules may
have a performance impact, it is possible to tailor the
expressiveness, throughput, and cost of a set of ACLs to
the needs of a particular application.

V. RELATED WORK

Advanced edge switching solves the problem of sepa-
ration of traffic on the virtual network from the policies
of the physical network, by importing the network’s
policies into the virtual network. It is also possible to
take the opposite approach: to export the virtual traffic
into the physical network.

The latter approach is exemplified by VEPA [13]
(Virtual Ethernet Port Aggregator), which changes the
virtual bridge to forward all traffic that originates from a
VM to the adjacent bridge, that is, the first-hop physical
switch. This is a simple change to existing bridges in
hypervisors.2 In VEPA, the adjacent bridge applies the
physical network filtering and monitoring policies. When
traffic between VMs in a single physical server is sent

2A proposed patch to add VEPA support to the Linux kernel bridge
added or changed only 154 lines of code [14].

4



Fig. 3. Path of a packet from VM 1 to VM 2 in hairpin switching: (1)
VM 1 sends the packet over a VIF to the hypervisor, (2) the hypervisor
passes the packet to the adjacent bridge, (3) the bridge passes the packet
back to the hypervisor, (4) the hypervisor delivers the packet to VM 2.

to the adjacent bridge, it then sends that traffic back
to the server across the same logical link on which it
arrived, as shown in Figure 3. This hairpin switching
phenomenon is characteristic of the approach, so we
adopt it here as the general term that includes VEPA
and similar solutions, such as VN-Link from Cisco [6].

Sending packets off-box for processing allows the
end-host to be simpler. Processing of packet headers is
avoided and NICs can utilize low-cost components, since
advanced functionality is handled by the adjacent bridge.
If advanced NICs are used, SR-IOV makes moving
packets from VMs to the adjacent bridge even more
efficient by bypassing the hypervisor altogether.

Without the use of a technology such as SR-IOV,
VEPA will have similar performance to an edge switch
for off-box traffic. However, VM-to-VM traffic will
tend to be worse, since it must traverse the physical
link. In addition to throughput limitations and potential
congestion, performance may be affected by the need to
effectively handle twice as many packets. Even though
no actual switching happens in the hypervisor these
packets still must be copied to and from the network
card, have their existence signaled with interrupts, and
incur other overhead associate with actually sending and
receiving packets.

Figures 4 and 5 show the effective throughput that
Open vSwitch achieves for various flow sizes versus
VEPA on the same hardware. The measurements were
executed using NetPIPE 3.7.1 on Debian 5.0.5 VMs
within Citrix XenServer 5.6.0. For the off-box test in
Figure 5, Ubuntu Server 10.04 was running on bare-
metal. VEPA support was based on the previously men-
tioned patch applied to the XenServer bridge source.
The hairpin switch was a Broadcom Triumph-2 system
with the MAC put into line loopback mode. All off-box
communication was done over a 1 Gbps link.

Hairpin switching reduces the number of switching el-

1 10 100 1000 10000 100000

Transfer size (bytes)

0

2000

4000

6000

T
ra

n
sf

er
 r

a
te

 (
M

b
p

s)

Fig. 4. Throughput versus flow size in XenServer virtual machines
on the same host with Open vSwitch (solid) and VEPA (dotted). An
advantage of edge switching is that the hypervisor does not send traffic
off-box and can avoid the overhead of actually handling every packet
twice.

1 10 100 1000 10000 100000

Transfer size (bytes)

0

200

400

600

800

T
ra

n
sf

er
 r

a
te

 (
M

b
p

s)

Fig. 5. Throughput versus flow size in XenServer virtual machine and
remote bare-metal host with Open vSwitch (solid) and VEPA (dotted).
Performance was roughly equivalent across all transfer sizes.

ements within the network. In the absence of centralized
configuration of edge switches, this eases configuration
for the network administrator. It also makes configura-
tion consistent for networks that use a single source for
their equipment.

Some hairpin solutions encapsulate frames sent to the
first-hop switch with an additional tag header, e.g. VEPA
provides the option of using S-Tag and VN-Link defines
the new VNTag header. The tag provides additional
context about the source of the packet, in particular the
virtual ingress port. Without this information, the switch
must rely on fields in the packet header, such as the
source MAC address, which are easily spoofed by a
malicious VM.

Tagging protocols introduce new issues of their own.
A tag distinguishes contexts, but it does not say anything
about those contexts. Most network policies cannot be
enforced accurately without more specific information,
so extra data (port profiles) must be distributed and kept
up-to-date over additional protocols. The form of this
information is not yet standardized, so users may be tied
to a single vendor.

Besides this inherent issue, the specific proposals for
tagging protocols have weaknesses of their own. Tags

5



in VNTag and S-Channel are only 12 bits wide [15],
[13], which is not enough to uniquely identify a VM
within a scope broader than a server rack. This limits
its usefulness beyond the first-hop switch. S-Channel
tagging additionally does not not support multicast or
broadcast across tags, which can potentially increase the
overhead of sending packets to multiple guests. Tags may
also introduce problems with mobility, even across ports
in a single switch.

Hairpinning effectively turns an edge switch into an
aggregation device. The first-hop switch must then scale
to support an order of magnitude or more greater number
of switch interfaces with features enabled. The hardware
resources of top of rack switches, primarily designed
to handle approximately 48 interfaces, may prove to be
insufficient for the services the user wished to enable
on a particular VM interface. Consider ACL rules for
example: switch hardware is often constrained to about
4000 rules. This number may be adequate to define
similar policies across most members of the network.
However, it may become constraining if fine-grained
policies are needed for each guest. For example, a switch
with 48 physical ports and 20 VMs per port would allow
roughly 4 rules per VM.

Hairpin switching is an attractive solution in envi-
ronments that need to apply similar policies over all
clients in the network or enforce them in aggregate.
Edge switches provide more flexibility and fine-grained
control at the possible expense of end-host CPU cycles.
Fortunately, the approaches are not mutually exclusive
and most environments will likely find that a combina-
tion of the two provides the best solution.

VI. FUTURE

We predict that virtual networking as a field will
continue to rapidly evolve as both software and hardware
shift away from the model based on a more traditional
physical network. We have already seen the beginning
of this trend with software switches becoming more
sophisticated. It will only accelerate as the line between
the hardware switches used for physical networks and
the software switches in virtual networks begins to blur.

As the trend continues, virtual switches will add
more features that are currently available only in higher-
end hardware switches. Current virtual switches support
management tools such as NetFlow and ACLs. The
next generation will add SNMP, NETCONF, a standard
command line interface, and other features that will
make software and hardware switches indistinguishable.
Given the naturally faster pace of software development
compared to hardware, parity will be reached before
long.

The question of edge networking versus switching
at the first hop is often framed as a debate between

software and hardware. In reality, the two issues are
orthogonal. Hardware has long been an accepted com-
ponent of “software” switches, via checksum offloading,
TCP segmentation offloading, and other acceleration
features of NICs that are now common even in low-end
computers. These provide a good blend of flexibility and
performance: the speed of hardware under the control of
software at the edge of the network where there is the
most context.

Network cards are adding new types of offloading
that are particularly suited to the types of workloads
encountered with virtualization. Intel 10 GbE NICs [16],
for example, can filter and sort packets into queues based
on a variety of the L2, L3, and L4 header fields used
by monitoring tools. Switch software can set up these
programmable filters to accelerate forwarding taking
place in the hypervisor. While it is unlikely that all
traffic can be handled in hardware due to limitations in
matching flexibility and the number of rules and queues,
it is possible for the switch software to trade performance
against flexibility as needed based on the application.
The most active traffic flows can often be handled in
hardware, leaving the software switch to deal with the
edge cases.

Network cards offered by Netronome [17] go a step
further by offering a fully programmable network flow
processing engine in the card. These allow the complete
set of rules to be expressed and pushed down into
the hardware. Along with I/O virtualization that allows
virtual machines to directly access a slice of the physical
hardware, all packet processing can be done without the
help of the hypervisor. The NIC does the heavy lifting,
but the hypervisor must still provide the management
interfaces and knowledge of the system that is used to
configure the hardware.

As more advanced forms of offloading become avail-
able in networking cards, virtual edge switches will be
able to balance the capabilities of software and hardware
dynamically based on the application and available re-
sources. These features become available in higher end
network cards first, but they will trickle down over time.
A hybrid stack of hardware and software aids in this
process because it is possible to balance performance
with cost and upgrade while maintaining a consistent
control plane.

Just as hardware is fusing with software at the edge
of the network, platforms designed for virtualization are
moving into the core. Several switch vendors are cur-
rently porting Open vSwitch to their hardware platforms.
This will provide a unified control interface throughout
the network. Since the switches included in hypervisors
have generally been custom-built for that platform, there
was previously very little commonality with hardware
switches. As the relationship between software edge

6



switches and physical first-hop switches is currently
asymmetric, it is not a large leap to something like
VEPA. However, with switches like Open vSwitch and
the Cisco Nexus 1000V providing a common manage-
ment interface, the disadvantages of having very different
switching abstractions are much greater. As long as any
policy must be applied at the edge (as with untrusted
tenants), it is better to be able to use a consistent set of
management tools if at all possible.

VII. CONCLUSION

CPU virtualization has evolved rapidly over the last
decade, but virtual networks have lagged behind. The
switches that have long shipped in hypervisors were
often little more than slightly modified learning bridges.
They lacked even basic control and visibility features
expected by network administrators. Advanced edge
switches, such as Open vSwitch, answer many of their
shortcomings and provide features previously only avail-
able in high-end hardware switches.

The introduction of these advanced edges changes the
virtualized networking landscape. Having reached near
parity with their hardware brethren, a fresh look at the
relative merits of each approach is warranted. Hairpin
switching can offer performance benefits, especially in
situations with little VM-to-VM traffic and heavy policy
requirements. Yet with their greater context, early en-
forcement of policies, and ability to be combined with
other edges as a single distributed switch, the new gen-
eration of edge switches has many compelling features.
Advances in NIC hardware will reduce the performance
impact of edge switching making it appealing in even
more environments.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Andrew Lambeth,
Paul Fazzone, and Hao Zheng.

REFERENCES

[1] J. Touch and R. Perlman, “Transparent Interconnection of Lots
of Links (TRILL): Problem and applicability statement,” RFC
5556, May 2009.

[2] VMware Inc., “Features of VMware vNetwork Virtual Dis-
tributed Switch,” http://www.vmware.com/products/vnetwork-
distributed-switch/features.html, May 2010.

[3] Cisco, “Nexus 1000V Series Switches,” http://www.cisco.com/
en/US/products/ps9902, Jul. 2009.

[4] Nicira Networks, “Open vSwitch: An open virtual switch,” http://
openvswitch.org/, May 2010.

[5] P. Congdon, “Virtual Ethernet Port Aggregator Standards Body
Discussion,” http://www.ieee802.org/1/files/public/docs2008/
new-congdon-vepa-1108-v01.pdf, Nov. 2008.

[6] “Cisco VN-Link virtual machine aware networking,”
http://cisco.biz/en/US/prod/collateral/switches/ps9441/ps9902/
at_a_glance_c45-532467.pdf, April 2009.

[7] R. Malekzadeh, “VMware for Linux Networking Support,”
http://web.archive.org/web/19991117164603/vmware.com/
support/networking.html, 1999.

[8] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker, “Extending networking into the virtualization layer,”
in HotNets, 2009.

[9] Citrix Systems, “Overview of the XenServer API,”
http://docs.vmd.citrix.com/XenServer/5.6.0/1.0/en_gb/
sdk.html#sdk_overview, May 2010.

[10] OpenFlow Consortium, “OpenFlow specification, version 1.0.0,”
http://www.openflowswitch.org/wp/documents/, Dec. 2009.

[11] Synergy. San Francisco, CA: Citrix Systems, May 2010.
[12] VMware Inc., “Achieve breakthrough performance with

enterprise application deployment,” http://www.vmware.com/
solutions/business-critical-apps/performance.html, May 2010.

[13] Hewlett-Packard Corp., IBM et al., “Edge virtual bridge proposal,
version 0, rev 0.1,” IEEE, Tech. Rep., April 2010.

[14] A. Fischer, “net/bridge: add basic VEPA support,” http://
lwn.net/Articles/337547/, June 2009.

[15] J. Pelissier, “Network interface virtualization review,”
http://www.ieee802.org/1/files/public/docs2009/new-dcb-
pelissier-NIV-Review-0109.pdf, Jan 2009.

[16] “Intel 82599 10 GbE contoller datasheet,” http://
download.intel.com/design/network/datashts/82599_
datasheet.pdf, April 2010.

[17] Netronome Systems, Inc., “Netronome network flow processors,”
http://www.netronome.com/pages/network-flow-processors, May
2010.

7


