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Abstract—Through spatial multiplexing and diversity,
multi-input multi-output (MIMO) cognitive radio (CR) net-
works can markedly increase transmission rates and reliability,
while controlling the interference inflicted to peer nodes and
primary users (PUs) via beamforming. The present paper op-
timizes the design of transmit- and receive-beamformers for
ad hoc CR networks when CR-to-CR channels are known, but
CR-to-PU channels cannot be estimated accurately. Capitalizing
on a norm-bounded channel uncertainty model, the optimal beam-
forming design is formulated to minimize the overall mean-square
error (MSE) from all data streams, while enforcing protection
of the PU system when the CR-to-PU channels are uncertain.
Even though the resultant optimization problem is non-convex,
algorithms with provable convergence to stationary points are
developed by resorting to block coordinate ascent iterations,
along with suitable convex approximation techniques. Enticingly,
the novel schemes also lend themselves naturally to distributed
implementations. Numerical tests are reported to corroborate the
analytical findings.

Index Terms—Beamforming, channel uncertainty, cognitive ra-
dios, distributed algorithms, MIMO wireless networks, robust op-
timization.

I. INTRODUCTION

C OGNITIVE radio (CR) is recognized as a disruptive
technology with great potential to enhance spectrum

efficiency. From the envisioned CR-driven applications, par-
ticularly promising is the hierarchical spectrum sharing [1],
where CRs opportunistically re-use frequency bands licensed to
primary users (PUs) whenever spectrum vacancies are detected
in the time and space dimensions. Key enablers of a seamless
coexistence of CR with PU systems are reliable sensing of
the licensed spectrum [2], [3], and judicious control of the
interference that CRs inflict to PUs [1]. In this paper, attention
is focused on the latter aspect.
Recently, underlay multi-input multi-output (MIMO) CR

networks have attracted considerable attention thanks to their
ability to mitigate both self- and PU-inflicted interference via
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beamforming, while leveraging spatial multiplexing and diver-
sity to considerably increase transmission rates and reliability.
On the other hand, wireless transceiver optimization has been
extensively studied in the non-CR setup under different design
criteria [4], [5], and when either perfect or imperfect channel
knowledge is available; see e.g., [6], [7], and references therein.
In general, when network-wide performance criteria such as
weighted sum-rate and sum mean-square error (MSE) are
utilized, optimal beamforming is deemed challenging because
the resultant optimization problems are typically non-convex.
Thus, solvers assuring even first-order Karush-Kuhn-Tucker
(KKT) optimality are appreciated in this context [4]–[6].
In the CR setup, the beamforming design problem is ex-

acerbated by the presence of interference constraints [1]. In
fact, while initial efforts in designing beamformers under
PU interference constraints were made under the premise of
perfect knowledge of the cognitive-to-primary propagation
channels [8]–[11], it has been recognized that obtaining accu-
rate estimates of the CR-to-PU channels is challenging or even
impossible. This is primarily due to the lack of full CR-PU
cooperation [1], but also to estimation errors and frequency
offsets between reciprocal channels when CR-to-PU channel
estimation is attempted. It is therefore of paramount importance
to take the underlying channel uncertainties into account, and
develop prudent beamforming schemes that ensure protection
of the licensed users.
Based on CR-to-PU channel statistics, probabilistic interfer-

ence constraints were employed in [12] for single-antenna CR
links. Assuming imperfect knowledge of the CR-to-PU channel,
the beamforming design in amultiuser multi-input single-output
(MISO) CR system sharing resources with single-antenna PUs
was considered in [13]; see also [14] for a downlink setup,
where both CR and PU nodes have multiple antennas. The min-
imum CR signal-to-interference-plus-noise ratio (SINR) was
maximized under a bounded norm constraint capturing uncer-
tainty in the CR-to-PU links. Using the same uncertainty model,
minimization of the overallMSE from all data streams inMIMO
ad hoc CR networks was considered in [15]. However, identical
channel estimation errors for different CR-to-PU links were as-
sumed. This assumption was bypassed in [16], where the mu-
tual information was maximized instead. Finally, a distributed
algorithm based on a game-theoretic approach was developed
in [17].
The present paper considers an underlay MIMO ad hoc CR

network sharing spectrum bands licensed to PUs, which are
possibly equipped with multiple antennas as well. CR-to-CR
channels are assumed known perfectly, but this is not the case
for CR-to-PU channels. Capitalizing on a norm-bounded uncer-
tainty model to capture inaccuracies of the CR-to-PU channel
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estimates, a beamforming problem is formulated whereby CRs
minimize the overall MSE, while limiting the interference in-
flicted to the PUs robustly. The resultant robust beamforming
design confronts two major challenges: a) non-convexity of the
total MSE cost function; and, b) the semi-infinite attribute of
the robust interference constraint, whichmakes the optimization
problem arduous to manage. To overcome the second hurdle,
an equivalent re-formulation of the interference constraint as
a linear matrix inequality (LMI) is derived by exploiting the
S-Procedure [18]. On the other hand, to cope with the inherent
non-convexity, a cyclic block coordinate ascent approach [19]
is adopted along with local convex approximation techniques.
This yields an iterative solution of the semi-definite programs
(SDPs) involved, and generates a convergent sequence of ob-
jective function values. Moreover, when the CR-to-CR channel
matrices have full column rank, every limit point generated by
the proposed method is guaranteed to be a stationary point of
the original non-convex problem. However, CR links where the
transmitter is equipped with a larger number of antennas than
the receiver, or spatially correlated MIMO channels [20], can
lead to beamformers that are not necessarily optimal. For this
reason, a proximal point-based regularization technique [21] is
also employed to guarantee convergence to optimal operating
points, regardless of the channel rank and antenna configura-
tion. Similar to [4]–[11], [13]–[17], [22]–[24], perfect time syn-
chronization is assumed at the symbol level.
Interestingly, the schemes developed are suitable for dis-

tributed operation, provided that relevant parameters are
exchanged among neighboring CRs. The algorithms can also
be implemented in an on-line fashion which allows adaptation
to (slow) time-varying propagation channels. In this case,
CRs do not necessarily wait for the iterations to converge, but
rather use the beamformer weights as and when they become
available. This is in contrast to, e.g., [4], [6] and [14]–[16]
in the non-CR and CR cases, respectively, where the relevant
problems are solved centrally and in a batch form.
In the robust beamforming design, the interference power that

can be tolerated by the PUs is initially assumed to be pre-parti-
tioned in per-CR link portions, possibly according to quality-of-
service (QoS) guidelines [11], [17]. However, extensions of the
beamforming design are also providedwhen the PU interference
limit is not divided a priori among CR links. In this case, primal
decomposition techniques [19] are invoked to dynamically al-
locate the total interference among CRs. Compared to [15], the
proposed scheme accounts for different estimation inaccuracies
in the CR-to-PU links.
The remainder of the paper is organized as follows. Section II

introduces the system model and outlines the proposed robust
beamforming design problem. In Section III, the block co-
ordinate ascent solver is developed, along with its proximal
point-based alternative. Aggregate interference constraints are
dealt with in Section IV, and numerical results are reported in
Section V. Finally, concluding remarks are given in Section VI,
while proofs are deferred to the Appendix.
Notation. Boldface lower (upper) case letters represent vec-

tors (matrices); , , and stand for spaces of
Hermitian, Hermitian positive semidefinite,

complex matrices, and real numbers, respectively; , ,

Fig. 1. The system model for MIMO ad hoc CR networks.

and indicate transpose, complex conjugate, and conjugate
transpose operations, respectively; denotes the trace op-
erator, and the vector formed by stacking the columns
of ; and represent the Euclidean norm of and
the Frobenius norm of , respectively; is the Kronecker
product of and ; is the identity matrix; Finally,

denotes the expectation operator, and stands for the
real part of a complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless MIMO CR network comprising trans-
mitter-receiver pairs . Let and

, denote the number of antennas of the -th trans-
mitter-receiver pair, as shown in Fig. 1. Further, let denote
the information symbol vector transmitted by per
time slot, with covariance matrix . In order to
mitigate self-interference, transmitter pre-multiplies by a
transmit-beamforming matrix ; that is, ac-
tually transmits the symbol vector . With

denoting the to channel matrix, the
symbol received at can be written as

(1)

where is the zero-mean complex Gaussian dis-
tributed receiver noise, which is assumed independent of
and , with covariance matrix .
Low-complexity receiver processing motivates the use of a

linear filter matrix at to recover as

(2)

Using at , the MSE matrix
, which quantifies the recon-

struction error, is given by [cf. (1)]

(3)

where . Entry of
represents the MSE of the -th data stream ( -th entry of )

from to , and corresponds to the MSE of .



ZHANG et al.: DISTRIBUTED OPTIMAL BEAMFORMERS FOR COGNITIVE RADIOS ROBUST TO CHANNEL UNCERTAINTIES 6497

To complete the formulation, let denote the
channel between CR and a PU receiver, possibly equipped
with multiple antennas1, and the maximum instanta-
neous interference that the PU can tolerate. As in e.g., [11], [17],
suppose that is pre-partitioned in per-CR transmitter por-
tions , possibly depending on QoS requirements of indi-
vidual CR pairs. Then, the transmit- and receive-beamforming
matrices minimizing the overall MSE can be obtained as (see
also [6])

(4a)

(4b)

(4c)

where is the maximum transmit-power of .
Remark 1 (Adopted Performance Metric): Among candidate

performance metrics, the sum of MSEs from different data
streams is adopted here, which has been widely employed in
the beamforming literature; see e.g., [6], [7] and references
therein. The relationships between MSE, bit error rate (BER)
and SINR have been thoroughly considered in [22], and further
investigated in [6]. Specifically, it has been shown that an
improvement in the total MSE naturally translates in a lower
BER. Furthermore, the sum of MSEs facilitates derivation of
optimal filters, and the equivalence between minimizing the
weighted sum of MSEs and maximizing the weighted sum rate
has been established in [4], [23].
Unfortunately, due to lack of explicit cooperation between

PU and CR nodes, CR-to-PU channels are in general
difficult to estimate accurately. As PU protection must be en-
forced though, it is important to take into account the CR-to-PU
channel uncertainty, and guarantee that the interference power
experienced by the PU receiver stays below a prescribed level
for any possible (random) channel realization [12], [14]. Before
developing a beamforming approach robust to inaccuracies as-
sociated with channel estimation, problem (P1) is conveniently
re-formulated first in order to reduce the number of variables
involved.

A. Equivalent Optimization Problem

For the sum-MSE cost in (4a), the optimum will turn
out to be expressible in closed form. To show this, note first
that for fixed , (P1) is convex in , and can be
obtained from the first-order optimality conditions. Express the
Lagrangian function associated with (P1) as

(5)

where and collects the
primal and dual variables, respectively. Then, by equating the

1A single PU receiver is considered throughout the paper. However, extension
to multiple receiving PUs is straightforward; see also Remark 5.

complex gradient to zero, matrix is expressed
as

(6)

Clearly, the optimal set does not depend on channels
, but only on .

Substituting into (4a), and using the covariance
as a matrix optimization variable,

it follows that (P1) can be equivalently re-written as

(7a)

(7b)

(7c)

where the per-CR link utility is given by

(8)

with . One remark is in
order regarding (P2).
Remark 2 (Conventional MIMONetworks): Upon discarding

the interference constraints (7c), the beamforming problems for-
mulated in this paper along with their centralized and distributed
solvers can be considered also for non-CR MIMO ad-hoc and
cellular networks in downlink or uplink operation.
Channels must be perfectly known in order to solve

(P2). A robust version of (P2), which accounts for imperfect
channel knowledge, is dealt with in the next section.

B. Robust Interference Constraint

In typical CR scenarios, CR-to-PU channels are challenging
to estimate accurately. In fact, CR and PU nodes do not gen-
erally cooperate [1], thus rendering channel estimation chal-
lenging. To model estimation inaccuracies, consider expressing
the CR-to-PU channel matrix as

(9)

where is the estimated channel, which is known at CR trans-
mitter , and captures the underlying channel uncer-
tainty [14], [16]. Specifically, the error matrix is assumed
to take values from the bounded set

(10)

where specifies the radius of , and thus reflects the
degree of uncertainty associated with . The set in (10) can
be readily extended to the general ellipsoidal uncertainty model
[18, Ch. 4]. Such an uncertainty model properly resembles the
case where a time division duplex (TDD) strategy is adopted
by the PU system, and CRs have prior knowledge of the PUs’
pilot sequence(s). But even without training symbols, CR-to-PU
channel estimates can be formed using the deterministic path
loss coefficients, and the size of the uncertainty region can be
deduced from fading channel statistics. Compared to [12], the
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norm-bounded uncertainty model leads to worst-case interfer-
ence constraints that ensure PU protection for any realization of
the uncertain portion of the propagation channels.
Based on (10), a robust interference constraint can be written

as

(11)

and consequently, a robust counterpart of (P2) can be formulated
as follows

(12a)

(12b)

(12c)

Clearly, once are found by solving (P3), the
wanted can be readily obtained via (6), since

. However,
is non-convex in , and hence (P3) is hard to solve in
general. Additionally, constraints (11) are not in a tractable
form, which motivates their transformation. These issues are
addressed in the next section. But first, two remarks are in
order.
Remark 3 (Uncertain MIMO Channels): In an underlay

hierarchical spectrum access setup, it is very challenging (if
not impossible) for the CRs to obtain accurate estimates of the
CR-to-PU channels. In fact, since the PUs hold the spectrum
license, they have no incentive to feed back CR-to-PU channel
estimates to the CR system [1]. Hence, in lieu of explicit CR-PU
cooperation, CRs have to resort to crude or blind estimates of
their channels with PUs. On the other hand, sufficient time for
training along with sophisticated estimation algorithms render
the CR-to-CR channels easier to estimate. This explains why
similar to relevant works [12]–[17], CR-to-CR channels are as-
sumed known, while CR-to-PU channels are taken as uncertain
in CR-related optimization methods. Limited-rate channel state
information that can become available e.g., with quantized
CR-to-CR channels [6], [7], [12], can be considered in future
research but goes beyond the scope of the present paper.
Remark 4 (Radius of the Uncertainty Region): In practice,

radius and shape of the uncertainty region have to be tailored
to the specific channel estimation approach implemented at the
CRs, and clearly depend on the second-order channel error sta-
tistics. For example, if has zero mean and covariance ma-
trix , where depends on the receiver noise
power, and the transmit-power of the PU (see, e.g., [25]), then
the radius of the uncertainty region can be set to ,
where denotes the path loss coefficient, and a pa-
rameter that controls how strict the PU protection is. Alterna-
tively, the model can be utilized [17]. If

, then the uncertainty region can be set to

[24] and the robust con-
straint (11) can bemodified accordingly. Similar models are also
considered in [26].

III. DISTRIBUTED ROBUST CR BEAMFORMING

To cope with the non-convexity of the utility function (12a), a
block-coordinate ascent solver is developed in this section. De-
fine first the sum of all but the -th utility as

, with . Notice that is con-
cave and is convex in ; see Appendix B for a proof.
Then, (P3) can be regarded as a difference of convex func-
tions (d.c.) program, whenever only a single variable is op-
timized and is kept fixed. This motivates the so-termed
concave-convex procedure [27], which belongs to the majoriza-
tion-minimization class of algorithms [28], to solve problem
(P3) through a sequence of convex problems, one per matrix
variable . Specifically, the idea is to linearize the convex
function around a feasible point , and thus to (locally)
approximate the objective (12a) as (see also [5] and [10])

(13)

where

(14)

Therefore, for fixed , matrix can be obtained by solving
the following sub-problem

(15a)

(15b)

(15c)

(15d)

where (see Appendix A)

(16)

(17)

(18)

At each iteration , the block coordinate ascent
solver amounts to updating the covariance matrices in a
round robin fashion via (P4), where the solution obtained at the

-st iteration are exploited to compute the complex gra-
dient (16). The term discourages a “selfish” be-
havior of the -th CR-to-CR link, which would otherwise try to
simply minimize its own MSE, as in the game-theoretic formu-
lations of [11] and [17]. In the next subsection, the robust in-
terference constraint will be translated to a tractable form, and
(P4) will be re-stated accordingly.

A. Equivalent Robust Interference Constraint

Constraint (15d) renders (P4) a semi-infinite program (cf.
[29, Ch. 3]). An equivalent constraint in linear matrix in-
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equality (LMI) form will be derived next, thus turning (P4)
into an equivalent semi-definite program (SDP), which can be
efficiently solved in polynomial time by standard interior point
methods. To this end, the following lemma is needed.
Lemma 1: (S-Procedure [18, p. 655]) Consider

, and assume the interior condition
holds, i.e., there exists an satisfying . Then, the
inequality

(19)

holds if and only if there exists such that

(20)

Using Lemma 1, the robust constraint (15d) can be equiva-
lently reformulated as follows.
Proposition 1: There exists , so that the robust inter-

ference constraint (15d) is equivalent to the following LMI

(21)

Proof: Using the properties of the trace operator
and

, constraint (15d) can be re-written as

(22)

where . Then, applying Lemma 1 to (22)
yields readily (21).
Proposition 2: Problem (P4) can be equivalently re-written

as the following SDP form:

(23a)

(23b)

(23c)

(23d)

Proof: First, note that [cf. (8)]

Thus, (P4) is equivalent to

(15b)-(15d)

Then, an auxiliary matrix variable is introduced such that

, which can be

equivalently recast as (23c) by using the Schur complement
[18]. Combining the LMI form of the robust interference
constraint (21), the formulation of (P5) follows immediately.
Problem (P3) can be solved in a centralized fashion upon col-

lecting CR-to-CR channels , CR-to-PU estimated chan-
nels , and confidence intervals at a CR fusion center.
The optimal transmit-covariance matrices can be found at the
fusion center by solving (P5), and sent back to all CRs. This cen-
tralized scheme is tabulated as Algorithm 1, where denotes
the transmit-covariance matrix of CR at iteration of the

block coordinate ascent algorithm;
represents the set of transmit-covariance matrices at iteration ;

is the objective function (12a). A simple stopping criterion
for terminating the iterations is ,
where denotes a preselected threshold.

Algorithm 1: Centralized Robust Sum-MSE Minimization

1: Collect all channel matrices , and noise powers

2: Collect all CR-to-PU channel matrices , and
confidence intervals

3: Initialize
4: repeat
5: for do
6: Compute via (16)
7: Update by solving (P5) [(P6) for the proximal

point-based method]
8: end for
9: until
10: Calculate via (6)
11: Broadcast optimal transmit- and receive-beamformers

To alleviate the high communication cost associated with
the centralized setup, and ensure scalability with regards to
network size and enhanced robustness to fusion center failure,
a distributed optimization algorithm is generally desirable. It
can be noticed that the proposed coordinate ascent approach
lends itself to a distributed optimization procedure that can be
implemented in an on-line fashion. Specifically, each CR
can update locally via (P5) based on a measurement of the
interference [10], and the following information necessary
to compute the complex gradient (16): i) its covariance matrix

obtained at the previous iteration; ii) matrices

and obtained from the neighboring CR links via local
message passing. Furthermore, it is clear that the terms in
(16) corresponding to CRs located far away from CR are
negligible due to the path loss effect in channel ;
hence, summation in (16) is only limited to the interfering
CRs, and consequently, matrices and need to
be exchanged only locally. The overall distributed scheme is
tabulated as Algorithm 2. The on-line implementation of the
iterative optimization allows tracking of slow variations of the
channel matrices; in this case, cross-channels in Algo-
rithm 2 need to be re-acquired whenever a change is detected.
Finally, notice that instead of updating the transmit-covariances
in a Gauss-Seidel fashion, Jacobi iterations or asynchronous
schemes [19] can be alternatively employed.
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Algorithm 2: Distributed On-line Robust Sum-MSE
Minimization

1: Initialize
2: repeat
3: for do
4: acquires from its neighboring

5: transmit to neighboring nodes
6: receive from neighboring nodes

7: Compute via (16)
8: Measure

9: Update by solving (P5) [(P6) for the proximal
point-based method]

10: Update via (6)
11: Transmit and receive signals using and
12: end for
13: until

Remark 5 (Multiple PU Receivers): For ease of exposition,
the formulated robust optimization problems consider a single
PU receiver. Clearly, in case of receiving PU devices,
or when a grid of potential PU locations is obtained from
the sensing phase [30], a robust interference constraint for each
of the CR-to-PU links must be included in (P3). As for
(P5), it is still an SDP, but with LMI constraints (23d), and
one additional optimization variable per PU receiver.
Remark 6 (Network Synchronization): Similar to [4]–[11],

[13]–[17], [22]–[24], time synchronization is assumed to have
been acquired. In practice, accurate time synchronization
among the CR transmitters can be attained (and maintained
during operation) using e.g., pairwise broadcast synchroniza-
tion protocols [31], consensus-based methods [32], or mutual
network synchronization approaches [33]. To this end, CRs
have to exchange synchronization beacons on a regular basis;
clearly, the number of time slots occupied by the transmis-
sion of these beacons depends on the particular algorithm
implemented, the CR network size, and the targeted synchro-
nization accuracy. For example, the algorithm in [31] entails
two message exchanges per transmitter pairs, while the mes-
sage-passing overhead of consensus-based methods generally
depends on the wanted synchronization accuracy [32]. Since
the CR network operates in an underlay setup, this additional
message passing can be performed over the primary channel(s).
Alternatively, a CR control channel can be employed to avoid
possible synchronization errors due to the interference inflicted
by the active PU transmitters. Analyzing the effect of mistiming
constitutes an interesting research direction, but it goes beyond
the scope and page limit of this paper.

B. Convergence

Since the original optimization problem (P3) is non-convex,
convergence of the block coordinate ascent with local convex
approximation has to be analytically established. To this end,
recall that (P4) and (P5) are equivalent; thus, convergence can
be asserted by supposing that (P4) is solved per Gauss-Seidel

iteration instead of (P5). The following lemma (proved in Ap-
pendix B) is needed first.
Lemma 2: For each , the feasible set of problem (P4),

namely , is convex. The
real-valued function is convex in over the
feasible set , when the set is fixed.
Based on Lemma 2, convergence of the block coordinate as-

cent algorithm is established next.
Proposition 3: The sequence of objective function values

(12a) obtained by the coordinate ascent algorithm with con-
cave-convex procedure converges.

Proof: It suffices to show that the sequence of objective
values (12a) is monotonically non-decreasing. Since the objec-
tive function value is bounded from above, the function value
sequence must be convergent by invoking the monotone con-
vergence theorem. Letting denote the objective function
(15a), which is the concave surrogate of as the original ob-
jective (12a), consider

(24)

where stands for the iteration index. Furthermore, define

(25)

(26)

Then, for all , it holds that

(27a)

(27b)

(27c)

(27d)

where (27b) follows from the convexity of established in
Lemma 2; inequality (27c) holds because is the optimal
solution of (P4) for fixed .
To complete the proof, it suffices to show that is

monotonically non-decreasing, namely that

(28)

Interestingly, by inspecting the structure of ,
it is also possible to show that every limit point generated by
the coordinate ascent algorithm with local convex approxima-
tion satisfies the first-order optimality conditions. Conditions on

that guarantee stationarity of the limit points are
provided next. First, it is useful to establish strict concavity of
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the objective (15a) in the following lemma proved in Appendix
C.
Lemma 3: If the channel matrices of the

CR links have full column rank, then the objective
function (15a) is strictly concave in .
We are now ready to establish stationarity of the limit points.
Theorem 1: If matrices have full column

rank, then every limit point of the coordinate ascent algorithm
with concave-convex procedure is a stationary point of (P3).

Proof: The proof of Theorem 1 relies on the basic con-
vergence claim of the block coordinate descent method in [29,
Ch. 2] and [5]. What must be shown is that every limit point
of the algorithm satisfies the first-order optimality conditions
over the Cartesian product of the closed convex sets. Let

be a limit point of the sequence ,
and a subsequence that converges to
. First, we will show that . Argue

by contradiction, i.e., assume that does
not converge to zero. Define .
By possibly restricting to a subsequence of , it follows
that there exists some such that for all .
Let . Thus, we have that

and . Because
belongs to a compact set, it can be assumed convergent

to a limit point along with a subsequence of .
Since it holds that for all , the point

lies on the segment connecting two feasible
points and . Thus, is also fea-
sible due to the convexity of [cf. Lemma 2]. Moreover, con-
cavity of implies that is monotonically non-de-

creasing in the interval connecting point to over
the set . Hence, it readily follows that

(29)

Note that is a tight lower bound of at each current
feasible point. Also, from (28), is guaran-
teed to converge to as . Thus, upon taking the
limit as in (29), it follows that

(30)

However, since , (30) contradicts the unique maximum
condition implied by the strict concavity of in [cf.
Lemma 3]. Therefore, converges to as well.
Consider now checking the optimality condition for .

Since is the local (and also global) maximum of
, we have that

(31)

where denotes the gradient of with respect to .
Taking the limit as , and using the fact that

, it is easy to show that

(32)

Using similar arguments, it holds that

(33)

which establishes the stationarity of and completes the
proof.

C. Proximal Point-Based Robust Algorithm

The full column rank requirement can be quite restrictive in
practice; e.g., if for at least one CR link, or in the pres-
ence of spatially correlated MIMO channels [20]. Furthermore,
computing the rank of channel matrices increases the compu-
tational burden to an extent that may not be affordable by the
CRs. In this section, an alternative approach based on prox-
imal-point regularization [21] is pursued to ensure convergence,
without requiring restrictions on the antenna configuration and
the channel rank.
The idea consists in penalizing the objective of (P4) using a

quadratic regularization term , with a given
sequence of numbers . Then, (P5) is modified as

(34a)

(34b)

(23b), (23c), (23d)

where (34b) is derived by using the Schur complement through
the auxiliary variable .
The role of is to render the cost in (34a)

strictly convex and coercive. Moreover, for small values of ,
the optimization variable is forced to stay “close” to
obtained at the previous iteration, thereby improving the sta-
bility of the iterates [34, Ch. 6]. Centralized and distributed
schemes with the proximal point regularization are given by
Algorithms 1 and 2, respectively, with problem (P6) replacing
(P5). Convergence of the resulting schemes is established in the
following theorem. To avoid ambiguity, these proximal point-
based algorithms will be hereafter referred as Algorithms 1(P)
and 2(P), respectively.
Theorem 2: Suppose that the sequence generated by

Algorithm 1(P) (Algorithm 2(P)) has a limit point. Then, every
limit point is a stationary point of (P3).

Proof: The Gauss-Seidel method with a proximal point
regularization converges without any underlying convexity as-
sumptions [35]. Amodified version of the proof is reported here,
where the local convex approximation (13) and the peculiarities
of the problem at hand are leveraged to establish not only con-
vergence of the algorithm, but also optimality of the obtained
solution.
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Assume there exists a subsequence
converging to a limit point . Let
be obtained as

(35)

Thus, it follows that [cf. (26)]

(36)

Going along the lines of the proof of Theorem 1, it holds that

(37)

Therefore, taking the limit as in (36), one arrives at

(38)

which implies that also converges to .
Since is generated as in (35), it satisfies the opti-

mality condition

(39)

Taking the limit as in (39), and using again the fact that
, we obtain

(40)

Then, repeating the same argument for all , leads to

(41)

which shows that the limit point is also a stationary point.
As asserted in Theorem 2, Algorithms 1(P) and 2(P) converge

to a stationary point of (P3) for any possible antenna config-
uration. The price to pay however, is a possibly slower con-
vergence rate that is common to proximal point-based methods
[34, Ch. 6] (see also the numerical tests in Section V). For this
reason, the proximal point-based method should be used in ei-
ther a centralized or a distributed setup whenever the number
of transmit-antennas exceeds that of receive-antennas in at least
one transmitter-receiver pair. In this case, Algorithms 1(P) and
2(P) ensure first-order optimality of the solution obtained.When

, for all , the two solvers have complementary
strengths in convergence rate and computational complexity.
Specifically, Algorithms 1 and 2 require the rank of all CR di-
rect channel matrices beforehand, which can be compu-
tationally burdensome, especially for a high number of antenna

elements. If the rank determination can be afforded, and the con-
vergence rate is at a premium, then Algorithms 1 and 2 should
be utilized.

IV. AGGREGATE INTERFERENCE CONSTRAINTS

Suppose now that the individual interference budgets
are not available a priori. Then, the aggregate interference
power has to be divided among transmit-CRs by the
resource allocation scheme in order for the overall system
performance to be optimized. Accordingly, (P3) is modified as
follows to incorporate a robust constraint on the total interfer-
ence power inflicted to the PU node:

(42a)

(42b)

(42c)

The new interference constraint (42c) couples the CR nodes (or,
more precisely, the subset of transmit-CR nodes in the proximity
of the PU receiver). Thus, the overhead of message passing in-
creases since cooperation among coupled CR nodes is needed.
A common technique for dealing with coupled constraints is

the dual decomposition method [29], which facilitates evalua-
tion of the dual function by dualizing the coupled constraints.
However, since (P7) is non-convex and non-separable, the du-
ality gap is generally non-zero. Thus, the primal variables ob-
tained during the intermediate iterates may not be feasible, i.e.,
transmit-covariances can possibly lead to violation of the inter-
ference constraint. Since the ultimate goal is to design an on-line
algorithm where (42c) must be satisfied during network opera-
tion, the primal decomposition technique is well motivated to
cope with the coupled interference constraints [10]. To this end,
consider introducing two sets of auxiliary variables and

in problem (P7), which is equivalently re-formulated as

(43a)

(43b)

(43c)

(43d)

(43e)

For fixed , the inner maximization subproblem turns out to
be

(44a)
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(44b)

(44c)

(44d)

which, as discussed in preceding sections, can be solved using
the block coordinate ascent algorithm (or its proximal point
version) in either a centralized or a distributed fashion. After
solving (P9) for a given set , the per-CR interference bud-
gets are updated by the following master problem:

(45a)

(45b)

with the simplex set given by

(46)

Overall, the primal decomposition method solves (P8) by it-
eratively solving (P9) and (P10). Notice that the master problem
(P10) dynamically divides the total interference budget
among CR transmitters, so as to find the best allocation of re-
sources that maximizes the overall system performance. Using
the block coordinate ascent algorithm, the -th transmit-covari-
ance matrix is obtained by solving the following problem
[cf. Algorithm 2]

(47a)

(47b)

(47c)

(47d)

where the proximal point-based regularization term is added
if Algorithm 2(P) is implemented. Since (P11) is a convex
problem, it can be seen that the subgradient of with re-
spect to is the optimal Lagrange multiplier corresponding
to the constraint (47d) [29, Chap. 5]. Thus, it becomes pos-
sible to utilize the subgradient projection method to solve the
master problem. Strictly speaking, due to the non-convexity
of the original objective (43a), primal decomposition method
leveraging the subgradient algorithm is not an exact, but rather
an approximate (and simple) approach to solve (P8). However,
because (47d) is a tight concave lower bound of (43a) around
the approximating feasible point, is well-approximated
by as approaches the optimal value .
Hence, also comes “very close” to the true subgradient of

with respect to . Therefore, at iteration of the
primal decomposition method, the subgradient projection up-
dating the interference budgets becomes

(48)

where ; is a positive step size;
denotes projection onto the convex feasible set . Pro-

jection onto the simplex set in (46) is a computationally-afford-
able operation that can be efficiently implemented as in e.g.,
[36].

Once (P9) is solved distributedly, each CR that is coupled by
the interference constraint has to transmit the local scalar La-
grange multiplier to a cluster-head CR node. This node, in
turn, will update and will feed these quantities back
to the CRs. The resulting on-line distributed scheme is tabulated
as Algorithm 3. Notice however that in order for the overall al-
gorithm to adapt to possibly slowly varying channels, operation
(48) can be computed at the end of each cycle of the block co-
ordinate ascent algorithm, rather than wait for its convergence.

Algorithm 3: Distributed On-line Robust Sum-MSE
Minimization With Aggregate Interference Constraint

1: Initialize , and
2: repeat
3: [CRs]: Solve (P9) via Algorithm 2 [Algorithm 2(P)]
4: [CRs]: Transmit to the cluster-head node
5: [Cluster-head node]: Update via (48)
6: [CRs]: Receive from the cluster-head node

7: until

V. SIMULATIONS

In this section, numerical tests are performed to verify the
performance merits of the novel design. The path loss obeys
the model , with the distance between nodes, and
. A flat Rayleigh fading model is employed. For simplicity,

the distances of links are set to ; for
the interfering links distances are uni-
formly distributed over the interval 30–100 m. As for the dis-
tances between CR transmitters and PU receivers, two different
cases are considered: (c1) the PU receivers are located at a dis-
tance from the CRs that is uniformly distributed over 70–100
m; and, (c2) the CR-to-PU distances are uniformly distributed
over 30–100 m. Finally, the maximum transmit-power and the
noise power are identical for all CRs. For the proximal point-
based algorithm, the penalty factors are selected equal
to 0.1. To validate the effect of the robust interference con-
straint, the cumulative distribution functions (CDF) of the in-
terference power at the PU are depicted in Fig. 2. Four CR pairs
and one PU receiver are considered, all equipped with 2 an-
tennas. The maximum transmit-powers and noise powers are
set so that the (maximum) signal-to-noise ratio (SNR) defined

as equals 15 dB. The total interference

threshold is set to W and, for simplicity, it
is equally split among the CR transmitters. The channel uncer-
tainty is set to [17], with . CDF curves
are obtained using 2,000 Monte Carlo runs. In each run, inde-
pendent channel realizations are generated. The Matlab-based
package [37] along with [38] are used to solve the
proposed robust beamforming problems.
The trajectories provided in Fig. 2 refer to the block coordi-

nate ascent (BCA) algorithm described in Section III; the one
with the proximal point-based regularization (proximal-BCA)
explained in Section III-C; and the non-robust solver of (P2),
where the estimates are used in place of the true chan-
nels . Furthermore, the green trajectory corresponds to
(P8), where the subgradient projection (48) is implemented at
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Fig. 2. Interference cumulative distribution function (CDF): (a) Cases (c1) and
(b) Cases (c2).

the end of each BCA cycle, which includes updates of for
. As expected, the proposed robust schemes en-

force the interference constraint strictly in both scenarios (c1)
and (c2). In fact, the interference never exceeds the tolerable
limit shown as the vertical red solid line in Fig. 2. The CDFs
corresponding to the proposed BCA and its proximal counter-
part nearly coincide. In fact, the two algorithms frequently con-
verge to identical stationary points in this particular simulation
setup. Notice that with the primal decomposition approach the
beamforming strategy is less conservative. On the contrary, the
non-robust approach frequently violates the interference limit
(more than 30% of the time). Finally, comparing Fig. 2(a) with
Fig. 2(b), one notices that the interference inflicted to the PU
under (c1) and the one under (c2) are approximately of the
same order. Since in the second case the CR-to-PU distances
are smaller, the CR transmitters lower their transmit-powers to
protect the PU robustly.
Convergence of the proposed algorithms with given channel

realizations and over variable SNRs is illustrated in Fig. 3.
It is clearly seen that the total MSEs decrease monotonically
across fast-converging iterations, and speed is roughly iden-
tical in (c1) and (c2). As expected, the proximal point-based
algorithm exhibits a slightly slower convergence rate. Notice
also that the primal decomposition method returns improved
operational points, especially for medium and low SNR values.

Fig. 3. Convergence of proposed algorithms, for SNR = 10, 20, and 30 dB: (a)
Cases (c1) and (b) Cases (c2).

Furthermore, the gap between the sum-MSEs obtained with
and without the primal decomposition scheme is more evident
under (c2). Clearly, the sum-MSEs at convergence in (c2) are
higher than the counterparts of (c1). This is because CRs are
constrained to use a relatively lower transmit-power in order to
enforce the robust interference constraints; this, in turn, leads to
higher sum-MSEs and may reduce the quality of the CR-to-CR
communications.
In Fig. 4, the achieved sum-MSE at convergence is reported

as a function of the total interference threshold. Two sizes
of the uncertainty region are considered with and

. Focusing on the first case, it can be seen that the
two achieved sum-MSEs first monotonically decrease as the
interference threshold increases, and subsequently they remain
approximately constant. Specifically, for smaller , the
transmit-CRs are confined to relatively low transmit-powers in
order to satisfy the interference constraint. On the other hand,
for high values of , the interference constraint is no longer
a concern, and the attainable sum-MSEs are mainly due to CR
self-interference. Notice also that for the sum-MSEs
are clearly higher, although they present a trend similar to the
previous case. This is because the uncertainty region in (12c)
becomes larger, which results in a higher sum-MSE.
In order to compare performance of the proposed algorithms,

the total MSE obtained at convergence is depicted in Fig. 5
for 50 different experiments. In each experiment, independent
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Fig. 4. Achieved sum-MSE as a function of , for SNR = 10 dB.

Fig. 5. Achieved sum-MSE for SNR = 15 dB.

channel realizations are generated. The SNR is set to 15 dB. It
is clearly seen that the objectives values of the two proposed
methods often coincide. The differences presented in a few ex-
periments are caused by convergence to two different stationary
points. In this case, it is certainly convenient to employ the first
algorithm, as it ensures faster convergence (see Fig. 5) without
appreciable variations in the overall MSE. Notice that a smaller
mean-square error can be obtained by resorting to the primal de-
composition technique.
In Fig. 6, the simulation setup involves 8 CR pairs and one

PU receiver. The CR transmitters have 4 antennas, while the re-
ceiving CRs and the PU are equipped with 2 antennas. The dis-
tances are set to 50 m, while distances are uni-
formly distributed in the interval between 30 and 250m. Finally,
CR-to-PU distances are uniformly distributed between 100 and
200 m. Clearly, matrices here do not have full column
rank. It is observed that about 10% of the times the proximal
point based algorithm yields smaller values of the sum-MSE
than Algorithm 1. This demonstrates that Algorithm 1 may not
converge to a stationary point, or, it returns anMSE that is likely
to be worse than that of the proximal point-based scheme.
Fig. 7 depicts the CDFs of the difference between the

sum-MSE obtained with BCA, along with the ones obtained
with proximal-BCA andwith the primal decompositionmethod.
The simulation setups of Figs. 5 and 6 are considered. In the
first case, it can be seen that for over 80% of the trials the BCA
and proximal-BCA methods yield exactly the same solution.
Moreover, BCA with primal decomposition performs better

Fig. 6. Achieved sum-MSE for .

Fig. 7. CDF of sum-MSE gaps (relative to the BCA) using proximal-BCA
(blue) and primal decomposition (red): MSE (BCA) MSE (proximal-BCA)
and MSE(BCA) MSE(BCA w/ primal decomp.).

than the BCA method about 90% of the time. Specifically, the
gain can be up to 0.765, which corresponds to approximately
14% of the average sum MSE of the BCA. In the second case,
the proximal-BCA returns a smaller sum-MSE with higher
frequency.

VI. CONCLUDING SUMMARY

Two beamforming schemes were introduced for underlay
MIMO CR systems in the presence of uncertain CR-to-PU
propagation channels. Robust interference constraints were
derived by employing a norm-bounded channel uncertainty
model, which captures errors in the channel estimation phase,
or, random fading effects around the deterministic path loss.
Accordingly, a robust beamforming design approach was
formulated to minimize the total MSE in the information
symbol reconstruction, while ensuring protection of the pri-
mary system. In order to solve the formulated non-convex
optimization problem, a cyclic block coordinate ascent algo-
rithm was developed, and its convergence to a stationary point
was established when all CR-to-CR direct channel matrices
have full column rank. A second algorithm based on a proximal
point regularization technique was also developed. Although
slower than the first, the proximal point-based scheme was
shown capable of converging to a stationary point even for
rank-deficient channel matrices. The two solutions offer com-
plementary strengths as far as convergence rate, computational
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complexity, and MSE optimality are concerned. They can both
afford on-line distributed implementations. Finally, a primal
decomposition technique was employed to approximately solve
the robust beamforming problem with coupled interference
constraints. The developed centralized and distributed algo-
rithms are also suitable for non-CR MIMO ad-hoc networks
as well as for conventional downlink or uplink multi-antenna
cellular systems.

APPENDIX

A. Derivation of the Complex Gradient Matrix (16)

Using that [39], and letting denote
the -th entry of matrix , it follows that

(49)

(50)

which can be written in a compact form as

. Then, the identity

[39], which holds for
any Hermitian positive definite matrix , is used to obtain

(51)

Using now the chain rule, one arrives at

(52)

which readily leads to the desired result

(53)

B. Proof of Lemma 2

First, convexity of can be readily proved by the definition
of a convex set [18, Ch. 2]. Re-write the function
as [cf. (8), (18)]

(54)

where

is an affine map with respect to . Since is convex in
[40, Theorem 2], and convexity is preserved under affine map-
pings and nonnegative weighted-sums [18, Ch. 3], it follows that

is convex in .

C. Proof of Lemma 3

First, notice that the objective function (15a) can be re-written
as

(55)

Then, it suffices to prove strict convexity in of the third term
on the right hand side of (55). This is equivalent to showing that
(subscripts are dropped for brevity)

(56)

is strictly convex in for any given
and nonzero .

To this end, consider the second-order derivative of ,
which is given by

(57)

where and .
Note that matrix is Hermitian positive definite, since
and are Hermitian positive definite too. With full column
rank, it readily follows that for any . This ensures
that the Hermitian positive semi-definite matrix is not an
all-zero matrix, i.e., .
Let and

denote the eigenvalues of matrices and ,
respectively. Since matrix , is strictly positive, and
thus

(58a)

(58b)

where (58a) follows from von Neumann’s trace inequality [41].
Finally, (58b) shows the strong convexity (and hence strict con-
vexity) of .
For completeness, we provide an alternative proof of

the lemma. With some manipulations, function

can be re-expressed as

(59)

where . Let de-
note again the eigenvalues of a matrix . Note that the spec-
tral function is strictly

convex if and only if the corresponding symmetric function
is strictly convex [42]. To this end, the strict convexity of
for implies the strict convexity of , and thus of .
Under the condition of full column rank of , we will show that
strict convexity is preserved under the linear mapping in (59).
Specifically, define
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Then, for any and , we have that

(60a)

(60b)

(60c)

where (60b) follows from the strict convexity of , and the
fact that holds for any , since is full
column rank.
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