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Abstract
Background: Biological route for synthesis of copper nanoparticles (CuNPs) with therapeutic potential is a major 

challenge. In this study, CuNPs were synthesized by D. bulbifera tuber extract (DBTE) which were further evaluated for 
antidiabetic and free radical scavenging activity. 

Methods: CuNPs synthesized by DBTE were characterized by UV-visible spectroscopy, transmission electron 
microscopy, energy dispersive spectroscopy and dynamic light scattering. CuNPs were checked for α-amylase 
and α-glucosidase inhibition along with interaction studies employing fluroscence spectroscopy, circular dichroism 
spectroscopy and computational docking. DPPH, nitric oxide and superoxide radical scavenging activities of CuNPs 
were also checked.

Results: Spherical monodispersed CuNPs were synthesized within 5 h that was indicated by a colour change from 
pale blue to brown. Majority of the nanoparticles synthesized were found to be between 12 to 16 nm as showed in DLS 
which grew till a final size of 86 to 126 nm as indicated in TEM. Bioreduced CuNPs showed 38.70 ± 1.45% and 34.72 
± 1.22% inhibition against porcine and murine pancreatic amylase, respectively with an uncompetitive mode that was 
further confirmed by docking studies. Fluorescence spectroscopy confirmed the interaction of CuNPs to the enzyme via 
Trp residues while CD spectra indicated the structural and conformational changes on binding of CuNPs to the enzyme. 
CuNPs exhibited 99.09 ± 0.15% inhibition against α-glucosidase while 90.67 ± 0.33% inhibition against murine intestinal 
glucosidase, respectively. CuNPs showed 40.81 ± 1.44%, 79.06 ± 1.02% and 48.39 ± 1.46% scavenging activity 
against DPPH, nitric oxide and superoxide radicals respectively. 

Conclusion: D.bulbifera tuber extract mediated bioreduction is most rapid route to synthesize novel CuNPs with 
promising antidiabetic and antioxidant properties. This is the first detailed report which provides intense scientific 
rationale for the use of CuNPs as nanomedicine for efficient control of T2DM and oxidative stress.
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Introduction
Diabetes Mellitus (DM) is a pathological condition, associated 

with severe physiological imbalances. It is primarily an endocrine 
and metabolic disorder characterized by chronic hyperglycemia that 
produces multiple biochemical impairments and oxidative stress [1,2].
It is estimated that there are 143 million people in the world with 
diabetes and this number will probably double by the year 2030 [3]. 
Type 2 diabetes mellitus (T2DM), known as non-insulin-dependent 
diabetes mellitus (NIDDM) is a chronic metabolic disease which is 
characterized by post prandial hyperglycemia (PPHG). Although 
recently, wide varieties of synthetic drugs are being used for the 
treatment of T2DM, most of them possess pronounced side effects in 
the long run particularly, drug resistance, hepatotoxicity, abdominal 
pain, flatulence and diarrhea [4-6]. Therefore, there is a need for a 
search of an alternative agent possessing hypoglycemic effect on T2DM. 

Attempts to identify alternative antidiabetic compounds have 
been reported where metal ions such as vanadium, zinc, manganese, 
copper, chromium, and tungsten exhibited in-vitro as well as in-
vivo antidiabetic activity [7-13]. α-glucosidase and α-amylase are 
promising drug candidates in the treatment and prevention of T2DM 
as they are involved in sugar absorption [14]. Hereby an excellent 
inhibitor would limit the absorption of dietary carbohydrates and in 

turn suppress postprandial hyperglycemia. However, reports on the 
metal nanoparticles to show antidiabetic activity are rare and it needs 
attention. Scavenging of free radicals and inhibition of α-amylase and 
α-glucosidase, are two important preventive measures of diabetes [15-
18]. Although there are reports on the relationship between metals 
and enzyme activity, only preliminary studies on relationship between 
metal nanoparticles and α-glucosidase as well as α-amylase action are 
reported [19]. Similarly there are no evidences on establishment of the 
mechanism for the antidiabetic activity by metal nanoparticles. 

Copper, a transition metal, is one of the most frequently occurring 
elements integrated into essential biochemical pathways. There are  
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number of biologically important molecules showing the catalytic 
activity or transfer processes, like oxygen transfer, and incorporating 
transition metals into their active sites [20]. Thus, copper nanoparticles 
(CuNPs) being more biocompatible, eliminates the risk for toxicity 
which is a major drawback for other metal nanoparticles with medicinal 
importance. Thus, biologically synthesized metal nanoparticles 
exhibiting diverse therapeutic potential are gaining more importance 
recently [21-27].

In view of the above background, synthesis of CuNPs employing 
medicinal plant can prove to be an efficient strategy in management 
of PPHG in T2DM as copper is known to inhibit α-amylase activity 
[28,29]. Amylase inhibition has gastrointestinal and metabolic effects 
that may aid not only in the treatment of diabetes but also to obesity 
[30]. Diabetes is a major risk factor for premature atherosclerosis 
and oxidative stress plays an important role since diabetic monocytes 
produce increased superoxide anion (O2

-) [31]. Medicinal plant 
mediated synthesis of nanoparticles on the other hand render 
biocompatibility and provides a rapid and environmentally benign 
route of synthesis [32,33]. Hereby we chose D. bulbifera which has a 
potent antidiabetic activity apart from other medicinal significances 
such as, antimicrobial, antihyperlipidemic, antitumor and anti-
inflammatory properties [34-36]. Recently we have reported synthesis 
of silver and gold nanoparticles with excellent biological applications 
using D. bulbifera [37,38].

In view of the above background, it is of immense importance 
to investigate the synthesis of copper nanoparticles (CuNPs) by D. 
bulbifera and check its antidiabetic properties. Earlier studies have 
showed electronic and optical property related chemical, biochemical 
and catalytic applications of CuNPs [39-42]. However, a systematic 
study on CuNPs against α-amylase and α-glucosidase towards the 
exploration of its antidiabetic potential followed by evaluation of 
the mode of inhibition is missing till date. Similarly, there are no 
antioxidant studies available supported by the mechanism of action. 
In this communication, we have studied the inhibitory potential of 
biogenic CuNPs against both α-amylase and α-glucosidase followed by 
study of enzyme inhibitor kinetics, ligand binding dynamics supported 
by in silico docking studies to reveal the mode of CuNPs’ inhibitory 
action in addition to antioxidant activities.

Materials and Methods
Plant material and preparation of extract

D. bulbifera tubers were collected from natural geographical 
landscapes of Nashik region, Western Ghats of Maharashtra, India, 
and were identified and authenticated by botanist from National 
Research Institute of Basic Ayurvedic Sciences, Central Council for 
Research in Ayurveda and Siddha, Department of Ayush, Ministry of 
Health and Family Welfare, Government of India, New Delhi, Nehru 
Garden, Kothrud, Pune, India assigning voucher specimen number 
860 [36]. D. bulbifera tuber extract was prepared as described in our 
previous report [38]. In short, thoroughly washed tubers were sliced 
into small pieces and shade dried for 3 days followed by blending into 
fine powder. 5 g of finely ground tuber powder was boiled with 100 mL 
of sterile distilled water for 5 min in a 300 mL Erlenmeyer flask. The 
extract obtained was filtered through Whatman filter paper No.1. The 
filtrate was collected and stored at 4°C. 

Synthesis and characterization of copper nanoparticles

5 ml of DBTE was added to 95 ml of 1 mM aqueous CuSO4.5H2O 
solution and kept under shaking condition at 150 rpm in the dark at 

40°C. Reduction of Cu2+ ions was monitored by measuring the UV-
vis spectra of the solution at regular intervals on a spectrophotometer 
(SpectraMax M5, Molecular Devices Corporation, Sunnyvale, 
CA) operated at resolution of 1 nm. Bioreduced CuNPs were 
structurally analyzed for the surface morphology and particle size 
employing transmission electron microscopy (Tecnai 12 cryo TEM, 
FEI, Netherland). Elemental analysis was carried out in the energy 
dispersive spectrometer (EDS) equipped in JEOL JSM 6360A analytical 
scanning electron microscope at an energy range 0-20 keV. The 
diffraction data for the dry CuNPs powder were recorded on a Brucker 
x-ray diffractometer using a Cu Kα (1.54 Å) source. Phase formation 
was confirmed from characteristic peaks such as (111), (200) and (220). 
Particle size analysis was carried out using the dynamic light scattering 
(Zetasizer Nano-2590, Malvern Instruments Ltd, Worcestershire, UK) in 
polysterene cuvette. 

Glycosidase inhibitory activity

Porcine pancreatic amylase inhibition assay: Amylase activity 
was assayed using chromogenic 3,5-dinitrosalicylic acid (DNSA) as 
reported earlier [43]. CuNPs (10 µg/ml) was incubated with 50 µg ml-1 
of porcine pancreatic α-amylase at 37°C for 10 min [44]. One percent 
starch was used as substrate. α-amylase without CuNPs was used as 
control. Reducing sugar was estimated using DNSA assay at A 540 nm 
and the inhibitory activity was calculated by using the formula:

% Inhibition = (A540 Control – A540 Test) / A540 Control × 100

The mode of inhibition of PPA by CuNPs was determined by using 
Michaelis–Menten and Lineweaver–Burk equations. Starch (1–5 mg 
ml-1) was incubated with CuNPs and PPA for 10 min and the residual 
enzyme activity was determined by DNSA.

Fluorescence spectrometry: Fluorescence measurements of porcine 
pancreatic α-amylase were carried out in presence and in absence of CuNPs 
and were acquired using HORIBA JobinYvonFluorolog 3 model at 37°C 
with a 1.0 cm path length quartz cuvette in 0.02 M sodium phosphate 
buffer (pH 6.9, containing 6 mM NaCl). Both excitation and emission 
slits were set at 3.0 nm. The samples were excited at 270 nm, and the 
emission spectra were recorded from 280 to 450 nm. Concentration of 
CuNPs and enzyme used were same as above.

Circular dichroism (CD) spectrometry: Structural changes in 
PPA in presence of CuNPs was checked by recording CD spectra at 
37°C on a Jasco–J–815 spectropolarimeter at a scan speed of 40 nm/
min with a response time of 1 s and a slit width of 1 nm. Quartz cell 
of 2 mm path length was used for the measurements in 190–300 nm 
range. All measurements were made at a fixed enzyme vs CuNPs 
concentration mentioned above in phosphate buffered saline. Each 
spectrum reported is an average of three successive scans. 

Molecular docking: All the docking calculations were performed 
by using Autodock 4.2 Tools. The model was first modified by adding 
all hydrogens and removal of water molecules using builder module of 
Autodock. Macromolecule was kept rigid, while all torsional bonds of 
ligands were set free to rotate. The docking results from each of the 165 
calculations were clustered on the basis of RMSD between the cartesian 
coordinates of the ligand atoms and were ranked according to the free 
energy of binding. The structure with lowest free energy of binding in 
a highly populated cluster was chosen as the optimal docking pose. 
Because the system is required to be neutral for calculations, charges 
were balanced with sufficient amount of sodium counter ions. A cubic 
box was chosen, with periodic boundary conditions. The force field 
parameters of ligand were obtained from PRODRG web server. At 
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first the system was energy minimized using steepest descent method. 
After energy minimization process, position restraint procedure was 
performed in association with NVT and NPT ensembles. An NVT 
ensemble was adopted at constant temperature of 300  K with time 
duration of 100 ps. After stabilization of temperature an isothermal–
isobaric ensemble (NPT) was performed. In this phase a constant 
pressure of 1.0 bar was employed with time duration of 100 ps. NPT 
ensemble was finished after pressure stabilization. The Particle-Mesh 
Ewald (PME) method was used to treat the long-range electrostatic 
interaction and the cut-off method was used to treat the van der Waals 
interactions, with the cut-off distance of 1.0 nm [45-49].

Murine pancreatic and intestinal α-amylase inhibition assay: 
Crude murine enzymes were used from 10-week-old Swiss male mice 
weighing 20 gm. Entire procedure was carried out with guidelines of 
Institutional Animal Ethical Committee. The mouse was starved for 12 
h. Pancreas and small intestine tissues were excised and homogenized 
with 10 mM ice cold phosphate buffer containing 6 mM NaCl (1:10 
dilution; w/v) and appropriate amount of protease inhibitors. Tissue 
homogenates were centrifuged for 10 min at 10,000 r.p.m. and the 
supernatant was taken as a source of enzyme that was diluted so as to 
get an absorbance of 0.4 (at 280 nm) [2]. Enzyme inhibition assay was 
carried out as described above. Percentage inhibition of the samples 
against pancreatic α-amylase and small intestinal α-amylase were 
calculated.

α-glucosidase inhibitory assays: Glucosidase inhibition assay of 
CuNPs were carried out as per Ghosh et al.[2]. 100 µl of α-glucosidase 
(0.1 unit/ml) was mixed with 200 µl of CuNPs (100 µg/mL) and 
incubated for 1 h at 37°C. Initiation of enzyme action was carried 
out by addition of 10 mM p-nitrophenyl- α-D-glucopyranoside in 
100 mM phosphate buffer of pH 6.8 and stopped by adding 2 ml of 
0.1 M Na2CO3 after an incubation of 10 min at 37°C. α-Glucosidase 
activity was determined by measuring absorbance of the p-nitrophenol 
released from pNPG at 420 nm using 96-well plate reader (SpectraMax 
M5, Molecular Devices Corporation, Sunnyvale, CA). One unit of 
glucosidase activity is defined as the amount of enzyme that hydrolyzed 
1 µM of p-nitrophenyl pyranoside per minute under assay condition.

% Inhibition = (A420 Control – A420 Test) / A420 Control × 100

Crude murine intestinal α-glucosidase inhibition assay: 
Intestinal extract of Swiss mice was prepared by the above mentioned 
process which was used as source of α-glucosidase. Inhibitory activity 
against the crude murine intestinal α-glucosidase was checked using 
p-nitrophenyl- α-D-glucopyranoside as substrate as per the above 
protocol.

Free radical scavenging assays: DPPH radical scavenging activity 
was carried out by addition of 20 μl of CuNPs (100 µg/ml) to 80 μl 
of methanolic solution of 2,2- diphenyl-1-picrylhydrazyl (DPPH, 100 
μM) in 96 well plate followed by incubation for 20 min in darkness 
at room temperature [50]. Change in absorbance was measured at 
517 nm in a 96-well plate reader (SpectraMax M5, Molecular Devices 
Corporation, Sunnyvale, CA). Superoxide anion scavenging assay was 
carried out by photoactivated riboflavin method as reported earlier 
[51]. Nitric oxide scavenging activity of CuNPs was checked as per the 
report of Marcocci et al. Nitric oxide scavenging activity of CuNPs was 
checked as per the report of Marcocci et al. [52,53].

Electron spin resonance measurements: DPPH radical scavenging 
activity of CuNPs was measured using previously described method 
[54]. An ethanolic solution of 200 µl of CuNPs (100 µg) was added to 
800 µl of DPPH (100 µM) in ethanol solution. The solutions were then 

transferred into a quartz capillary tube and fitted into the cavity of the 
electron spin resonance (ESR) spectrometer, after vigorous mixing for 
10 s. The X-band (9.44 GHz) ESR trace of the DPPH•spin adduct was 
measured using JES - FA200 ESR spectrometer (JEOL, Tokyo, Japan) 
exactly 1 min later at 25°C. Measurement conditions: central field 
3475 G, modulation frequency 100 kHz, modulation amplitude 2 G, 
microwave power 5 mW, gain 6.3×105 and sweep time of 2 min.

Results
UV-visible spectroscopy

UV-visible spectroscopy is widely used for examining the size 
and shape controlled synthesis of metal nanoparticles in aqueous 
suspensions. Initially the color of the salt solution was pale blue which 
on addition of DBTE gradually changed to colorless and then to light 
brown and finally to intense brown which confirmed the synthesis of 
CuNPs (Figure 1). Absorption bands in the ultra violet-visible range 
is exhibited by colloidal dispersion of metal due to the excitation of 
plasmon resonance or interband transition which are characteristic 
property of the metallic nature of the particle. The corresponding 
UV-vis absorption spectrum of bioreduced CuNPs demonstrated a 
featureless Mie scattering profile without the appearance of an apparent 
surface plasmon band. However, the intensity of the spectra increased 
with time till 5 h indicating the completion of the synthesis.

TEM, EDS, XRD, DLS analysis

Morphological analysis of the bioreduced CuNPs employing 
TEM revealed spherical shape of different sizes (Figure 2). Very 
small nanoparticles were observed along with larger ones. All the 
nanoparticles were found to be embedded in the biomass. Larger 
nanoparticles were lesser in number which were in a range between 
86 and 126 nm (Figure 2c). Spot EDS profile confirmed the presence 
of elemental copper in the bioreduced nanoparticles (Figure 3a). The 
XRD pattern of CuNPs is shown in Figure 3b exhibited peaks, which 
when compared with the standard data released by Joint Committee 
for Powder Diffraction Standard (JCPDS), matched with copper (card 
no 04-0784). The peaks at 2θ values ~ 43, 50 and 74 degree correspond 
to the copper crystallite planes (111), (200), (220) respectively. The 
CuNPs had FCC crystal structure. Moreover, no extra peaks were 

Figure 1: UV-visible spectra of CuNPs synthesized by DBTE. 5 mL of DBTE 
was added to 95 mL of 10-3 M aqueous CuSO4.5H2O solution and kept under 
shaking condition at 150 rpm in the dark at 40°C. (a) Before bioreduction and 
(b) after bioreduction.
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study revealed a decrease in both apparent Km and Vmax values in case 
of the enzyme activity of PPA in presence of CuNPs. The uninhibited 
enzyme substrate kinetic analysis showed a Km value of 13.38 mg while 
a Vmax of 1.17 µM/min. However, in presence of CuNPs the Km value 
decreased to 5.98 and Vmax decreased to 0.61 µM/min. Thus, the mode 
of inhibition of PPA by CuNPs being uncompetitive for starch is novel 
(Table 1).

Fluorescence studies

A strong intrinsic UV A fluorescence from α-amylase is attributed 
to the presence of Trp residue at various domains like catalytic site 
and calcium binding site of the enzyme (Figure 7). Thus quenching 
of intrinsic UV A fluorescence signifies direct interaction of CuNPs 
with Trp residues present in α-amylase domains. Figure 7 shows decay 
in the fluorescence intensity of α-amylase in the presence of CuNPs 
at different time interval. This quenching of Trp fluorescence can be 
associated with the dynamic interaction of CuNPs with α-amylase 
via Trp residues which might be the underlying principle of enzyme 
inhibition mechanism exhibited by CuNPs.

Circular dichroism studies

Circular dichroism (CD) studies revealed the nature of interaction 
of α-amylase with CuNPs (Figure 8). CD spectroscopy gave detailed 
information about the secondary structure of enzyme in presence and 
in absence of CuNPs. Two peaks minima of α-amylase at 208 and 222 
nm, are attributed to a high α-helical content of enzyme. Any alteration 
in the conformational changes of α-amylase can be reflected in CD 
spectra, either as a blue shift or diminished minimum. A diminish in 
negative humped peaks at 208 nm and 222 nm in presence of CuNPs 
was observed when compared with the control enzyme (Figure 8). This 
clearly indicated a probable interaction of CuNPs with the α-helix of 
enzyme, resulting in conformational change in secondary structure 
of the enzyme. This observation along with enzyme inhibition assay 
studies suggest a possible binding interaction of CuNPs with α-amylase. 

α-glucosidase inhibition assays 

CuNPs exhibited extremely potent inhibitory activity against 
both pure α-glucosidase as well as crude murine intestinal glucosidase 
(Figure 9). CuNPs showed 99.09 ± 0.15 % inhibition of α-glucosidase 
while acarbose showed a slightly lower inhibition equivalent to 98.65 ± 
0.84%. However, CuNPs (90.67 ± 0.33%) showed significantly superior 

Figure 2: Transmission electron micrographs of the bioreduced CuNPs at 
different magnifications. (a) Monodispersed spherical nanoparticles with inset 
bar equivalent to 1000 nm, (b)Isolated nano spheres with inset bar equivalent 
to 500 nm, (c) and (d) Nanoparticles ranging from 80 to 130 nm with inset bar 
equivalent to 200 nm.

Figure 3:  (a) Representative spot EDS profile of CuNPs synthesized by DBTE; (b) Representative x-ray diffraction profile of thin film CuNPs synthesized by DBTE.
 

found in the data. This rules out the possibility of attachment of any 
trace of biological material from DBTE onto the surface of CuNPs. 
Particle size distribution employing dynamic light scattering exhibited 
the presence of particles in a range from 8 nm to 220 nm, majority 
being 12 to 16 nm (Figure 4). Bigger size might be due to capping of 
CuNPs by biomass which remained strongly associated in the close 
proximity of the nanoparticles. 

α-amylase inhibition assay

CuNPs were found to inhibit pancreatic α-amylase more 
selectively (Figure 5). Maximum inhibition was exhibited against 
porcine pancreatic α-amylase upto 38.70 ± 1.45%. DBTE synthesized 
CuNPs were found to be similarly potent as well against crude murine 
pancreatic amylase showing 34.72 ± 1.22%. However, acarbose showed 
a higher activity against amylase that was between 83 to 88%. Crude 
murine intestinal amylase was inhibited till 18.04 ± 0.82%. The effect 
of CuNPs on kinetics of PPA catalyzed hydrolysis of starch was studied 
using the double reciprocal Lineweaver–Burk plots (Figure 6). Kinetic 
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The interaction is mainly of an electrostatic nature with hydrogen 
bonds stabilizing the complex.

Free radical scavenging activity 

Bioreduced CuNPs showed 40.81 ± 1.44% of DPPH radical 
scavenging activity which was slightly lower as compared to ascorbic 
acid (51.42 ± 1.78%) (Figure 11). However in case of both nitric oxide 
and superoxide CuNPs exhibited superior activity as compared to 
ascorbic acid. In case of nitric oxide CuNPs could scavenge upto 79.06 
± 1.02% that was significantly higher than that of ascorbic acid (68.37 
± 0.99%). Similarly, ascorbic acid showed 14.11 ± 0.95% of superoxide 
scavenging activity while CuNPs showed an activity equivalent to 48.39 
± 1.46%. 

ESR study for antioxidant activity of CuNPs

Bioreduced CuNPs were tested for free radical scavenging activity 
using standard DPPH assay by ESR spectroscopy. The ESR spectrum 

Figure 4:  Particle size distribution of CuNPs synthesized by DBTE.

Figure 5: Inhibition of α-amylase by CuNPs synthesized by DBTE. The data 
is indicated as the mean ± SEM; [n = 3]. PPA-porcine pancreatic α-amylase; 
MPA-crude murine pancreatic amylase; MIA-crude murine intestinal amylase.

Cluster Sr No. Rmsd (A°) Einter (KCal•mol-1) Evdw (KCal•mol-1) Eetr (KCal•mol-1)

Cluster 1
1 1.3 ± 0.3 -523 ± 37 -39 -487
2 1.4 ± 0.1 -522 ± 43 -45 -488

Cluster 2
1 1.2 ± 0.3 -317 ± 36 -40 -453
2 1.3 ± 0.1 -542 ± 47 -39 -495

Table 1: Statistical analysis of docking results for the different runs.

activity as compared to acarbose (78.61 ± 0.80%) in case of murine 
intestinal glucosidase.

Docking studies 

Clusters are sorted according to average intermolecular energy. The 
non-bonded energies were calculated with the OPLS parameters. The 
electrostatic energy was calculated with an epsilon value of 1. Copper is 
coordinated by two cysteines of a CxxC motif, expands its co-ordination 
sphere by binding an exogenous ligand. Copper tends to move from 
one loop to another and is consistent with the physiological direction of 
transfer, with concomitant structural rearrangements (Figure 10). The 
observed in silico data is in agreement with experimental observations. 

Figure 6: Lineweaver–Burk plot for PPA inhibition with CuNPs indicating an 
uncompetitive mode of inhibition with starch as substrate. The data is indicated 
as the mean ± SEM; [n = 3].

Figure 7: Fluorescence spectra showing the temporal decay of tryptophan 
fluorescence of PPA in the presence of CuNPs. Inset showing the first order 
exponential decay fit for I/I0 vs Incubation time (where I is the intensity of Trp 
fluorescence with different time and I0 is the intensity PPA without CuNPs). 
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which indicates that CuNPs are efficient scavenger of DPPH radicals. 

Discussion 
Although chemical methods are available for synthesis of CuNPs, 

there is a dearth of scientific literature on biogenic synthesis of CuNPs, 
particularly using medicinal plants. Hereby we report for the first time 
a novel rapid route for synthesis of CuNPs using D. bulbifera tuber 
extract. The synthesis completed within 5 h which is in accordance to 
our previous report on synthesis of AgNPs using D. bulbifera [38]. The 
bioreduced nanoparticles were monodispersed unlike the polydispersed 
CuNPs synthesized using latex of Calotropis procera L.[55]. Synthesis 
of CuNPs, indicated by development of reddish brown color was 
well in agreement with the previous report where CuNPs synthesis 
was associated with change of color from brownish red to dark 
reddish brown [40]. CuNPs are reported to typically exhibit a surface 
plasmon peak at around 560 nm [56]. However, corresponding UV-
vis absorption spectrum of freshly synthesized CuNPs demonstrated 
a featureless Mie scattering profile without appearance of an apparent 
surface plasmon band as reported reported previously [40,57-59]. 

Figure 8:  Circular dichroism spectra for PPA and PPA incubated with CuNPs.
 

Figure 9: Inhibition of α-glucosidase by CuNPs synthesized by DBTE. The 
data is indicated as the mean ± SEM; [n = 3]. MIG - crude murine intestinal 
glucosidase.

Figure 11: Scavenging of free radicals by CuNPs synthesized by DBTE. The 
data is indicated as the mean ± SEM; [n = 3].

Figure 12: ESR spectra of DPPH radicals obtained in presence of CuNPs as 
a function of time.

Figure 10: Interaction of CuNPs with PPA shown in different clusters sorted 
according to average intermolecular energy. (A) Cluster 1 and (B) Cluster 2 
binding models.

of DPPH radical taken at different incubation period in presence of 
CuNPs is shown in Figure 12. A gradual reduction in the integrated ESR 
signal intensity was observed with increase of duration of incubation, 
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Above observations might be attributed to smaller particle size [59].

We have reported high ascorbic acid content in DBTE which 
might be a probable reason for stabilization of smaller nanoparticles 
in addition to high intensity at around 330 nm attributed by oxidation 
product of ascorbic acid with simultaneous bioreduction of Cu2+ to 
CuNPs [37,57]. Metallic copper in spot EDS of bioreduced nanoparticles 
confirmed the synthesis of CuNPs [55,60]. Our results are in agreement 
with earlier reports where CuNPs synthesized by Magnolia kobus leaf 
extract showed spherical nanoparticles in a range between 50 to 250 
nm [61]. Similarly, DBTE synthesized CuNPs were found in a range 
between 86 to 126 nm. Smaller to larger nanoparticles with majority 
being 12 to 16 nm as shown in DLS studies indicates the gradual 
growth of smaller nanoparticles concurrent to the report on CuNPs 
formed by latex of Calotropis procera L. which were found in a size 
ranging from 5 to 30 nm average being 15 ± 1.7 nm [55]. Similarly in 
case of CuNPs synthesized by Euphorbia nivulia, DLS studies showed 
that the average size of CuNPs were between 12 to 16 nm [60]. Recent 
reports on synthesis of CuNPs by Magnolia kobus, Ocimum sanctum 
leaf and Syzygium aromaticum extract highlight the probable role of 
some proteins and metabolites such as terpenoids and reducing sugars 
having functional groups of amines, alcohols, ketones, aldehydes, 
and carboxylic acids in reduction of copper ions and stabilization of 
synthesized CuNPs [62-64]. Thus, earlier reports on phytochemistry of 
D. bulifera tuber can clearly justify its potential for efficient synthesis 
and stabilization of CuNPs [36,38].

Biogenic CuNPs inhibited both porcine pancreatic α-amylase as 
well as crude murine pancreatic and intestinal amylase. Hereby for the 
first time we demonstrate the potential of CuNPs as antidiabetic agents. 
Recently, it was reported that elevated concentrations of Cu2+ ions 
lead to significant inhibition of the digestive enzyme, amylase while 
an increase in the activity of antioxidant enzymes namely, superoxide 
dismutase (SOD) and glutathione-S-transferase (GST) in giant 
freshwater prawn Macrobrachium rosenbergii. Binding interactions 
of CuNPs to PPA were confirmed by fluorescence and CD spectral 
changes indicating the alterations in the native conformation of the 
protein structure [65-67]. Further, the inhibition of α-glucosidase as 
well as murine intestinal glucosidase strongly support the therapeutic 
prospects of CuNPs as enzyme inhibitors with promising antidiabetic 
properties. Cu (II) ion and its complexes were reported to exhibit 
strong α-glucosidase inhibitory activity even greater than clinically 
used acarbose in in vitro studies [19,68-71]. 

DBTE synthesized CuNPs may function as chemopreventive 
agents for efficient management of PPHG. It has been reported that 
hyperglycemia associated to chronic diabetes generates reactive oxygen 
species (ROS) leading to oxidative stress which is a key player in lipid 
peroxidation and membrane damage [72]. Prevention of oxidative 
damage with free radical scavengers and inhibition of digestive 
enzymes such as α-amylase and α-glucosidase are two important 
therapeutic strategies for prevention of diabetes [73]. DBTE reduced 
CuNPs exhibited superior antioxidant activity, which indicated its 
contribution to protection against oxidative stress which is a key player 
in progression of diabetes and its related pathophysiological conditions. 
Although reports suggest that roasted copper “Tamra Bhasma” has a 
strong antioxidant potential leading to its hepatoprotective activity, 
there are no reports on CuNPs till date. Recently, pharmacological 
investigations have been reported on the use of ‘tamra bhasma’ for free 
radical scavenging activity [74-76]. Similarly, earlier reports suggest 
that CuNPs are responsible for wound healing due its biocompatibility 
as compared to copper salts [77]. Antioxidants along with balanced 

concentrations of microelements facilitate wound healing. At the same 
time, impairment of wound healing is reported in case of diabetes 
associated hyperglycemia as well as copper deficiency [77,78]. Thus, 
our study on free radical scavenging and α-amylase and α-glucosidase 
inhibition strongly rationalize and provides the scientific evidence 
on probable mechanism underlying the wound healing properties of 
CuNPs. 

Hereby the results support the use of transition metal nanoparticles 
particularly, CuNPs as therapeutic agents towards the management of 
T2DM [78,79]. It provides considerable evidence on the antidiabetic 
promises of biogenic CuNPs, which can be potentially useful as 
preventive agents towards the initiation and development of free-
radical induced diabetes mellitus and its complications [79].

Conclusions
Rapid synthesis of monodispersed spherical CuNPs was successfully 

accomplished by D. bulbifera tuber extract. This one step, eco-friendly 
efficient process involves plant based bio-resource serving as both 
reducing as well as stabilizing agents. We report here the excellent 
inhibitory potential of the CuNPs against α-amylase and α-glucosidase 
which are considered to be significant pharmacological targets for 
treatment of T2DM. Similarly, it exhibited superior antioxidant 
activity. This is the first ever report on the α-amylase and α-glucosidase 
inhibitory activity of CuNPs synthesized by DBTE. The high potency of 
these biogenic CuNPs for radical-scavenging and glycosidase inhibitory 
activities in vitro provided strong scientific evidence for antidiabetic 
potential of CuNPs which intensely rationalize its use in therapy and 
management of T2DM.
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