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Abstract—Due to its reduced communication overhead and ro-
bustness to failures, distributed energy management is of para-
mount importance in smart grids, especially in microgrids, which
feature distributed generation (DG) and distributed storage (DS).
Distributed economic dispatch for a microgrid with high renew-
able energy penetration and demand-side management operating
in grid-connected mode is considered in this paper. To address
the intrinsically stochastic availability of renewable energy sources
(RES), a novel power scheduling approach is introduced. The ap-
proach involves the actual renewable energy as well as the energy
traded with the main grid, so that the supply–demand balance is
maintained. The optimal scheduling strategy minimizes the micro-
grid net cost, which includes DG and DS costs, utility of dispatch-
able loads, and worst-case transaction cost stemming from the un-
certainty in RES. Leveraging the dual decomposition, the opti-
mization problem formulated is solved in a distributed fashion by
the local controllers of DG, DS, and dispatchable loads. Numerical
results are reported to corroborate the effectiveness of the novel
approach.

Index Terms—Demand side management, distributed algo-
rithms, distributed energy resources, economic dispatch, energy
management, microgrids, renewable energy, robust optimization.

NOMENCLATURE

A. Indices, Numbers, and Sets

Number of scheduling periods, period
index.
Number of conventional distributed
generation (DG) units, and their index.
Number of dispatchable (class-1) loads,
load index.
Number of energy (class-2) loads, load
index.
Number of distributed storage (DS) units,
and their index.
Number of power production facilities
with renewable energy source (RES), and
facility index.
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Number of subhorizons, and subhorizon
index.
Algorithm iteration index.

Set of time periods in the scheduling
horizon.
Subhorizon for all RES facilities.

Subhorizon for RES facility .

Set of conventional DG units.

Set of dispatchable loads.

Set of energy loads.

Set of DS units.

Power output uncertainty set for all RES
facilities.
Power output uncertainty set of RES
facility .

B. Constants

Minimum and maximum power output of
conventional DG unit .
Ramp-up and ramp-down limits of
conventional DG unit .
Spinning reserve for conventional DG.

Fixed power demand of critical loads in
period .
Minimum and maximum power
consumption of load .
Minimum and maximum power
consumption of load in period .
Power consumption start and termination
times of load .
Total energy consumption of load from
start time to termination time .
Minimum and maximum (dis)charging
power of DS unit .
Minimum stored energy of DS unit in
period .
Capacity of DS unit .

Efficiency of DS unit .

Lower and upper bounds for .

Minimum and maximum forecasted power
output of RES facility in .
Minimum and maximum forecasted
total wind power of wind farm across
subhorizon .
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Minimum and maximum forecasted total
wind power of all wind farms across
subhorizon .
Purchase and selling prices; and functions
thereof.
Parameter of utility function of load .

Depth of discharge specification of DS unit
; and parameters of storage cost.

C. Uncertain Quantities

Power output from RES facility in period
.

D. Decision Variables

Power output of DG unit in period .

Power consumption of load in period .

Power consumption of load in period .

(Dis)charging power of DS unit in period
.
Stored energy of DS unit at the end of
the period .
Net power delivered to the microgrid from
the RES and storage in period .
Auxiliary variable.

Vector collecting all decision variables.

Lagrange multipliers.

Vector collecting all Lagrange multipliers.

Power production from all RES facilities in
yielding the worst-case transaction cost.

E. Functions

Cost of conventional DG unit in period
.
Utility of load in period .

Utility of load in period .

Cost of DS unit in period .

Worst transaction cost across entire
horizon.
Modified worst-case transaction cost.

Lagrangian function.

Dual function.

I. INTRODUCTION

M ICROGRIDS are power systems comprising dis-
tributed energy resources (DERs) and electricity

end-users, possibly with controllable elastic loads, all deployed
across a limited geographic area [1]. Depending on their origin,
DERs can come either from distributed generation (DG) or
from distributed storage (DS). DG refers to small-scale power
generators such as diesel generators, fuel cells, and renew-
able energy sources (RES), as in wind or photovoltaic (PV)
generation. DS paradigms include batteries, flywheels, and

Fig. 1. Distributed control and computation architecture of a microgrid.

pumped storage. Specifically, DG brings power closer to the
point it is consumed, thereby incurring fewer thermal losses
and bypassing limitations imposed by a congested transmission
network. Moreover, the increasing tendency towards high
penetration of RES stems from their environment-friendly and
price-competitive advantages over conventional generation.
Typical microgrid loads include critical nondispatchable types
and elastic controllable ones.
Microgrids operate in grid-connected or island mode, and

may entail distribution networks with residential or commercial
end-users, in rural or urban areas. A typical configuration is
depicted in Fig. 1; see also [1]. The microgrid energy manager
(MGEM) coordinates the DERs and the controllable loads.
Each of the DERs and loads has a local controller (LC), which
coordinates with the MGEM the scheduling of resources
through the communications infrastructure in a distributed
fashion. The main challenge in energy scheduling is to account
for the random and nondispatchable nature of the RES.
Optimal energy management for microgrids including

economic dispatch (ED), unit commitment (UC), and de-
mand-side management (DSM) is addressed in [2], but
without pursuing a robust formulation against RES uncer-
tainty. Based on the Weibull distribution for wind speed and
the wind-speed-to-power-output mappings, an ED problem
is formulated to minimize the risk of overestimation and
underestimation of available wind power [3]. Stochastic pro-
gramming is also used to cope with the variability of RES.
Single-period chance-constrained ED problems for RES have
been studied in [4], yielding probabilistic guarantees that the
load will be served. Considering the uncertainties of demand
profiles and PV generation, a stochastic program is formulated
to minimize the overall cost of electricity and natural gas for a
building in [5]. Without DSM, robust scheduling problems with
penalty-based costs for uncertain supply and demand have been
investigated in [6]. Recent works explore energy scheduling
with DSM and RES using only centralized algorithms [7], [8].
An energy source control and DS planning problem for a micro-
grid is formulated and solved using model predictive control in
[9]. Distributed algorithms are developed in [10], but they only
coordinate DERs to supply a given load without considering
the stochastic nature of RES. Recently, a worst-case transaction
cost-based energy scheduling scheme has been proposed to
address the variability of RES through robust optimization that
can also afford distributed implementation [11]. However, [11]
considers only a single wind farm and no DS, and its approach
cannot be readily extended to include multiple RES and DS.
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The present paper deals with optimal energy management for
both supply and demand of a grid-connected microgrid incor-
porating RES. The objective of minimizing the microgrid net
cost accounts for conventional DG cost, utility of elastic loads,
penalized cost of DS, and a worst-case transaction cost. The
latter stems from the ability of the microgrid to sell excess en-
ergy to the main grid, or to import energy in case of shortage.
A robust formulation accounting for the worst-case amount of
harvested RES is developed. A novel model is introduced in
order to maintain the supply–demand balance arising from the
intermittent RES. Moreover, a transaction-price-based condi-
tion is established to ensure convexity of the overall problem
(Section II). The separable structure and strong duality of the
resultant problem are leveraged to develop a low-overhead dis-
tributed algorithm based on dual decomposition, which is com-
putationally efficient and resilient to communication outages or
attacks. For faster convergence, the proximal bundle method is
employed for the nonsmooth subproblem handled by the LC of
RES (Section III). Numerical results corroborate the merits of
the novel designs (Section IV), and the paper is wrapped up with
a concluding summary (Section V).
Compared to [11], the contribution of the paper is threefold,

and of critical importance for microgrids with high-penetration
renewables. First, a detailed model for DS is included, and dif-
ferent design choices for storage cost functions are given to
accommodate, for example, depth-of-discharge specifications.
Second, with the envisioned tide of high-penetration renewable
energy, multiple wind farms are considered alongside two per-
tinent uncertainty models. Finally, a new class of controllable
loads is added, with each load having a requirement of total en-
ergy over the scheduling horizon, as is the case with charging
of plug-in hybrid electric vehicles (PHEVs). Detailed numerical
tests are presented to illustrate the merits of the scheduling de-
cisions for the DG, DS, and controllable loads.1

II. ROBUST ENERGY MANAGEMENT FORMULATION

Consider a microgrid comprising conventional (fossil
fuel) generators, RES facilities, and DS units (see also
Fig. 1). The scheduling horizon is (e.g.,
one-day ahead). The particulars of the optimal scheduling
problem are explained in the next subsections.

A. Load Demand Model

Loads are classified in two categories. The first comprises
inelastic loads, whose power demand should be satisfied at all
times. Examples are power requirements of hospitals or illumi-
nation demand from residential areas.
The second category consists of elastic loads, which are

dispatchable, in the sense that their power consumption is
adjustable, and can be scheduled. These loads can be further di-
vided in two classes, each having the following characteristics:
i) The first class contains loads with power consumption

, where , and
. Higher power consumption yields higher utility

for the end user. The utility function of the th dispatch-
able load, , is selected to be increasing and

1Notation. Boldface lower case letters represent vectors; stands for the set
of real numbers.

concave, with typical choices being piecewise linear or
smooth quadratic; see also [12]. An example from this
class is an A/C.

ii) The second class includes loads indexed by
with power consumption limits and

, and prescribed total energy requirements
which have to be achieved from the start time to ter-
mination time ; see e.g., [13]. This type of load can be
the plug-in hybrid electric vehicles (PHEVs). Power de-
mand variables , therefore, are constrained as

and ,

while for .
Higher power consumption in earlier slots as opposed
to later slots may be desirable for a certain load, so that
the associated task finishes earlier. This behavior can
be encouraged by adopting for the th load an appro-
priately designed time-varying concave utility function

. An example is , with
weights decreasing in from slots to . Natu-
rally, can be selected if the consumer is
indifferent to how power is consumed across slots.

B. Distributed Storage Model

Let denote the stored energy of the th battery at the
end of the slot , with initial available energy while
denotes the battery capacity, so that

. Let be the power delivered to (drawn
from) the th storage device at slot , which amounts to charging

or discharging of the battery. Clearly, the
stored energy obeys the dynamic equation

(1)

Variables are constrained in the following ways:
i) The amount of (dis)charging is bounded, that is

(2)

(3)

with bounds and , while
is the efficiency of DS unit [14], [15]. The constraint in
(3) means that a fraction of the stored energy is
available for discharge.

ii) Final stored energy is also bounded for the sake of future
scheduling horizons, that is .

To maximize DS lifetime, a storage cost can be em-
ployed to encourage the stored energy to remain abovea specified
depth of discharge, denoted as ,where 100% (0%)
depth of discharge means the battery is empty (full) [15]. Such
a cost is defined as .
Note that the storage cost can be interpreted as imposing
a soft constraint preventing large variations of the stored energy.
Clearly, higherweights encourage smaller variation. If high
power exchange is to be allowed, these weights can be chosen
very small, or one can even select altogether.

C. Worst-Case Transaction Cost

Let denote the actual renewable energy harvested by the
th RES facility at time slot , and also let collect all , i.e.,

. To capture the intrin-
sically stochastic and time-varying availability of RES, it is pos-
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tulated that is unknown, but lies in a polyhedral uncertainty
set . The following are two practical examples.
i) The first example postulates a separate uncertainty set
for each RES facility in the form

(4)

where denotes a lower (upper) bound on ;
is partitioned into consecutive but nonoverlapping sub-

horizons for ; the total
renewable energy for the th RES facility over the th sub-
horizon is assumed bounded by and . In this
example, takes the form of Cartesian product

(5)

ii) The second example assumes a joint uncertainty model
across all the RES facilities as

(6)

where denotes a lower (upper) bound on ;
is partitioned into consecutive but nonoverlapping sub-

horizons for ; the total renewable en-
ergy harvested by all the RES facilities over the th sub-
horizon is bounded by and (see also [8]).

The previous two RES uncertainty models are quite general
and can take into account different geographical and meteoro-
logical factors. The only information required is the determin-
istic lower and upper bounds, namely , , , ,

, , which can be determined via inference schemes
based on historical data [16].
Supposing themicrogrid operates in a grid-connectedmode, a

transaction mechanism between the microgrid and the main grid
is present, whereby the microgrid can buy/sell energy from/to
the spot market. Let be an auxiliary variable denoting the net
powerdeliveredtothemicrogridfromtheRESandtheDSinorder
to maintain the supply–demand balance at slot . The shortage
energy per slot is given by ,

while the surplus energy is ,
where , and .
The amount of shortage energy is bought with known pur-

chase price , while the surplus energy is sold to the main grid
with known selling price . The worst-case net transaction cost
is thus given by

(7)

where collects for and collects
for .

Remark 1. (Worst-Case Model Versus Stochastic Model):
The worst-case robust model advocated here is particularly
attractive when the probability distribution of the renewable
power production is unavailable. This is for instance the case
for multiple wind farms, where the spatio-temporal joint distri-
bution of the wind power generation is intractable (see detailed
discussions in [17] and [18]). If an accurate probabilistic model
is available, an expectation-based stochastic program can be for-
mulated to bypass the conservatism of worst-case optimization.
In the case of wind generation, suppose that wind power is
a function of the random wind velocity , for which different
models are available, and the wind-speed-to-power-output
mappings are known [19]. Then, the worst-case trans-
action cost can be replaced by the expected transaction cost

, where
collects for all and .

D. Microgrid Energy Management Problem

Apart from RES, microgrids typically entail also con-
ventional DG. Let be the power produced by the th
conventional generator, where and

. The cost of the th generator is given by an increasing
convex function , which typically is either piecewise
linear or smooth quadratic.
The energy management problem amounts to minimizing the

microgrid social net cost; that is, the cost of conventional gen-
eration, storage, and the worst-case transaction cost (due to the
volatility of RES) minus the utility of dispatchable loads

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(8g)

(8h)

(8i)

(8j)

(8k)



948 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 4, OCTOBER 2013

(8l)

(8m)

(8n)

Constraints (8b)–(8e) stand for the minimum/maximum
power output, ramping up/down limits, and spinning reserves,
respectively, which capture the typical physical requirements
of a power generation system. Constraints (8f) and (8m) cor-
respond to the minimum/maximum power of the flexible load
demand and committed renewable energy. Constraint (8n) is
the power supply–demand balance equation ensuring the total
demand is satisfied by the power generation at any time.
Note that constraints (8b)–(8n) are linear, while ,

, , and are convex (possibly nondif-
ferentiable or nonstrictly convex) functions. Consequently, the
convexity of (P1) depends on that of , which
is established in the following proposition.
Proposition 1: If the selling price does not exceed the

purchase price for any , then the worst-case transaction
cost is convex in and .

Proof: Using that , and ,
can be rewritten as

(9)

with , and . Since the
absolute value function is convex, and the operations of non-
negative weighted summation and pointwise maximum (over
an infinite set) preserve convexity [20, Sec. 3.2], the claim fol-
lows readily.
An immediate corollary of Proposition 1 is that the energy

management problem (P1) is convex if for all .
Section III focuses on this case, and designs an efficient decen-
tralized solver for (P1).

III. DISTRIBUTED ALGORITHM

In order to facilitate a distributed algorithm for (P1), a vari-
able transformation is useful. Specifically, upon introducing

, (P1) can be rewritten as

(10a)

–

(10b)

where collects all the primal variables
; collects

for ; and

(11)

The following proposition extends the result of Proposition 1
to the transformed problem, and asserts its strong duality.
Proposition 2: If (P2) is feasible, and the selling price does

not exceed the purchase price for any , then there is no
duality gap.

Proof: Due to the strong duality theorem for the optimiza-
tion problems with linear constraints (cf. [21, Prop. 5.2.1]), it
suffices to show that the cost function is convex over the entire
space and its optimal value is finite. First, using the same argu-
ment, convexity of in is immediate under the
transaction price condition. The finiteness of the optimal value
is guaranteed by the fact that the continuous convex cost (10a) is
minimized over a nonempty compact set specified by (8b)–(8n),
and (10b).
The strong duality asserted by Proposition 2 motivates the

use of Lagrangian relaxation techniques in order to solve the
scheduling problem. Moreover, problem (P2) is clearly sepa-
rable, meaning that its cost and constraints are sums of terms,
with each term dependent on different optimization variables.
The features of strong duality and separability imply that La-
grangian relaxation and dual decomposition are applicable to
yield a decentralized algorithm; see also related techniques in
power systems [22] and communication networks [23], [24].
Coordinated by dual variables, the dual approach decomposes
the original problem into several separate subproblems that can
be solved by the LCs in parallel. The development of the dis-
tributed algorithm is undertaken next.

A. Dual Decomposition

Constraints (8e), (8n), and (10b) couple variables across gen-
erators, loads, and the RES. Let collect dual variables ,

, and , which denote the corresponding Lagrange mul-
tipliers. Keeping the remaining constraints implicit, the partial
Lagrangian is given by (12), shown at the bottom of the next
page. Then, the dual function can be written as

– –

and the dual problem is given by

(13a)

(13b)

The subgradient method will be employed to obtain the op-
timal multipliers and power schedules. The iterative process is
described next, followed by its distributed implementation.
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1) Subgradient Iterations: The subgradient method amounts
to running the recursions [25, Sec. 6.3]

(14a)

(14b)

(14c)

where is the iteration index; is a constant stepsize; while
, , and denote the subgradients of the dual

function with respect to , , and , respectively.
These subgradients can be expressed in the following simple
forms:

(15a)

(15b)

(15c)

where , , , , , and
are given by (16)–(20), shown at the bottom of the page.
Iterations are initialized with arbitrary , and

. The iterates are guaranteed to converge to a neigh-
borhood of the optimal multipliers [25, Sec. 6.3]. The size of the
neighborhood is proportional to the stepsize, and can, therefore,
be controlled by the stepsize.
When the primal objective is not strictly convex, a primal

averaging procedure is necessary to obtain the optimal power
schedules, which are then given by

(21)

The running averages can be recursively computed as in (21),
and are also guaranteed to converge to a neighborhood of the
optimal solution [26]. Note that other convergence-guaranteed
stepsize rules and primal averaging methods can also be uti-
lized; see [27] for detailed discussions.

(12)

–

(16)

(17)

–

(18)

–

(19)

(20)
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Fig. 2. Decomposition and message exchange.

2) Distributed Implementation: The form of the subgradient
iterations easily lends itself to a distributed implementation uti-
lizing the control and communication capabilities of a typical
microgrid.
Specifically, the MGEMmaintains and updates the Lagrange

multipliers via (14). The LCs of conventional generation,
dispatchable loads, storage units, and RES solve subproblems
(16)–(20), respectively. These subproblems can be solved if
the MGEM sends the current multiplier iterates , ,
and to the LCs. The LCs send back to the MGEM the
quantities , , ,

, , and which are in turn used
to form the subgradients according to (15). The distributed
algorithm using dual decomposition is tabulated as Algorithm
1, and the interactive process of message passing is illustrated
in Fig. 2.

Algorithm 1 Distributed Energy Management

1: Initialize Lagrange multipliers
2: repeat
3: for do
4: Broadcast , and to LCs of
convectional generators, controllable loads, storage units,
and RES facilities

5: Update power scheduling
, and by solving (16)–(20)

6: Update , and via (14)
7: end for
8: Running averages of primal variables via (21)
9: until Convergence

B. Solving the LC Subproblems

This subsection shows how to solve each subproblem
(16)–(20). Specifically, , , , and

are chosen either convex piece-wise linear or smooth
convex quadratic. Correspondingly, the first four subproblems
(16)–(19) are essentially linear programs (LPs) or quadratic
programs (QPs), which can be solved efficiently. Therefore, the
main focus is on solving (20).
The optimal solution of in (20) is easy to obtain as

(22)

However, due to the absolute value operator and the maximiza-
tion over in the definition of , subproblem (20)
is a convex nondifferentiable problem in , which can be
challenging to solve. As a state-of-the-art technique for convex

nondifferentiable optimization problems [25, Ch. 6], the bundle
method is employed to obtain .
Upon defining

(23)

the subgradient of with respect to needed for the
bundle method can be obtained by the generalization of Dan-
skin’s Theorem [25, Sec. 6.3] as

(24)

where for given it holds that

(25)

Using (24), the bundle method can be utilized to generate a se-
quence with guaranteed convergence to the optimal ;
see, e.g., [25, Ch. 6]. The global solution in (25) is attained
at the vertices (extreme points) of the polytope [25, Sec. 2.4].
For the polytopes with special structure [cf. (4), (6)], char-
acterizations of vertices and corresponding vertex enumerating
procedures are established. Due to space limitations, details of
the bundle method and the vertex enumerating algorithms are
provided in [28].

IV. NUMERICAL TESTS

In this section, numerical results are presented to verify the
performance of the robust and distributed energy scheduler.
The Matlab-based modeling package CVX [29] along with
the solver MOSEK [30] are used to specify and solve the pro-
posed robust energy management problem. The considered
microgrid consists of conventional generators,
class-1 dispatchable loads, class-2 dispatchable loads,

storage units, and renewable energy facilities
(wind farms). The time horizon spans hours, corre-
sponding to the interval 4 P.M.–12 A.M.. The generation costs

and the utilities of class-1
elastic loads are set to be
quadratic and time-invariant. Generator parameters are given in
Table I, while kWh. The relevant parameters of two
classes of dispatchable loads are listed in Tables II and III (see
also [27]). The utility of class-2 loads is
with weights for
and .
Three batteries have capacity kWh (similar to

[5]). The remaining parameters are kWh,
kWh, kWh, and , for all .

The battery costs are set to zero. The joint uncertainty
model with is considered for [cf. (6)], where
kWh, and kWh. In order to obtain and
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TABLE I
GENERATING CAPACITIES, RAMPING LIMITS, AND COST COEFFICIENTS.
THE UNITS OF AND ARE $/(kWh) AND $/kWh, RESPECTIVELY

TABLE II
CLASS-1 DISPATCHABLE LOADS PARAMETERS. THE UNITS OF AND ARE

$/(kWh) AND $/kWh, RESPECTIVELY

TABLE III
CLASS-2 DISPATCHABLE LOADS PARAMETERS

TABLE IV
LIMITS OF FORECASTED WIND POWER

TABLE V
FIXED LOADS DEMAND AND TRANSACTION PRICES. THE UNITS OF

AND ARE ¢/kWh

listed in Table IV, MISO day-ahead wind forecast data [31] are
rescaled to the order of 1 to 40 kWh, which is a typical wind
power generation for a microgrid [32].
Similarly, the fixed load in Table V is a rescaled version

of the cleared load provided by MISO’s daily report [33]. For
the transaction prices, two different cases are studied as given
in Table V, where in Case A are real-time prices of the
Minnesota hub in MISO’s daily report. To evaluate the effect
of high transaction prices, in Case B is set as 20 times of
that in Case A. For both cases, , which satisfies the
convexity condition for (P1) given in Proposition 1.
The optimal microgrid power schedules of two cases

are shown in Figs. 3 and 4. The stairstep curves include
, , and

denoting the total conventional power generation, and total
elastic demand for classes 1 and 2, respectively, which are the
optimal solutions of (P2). Quantity denotes the total
worst-case wind energy at slot , which is the optimal solution
of (25) with optimal .

Fig. 3. Optimal power schedules: Case A.

Fig. 4. Optimal power schedules: Case B.

A common observation from Figs. 3 and 4 is that the total
conventional power generation varies with the same trend
across as the fixed load demand , while the class-1 elastic
load exhibits the opposite trend. Because the conventional gen-
eration and the power drawn from the main grid are limited, the
optimal scheduling by solving (P2) dispatches less power for

when is large (from 6 P.M. to 10 P.M.), and vice versa.
This behavior indeed reflects the load shifting ability of the pro-
posed design for the microgrid energy management.
Furthermore, by comparing two cases in Figs. 3 and 4, it

is interesting to illustrate the effect of the transaction prices.
Remember that the difference between and is the
shortage power needed to purchase (if positive) or the surplus
power to be sold (if negative); Fig. 3 shows that the microgrid
always purchases energy from the main grid because is more
than . This is because for Case A, the purchase price
is much lower than the marginal cost of the conventional

generation (cf. Tables I and V). The economic scheduling deci-
sion is thus to reduce conventional generation while purchasing
more power to keep the supply–demand balance. For Case B,
since is much higher than that in Case A, less power should
be purchased which is reflected in the relatively small gap be-
tween and across time slots. It can also be seen that

is smaller than from 7 P.M. to 9 P.M., meaning that
selling activity happens and is encouraged by the highest selling
price in these slots across the entire time horizon. Moreover,
selling activity results in the peak conventional generation from
7 P.M. to 9 P.M.. Fig. 5 compares the optimal costs for the two
cases. It can be seen that the optimal costs of conventional gen-
eration and worst-case transaction of Case B are higher than
those of Case A, which can be explained by the higher transac-
tion prices and the resultant larger DG output for Case B.
The optimal power scheduling of class-2 elastic load is

depicted in Fig. 6 for Case A. Due to the start time (cf.
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Fig. 5. Optimal costs: Cases A and B.

Fig. 6. Optimal power schedule for : Case A.

Fig. 7. Optimal power schedule for : Case B.

Fig. 8. Optimal power schedule for : Case B.

Table III), zero power is scheduled for the class-2 load 1, 3, and
4 from 4 P.M. to 6 P.M. while from 4 P.M. to 7 P.M. for load 2.
The decreasing trend for all such loads is due to the decreasing
weights from to , which is established from the fast
charging motivation for the PHEVs, for example.
Fig. 7 depicts the optimal charging or discharging power of

the DS units for Case B. Clearly, all DS units are discharging
during the three slots of 7 P.M., 8 P.M., and 9 P.M.. This results

Fig. 9. Optimal costs: Case B.

from the motivation of selling more or purchasing less power
because both purchase and selling prices are very high during
these slots (cf. Table V). The charging (discharging) activity
can also be reflected by the stored energy of the battery devices
shown in Fig. 8. Note that, starting from the initial energy 5 kWh
at 4 P.M., the optimal stored energy of all units are scheduled to
have 5 kWh at 12 A.M., which satisfies the minimum stored en-
ergy requirement for the next round of scheduling time horizons.
Finally, Fig. 9 shows the effect of different selling prices

on the optimal energy costs, where Case B is studied with fixed
purchase prices . It can be clearly seen that the net cost
decreases with the increase of the selling-to-purchase-price
ratio . When this ratio increases, the microgrid has a
higher margin for revenue from the transaction mechanism,
which yields the reduced worst-case transaction cost.

V. CONCLUSION AND FUTURE WORK

A distributed energy management approach was developed
tailored for microgrids with high penetration of RES. By in-
troducing the notion of committed renewable energy, a novel
model was introduced to deal with the challenging constraint
of the supply–demand balance raised by the intermittent nature
of RES. Not only the conventional generation costs, utilities of
the adjustable loads, and DS costs were accounted for, but also
the worst-case transaction cost was included in the objective.
To schedule power in a distributed fashion, the dual decomposi-
tion methodwas utilized to decompose the original problem into
smaller subproblems solved by the LCs of conventional gener-
ators, dispatchable loads, DS units, and the RES.
A number of interesting research directions open up towards

extending the model and approach proposed in this paper.
Some classical but fundamental problems, such as the optimal
power flow (OPF) and the unit commitment (UC) problems,
are worth reinvestigating with the envisaged growth of RES
usage in microgrids.
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