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Abstract—A large number of geo-distributed data centers begin
to surge in the era of data deluge and information explosion.
To meet the growing demand in massive data processing, the
infrastructure of future data centers must be energy-efficient and
sustainable. Facing this challenge, a systematic framework is put
forth in this paper to integrate renewable energy sources (RES),
distributed storage units, cooling facilities, as well as dynamic pric-
ing into the workload and energy management tasks of a data cen-
ter network. To cope with RES uncertainty, the resource allocation
task is formulated as a robust optimization problem minimizing
the worst-case net cost. Compared with existing stochastic opti-
mization methods, the proposed approach entails a deterministic
uncertainty set where generated RES reside, thus can be readily
obtained in practice. It is further shown that the problem can
be cast as a convex program, and then solved in a distributed
fashion using the dual decomposition method. By exploiting the
spatio-temporal diversity of local temperature, workload demand,
energy prices, and renewable availability, the proposed approach
outperforms existing alternatives, as corroborated by extensive
numerical tests performed using real data.

Index Terms—Cloud computing, data centers, energy storage,
geographical load balancing, renewable energy, robust optimiza-
tion, smart grids.

NOMENCLATURE

A. Abbreviations
RES Renewable energy sources.
DC Data center.
MN Mapping node.
QoS Quality-of-service.
IT Information technology.
DW Delay-tolerant workload.
CG Conventional generator.
RG Renewable generator.
RWEM Robust workload and energy management.
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B. Indices, numbers, and sets
T , t , T, Ti,s Number, index, set and sub-set of time slots.
I , i , I Number, index, and set of DCs.
J , j , J Number, index, and set of MNs.
Q, q Number and index of delay-tolerant workloads.
Q, Q j Sets of all delay-tolerant workloads and those

collected by MN j .
k, � Iteration indexes of the (dual) subgradient

ascent.
Tq Set of active slots of qth delay-tolerant job.
X Feasible set of primal variables.
Ei Uncertainty set of renewable generation in DC i .

C. Constants
At

j Demand of interactive workloads at MN j per
slot t .

Bq Demand of qth delay-tolerant job.
Lt

ji Bandwidth from MN j to DC i per slot t .
Sq , Eq Starting time and deadline for qth delay-tolerant

job.
� Fraction of server peak consumption when in

idle state.
γ , κ t

i Parameters of chilled-water and outside-air
cooling.

T t
i,R A, T t

i,O A IT rack and outside air temperatures at DC i per
time t .

P
t
i,a Cooling capacity using outside-air in DC i per

slot t .
Pt

i,T H Cooling source selection threshold in DC i per
slot t .

C0
i , Ci , Ci Initial, minimum and maximum energy levels of

battery.
P i,ch, P i,dis Maximum charging and discharging rates of

battery at DC i .
Rup

i , Rdw
i Ramping-up/down limits of CG at DC i .

Pi,g Generation capacity of CG at DC i .
Et

i , ei Renewable generation at DC i per slot t , and
vector collecting [E1

i , . . . , ET
i ]�.

E
t
i , Et

i Upper and lower bounds of renewable genera-
tion at DC i per slot t .

ETi,s , ETi,s
Upper and lower bounds of total renewable gen-
eration at DC i over Ti,s .

E
avg
Ti,s

Historical sample average of total RES over Ti,s

at DC i .
�

up
s , �low

s Levels of robustness for upper and lower bounds
in RES uncertainty set.
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αt
i , β t

i Buying and selling energy prices in DC i at
slot t .

ϕt , φt Auxiliary variables of energy prices.

D. Variables
at

ji Interactive workloads distributed from MN j to
DC i .

b̃t
i,q , bt

i,q Amounts of qth delay-tolerant job routed to, and
being processed in DC i per slot t .

dt
i Total IT workload demand in DC i at slot t .

mt
i Number of active servers in DC i at slot t .

Pt
i,w, Pt

i,a IT power consumption allocated for chiller and
outside-air cooling.

Pt
i,dis,P

t
i,ch (Dis)charging power from battery at DC i per

slot t .
Pt

i,in, Pt
i,out Total energy supply and consumption in DC i

per slot t .
Ct

i Energy level in battery i at the beginning of slot
t .

Pt
i,g Output generation of CG in DC i per slot t .

Rt
i Auxiliary variable for market power trading.

x, x Matrix collecting all primal variables and its
running average.

λt
i,q , νt

i , π t
i Lagrange multipliers.

� Vectors collecting all Lagrange multipliers.

I. INTRODUCTION

I N THE NEW era of big data analytics, cloud computing,
and the Internet of Things, data centers are proliferat-

ing globally to provide important Internet services such as
instant messaging, video distribution, and data backup. For the
purposes of reliability and quality-of-service (QoS), a cloud
service provider usually has multiple data centers (DCs) geo-
graphically distributed in different areas. For instance, Google
currently operates seven DCs in the US, and fourteen all
over the world [1]. Along with the ever-increasing demand
of Internet applications, energy-consuming DCs incur a huge
amount of electricity bills. According to [2], DCs among the
US consumed about 91 billion kWh electricity in 2013, which
is almost twice the amount of power needed by all the house-
holds in New York City. Such a consumption is projected to
reach 140 billion kWh by 2020.

In order to reduce the electricity cost, considerable efforts
from both industry and academia have been made over the
last decade [3]. One typical direction is to reduce the energy
usage in DCs, through e.g., dynamic thermal management,
server speed scaling, and dynamic resizing [4]–[6]. Another
line of research aims at information technology (IT) work-
load management by exploiting the spatio-temporal diversity
of energy prices [7], [8]. Specifically, [7] proposed a stochas-
tic optimization based approach to workload routing and server
management for geo-distributed DCs, while [8] investigated the
means of reducing a single DC’s peak loads by shifting the
batch workloads. To deal with the uncertainties of IT workloads

and electricity prices, [9] advocated hedging techniques in the
financial management to smooth the associated dynamics.

The carbon dioxide emission along with the large energy
consumption will also become a major concern. For instance,
Google’s DCs in 2010 approximately emitted carbon compa-
rable to that of 280,000 cars [10]. Hence, not only achieving
energy efficiency is of essence, but also the sustainability of
DCs should be targeted [11], [12]. Exploiting RES is clearly
a key for sustainable operation of DCs [13]. The main chal-
lenge of renewable-integrated energy management is to account
for its random and nondispatchable nature, which motivates
the use of energy storage units [14]. Energy supply side man-
agement with distributed storage units was considered for a
homogeneous DC [15], and geo-distributed DCs [16]. Taking
advantage of RES, a two-timescale Lyapunov optimization
technique was developed to control the energy supply in both
ahead-of-time and real-time settings [14]. However, spatial
diversity of workloads, prices, and renewables was not utilized
therein. Furthermore, in [14]–[16] the server model was simpli-
fied while the cooling power consumption was ignored. Yet, a
substantial amount of DC energy actually goes to a variety of
cooling facilities [17], [18].

Existing approaches of dealing with RES uncertainty include
the Lyapunov optimization based on the stochastic approxima-
tion technique [7], [14]–[16], and the scenario-based stochastic
optimization approaches using RES samples from historical
data or a given distribution [19], [20]. To guarantee the con-
vergence and optimality, these methods typically require the
condition of independent and identically distributed (i.i.d.) RES
samples, which is generally unrealistic [21], [22]. For a large
time scale, the distribution of the RES generation changes
with the seasons. For a short time scale, hourly RES gener-
ation can be highly correlated. How to properly handle the
RES uncertainty for DC daily operations is still a challenging
problem.

In this paper, we consider the optimal workload and energy
management for a cloud network consisting of multiple geo-
distributed mapping nodes (MNs) and DCs. For each DC, prac-
tical models of power supply, cooling, and IT systems are con-
sidered. In particular, the power supply system comprises mul-
tiple energy sources; the cooling system combines two different
cooling sources with time-varying cooling coefficients1; and
the IT operating system is able to adaptively activate servers and
schedule workloads with guaranteed hard deadlines. Distinct
from existing works, a deterministic uncertainty set of the
unknown renewable generation, as well as a two-way energy
trading mechanism is introduced to account for the stochastic
and nondispatchable nature of RES. The proposed uncertainty
set of the RES generation only requires easy-to-obtain first-
order statistics, and allows the possible sample correlation.
Control parameters are further designed to trade off robustness
for conservatism of the robust optimization formulation.

Built on practical models, the resource allocation task is for-
mulated as a robust optimization problem, which minimizes the

1Cooling coefficient is the power consumed for cooling divided by the IT
demand, thus representing the cooling efficiency.
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Fig. 1. A sustainable cloud network design.

system’s worst-case net cost subject to DCs’ operational con-
straints. Leveraging the problem structure, we show that it can
be cast as a convex program. Capitalizing on the dual decom-
position approach, an efficient distributed solver is developed.
It is shown that the proposed algorithm is guaranteed to obtain
the desired robust workload and energy-management strategy,
and could also facilitate distributed implementations among the
MNs and DCs. Finally, extensive numerical results with real
data corroborate the merits of the proposed framework and
approaches.

The rest of the paper is organized as follows. The sys-
tem models are described in Section II. The proposed robust
management scheme is developed in Section III. Numerical
results are provided in Section IV, followed by conclusions in
Section V.

Notation. Boldface lower (upper) case letters represent col-
umn vectors (matrices); (·)′ stands for vector (matrix) trans-
pose. R represents the set of real numbers; and [a]+ :=
max{a, 0}.

II. SYSTEM MODELS

Consider a network with geographically distributed MNs
J := {1, 2, . . . , J } and DCs I := {1, 2, . . . , I }; see Fig. 1(a).
MNs first collect data requests from nearby areas, and then
distribute them to different DCs. As shown in Fig. 1(b), each
DC has three subsystems: an IT subsystem, a cooling (heat
dissipation) subsystem, and a power supply subsystem.

Fig. 2. A workload distribution diagram.

A. Network and Workload Models

In general, DC workloads are either delay-sensitive (inter-
active) or delay-tolerant [7]. The interactive workloads entail-
ing real-time user requests must be attended to immediately;
e.g., instant messages and voice services. In contrast, delay-
tolerant workloads such as system updates and data backups
are deferrable within a given time interval. This flexibility of
delay-tolerant loads enables opportunistic workload manage-
ment that can be adaptive to the time-varying energy prices and
renewables.

Consider a discrete-time scheduling horizon2 T :=
{1, . . . , T }. For interactive workloads, let At

j denote the
arrival rate of service requests at MN j , and at

ji the workload
directed from node j to DC i over slot t . For delay-tolerant
workloads, let Q j denote the jobs collected by node j , and
Q := ⋃J

j=1 Q j with Qi
⋂

Q j = ∅,∀i �= j , representing the
set of all delay-tolerant jobs. The qth delay-tolerant job
can be specified by its total demand Bq , and active interval
Tq := {Sq , . . . , Eq}, with Sq and Eq denoting the start- and
end-time slots. Let b̃t

i,q denote the amount of qth delay-tolerant

job routed from3 its MN to DC i , and bt
i,q the amount pro-

cessed by DC i over slot t , respectively; and Lt
ji denote the

link bandwidth from node j to DC i at time t . As shown in
Fig. 2, these quantities must satisfy the following constraints:

I∑
i=1

at
ji = At

j ,∀ j ∈ J, t ∈ T (1)

Eq∑
t=Sq

I∑
i=1

b̃t
i,q = Bq ,∀q ∈ Q (2)

at
ji +

∑
q∈Q j

b̃t
i,q ≤ Lt

ji ,∀i ∈ I, j ∈ J, t ∈ T (3)

where (1) ensures that interactive workloads are dispatched
once arrived; (2) requires routing each delay-tolerant job before
its deadline; and (3) captures the bandwidth limitation of data
transfer. Clearly, Lt

ji = 0 if load transfer from node j to DC i is
prohibited; e.g., when MN j is not physically linked with DC i .

2For convenience, the slot duration is normalized to unity; thus, the terms
“energy” and “power” will be interchangeably used throughout the paper.

3Workload distribution delay is ignored here.
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In each DC, interactive workloads are processed imme-
diately, while delay-tolerant workloads are deferrable. The
unserved portion of delay-tolerant workloads are buffered in
separate queues obeying following dynamic recursions

Qt+1
i,q = Qt

i,q − bt
i,q + b̃t

i,q , ∀i ∈ I, t ∈ Tq , q ∈ Q (4)

where Qt
i,q is the queue length of qth delay-tolerant job in

DC i at the beginning of slot t . For the deadline completion
requirements, queue length Qt

i,q must satisfy

Qt
i,q ≥ 0, Q

Sq
i,q = Q

Eq+1
i,q = 0. (5)

The total IT demand of DC i in slot t , is thus given by

dt
i =

J∑
j=1

at
ji +

∑
q∈Q

bt
i,q , ∀t ∈ T. (6)

The aforementioned IT system mainly deals with the DC
network workload balancing tasks by exploiting the heteroge-
neous server and bandwidth resources in the cloud. The control
variables therein are {dt

i , at
ji , bt

i,q , b̃t
i,q}, under constraints (1)–

(6). In addition, the IT system also closely connects with the
underlying power infrastructure through a power supply and
demand relationship, which is instructive to detail in the next
two subsections.

B. Power Demand Model

The power consumption of a DC generally comes from var-
ious sources, but mainly from the running servers and cooling
systems [2].

Suppose that each DC i has a set of Mi homogeneous
servers, so the number of active servers mt

i at time t should
be in the range Mi ≤ mt

i ≤ Mi , where Mi stands for the min-
imum number of servers required for providing basic services.
The consumption of each server can be generally modeled as a
function of its running speed [23]

Pi,s(s
t
i ) = Pi,s

(
�(st

i )
υ + 1 − �

)
, � ∈ [0, 1]

where Pi,s denotes the peak power consumption of a server
in DC i ; st

i ∈ [0, 1] is its actual speed (a.k.a. CPU usage); and
parameter υ is typically around 2 for state-of-the-art servers
[5]. Clearly, the fraction of peak consumption 1 − � denotes the
power consumed in the idle state (i.e., st

i = 0). When the server
is in its highest speed st

i = 1, the actual consumption is Pi,s .
Due to the convexity of Pi,s(st

i ), it readily follows that given a
total IT demand dt

i , uniform allocation of the workloads to each
server is most energy efficient [7]. Accordingly, each server
is running at a speed dt

i /(m
t
i Di ) with Di denoting the server

capacity under the required service level agreement (SLA), and
the total power consumption in DC i becomes

Pi,I T (d
t
i ,mt

i ) = �Pi,sdt
i

2

mt
i D2

i

+ (1 − �)Pi,smt
i . (7)

Since the number of servers is very large, mt
i can be relaxed to

be a positive real number for simplicity [6].

Along with the increasing density of IT equipment in DCs, a
considerable amount of electricity is consumed by the cooling
system that generally operates in two modes [4], [24]: outside-
air and chilled-water cooling.

The energy usage of outside-air cooling is mainly the power
consumed by blowers, which can be approximated as a cubic
function of the blower speed [25]. As the blower speed under
tight control is proportional to the IT consumption Pi,I T , the
outside-air cooling power consumption can be modeled as a
convex function of Pi,I T , namely

Ft
i,a(Pi,I T ) = κ t

i (Pi,I T )
3, 0 ≤ Pi,I T ≤ P

t
i,a (8)

where κ t
i > 0 depends on the temperature difference between

the (hot) exhausting air temperature T t
i,R A from the IT racks

and the outside air temperature T t
i,O A around DC i at time slot

t . The capacity of outside-air cooling in (8) can be modeled
as P

t
i,a = C(T t

i,R A − T t
i,O A), with C > 0 proportional to the

maximal outside air flow rate.
The chilled-water cooling model here is established on the

actual measurement of a practical chiller for which the power
consumption can be approximated as [26]

Fi,w(Pi,I T ) = γ Pi,I T (9)

where Pi,I T is again the IT power consumption in (7) and γ > 0
is a constant depending on the specific chiller characteristics.

Due to different cooling efficiencies and capacities of the two
approaches, for a given Pi,I T , there is an optimal allocation
between outside-air cooling and chiller cooling. Let Pt

i,w and
Pt

i,a denote the amounts of IT power consumption allocated for
chiller and outside-air cooling, respectively. With (8) and (9),
the optimal cooling power consumption is [24]

Ft
i (Pi,I T ) = min

0≤Pt
i,a≤P

t
i,a

Pt
i,a+Pt

i,w=Pi,I T

Fi,w(P
t
i,w)+ Ft

i,a(P
t
i,a)

= min
0≤Pt

i,a≤P
t
i,a

γ [Pi,I T − Pt
i,a]+ + κ t

i (P
t
i,a)

3. (10)

With a temperature-dependent threshold Pt
i,T H :=

min{P
t
i,a,

√
γ /3κ t

i }, (10) admits a closed-form solution

Ft
i (Pi,I T ) =

⎧⎨
⎩

κ t
i

(
Pi,I T

)3
, Pi,I T ≤ Pt

i,T H

κ t
i

(
Pt

i,T H

)3 + γ
(

Pi,I T − Pt
i,T H

)
, otherwise.

For notational convenience, let Pt
i (d

t
i ,mt

i ) include the server
and cooling consumptions in DC i per slot t as Pt

i (d
t
i ,mt

i ) :=
Ft

i (d
t
i ,mt

i )+ Pi,I T (dt
i ,mt

i ), and consider the following lemma.
Lemma 1: Function Pt

i (d
t
i ,mt

i ) is jointly convex in {dt
i ,mt

i }.
Proof: See Appendix A. �

C. Power Supply Model

A rapidly increasing use of microgrids characterizes the
transformative change from our aging power grid to a smart grid
over the last decade [27]. While the traditional geographical
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Fig. 3. A diagram of uncertainty sets of the CAISO solar generations. Figs. 3(a)–3(c) are for Ei , and Fig. 3(d) is for Ěi . Points (∗) denote the generation samples
from historical data. Red lines represent the boundaries of the polyhedral uncertainty sets (13) and (14).

workload balancing operates separately from the local power
balancing, recently advocated dynamic pricing and demand
response programs motivate the interactions between them. In
this context, we consider each DC to be supplied by a RES-
integrated microgrid consisting of a conventional generator
(CG) (e.g., a fuel generator), an on-site renewable generator
(RG) (e.g., a wind or solar generator), and an energy storage
unit (e.g., a battery).

Let Pt
i,g denote the energy output of the CG in DC i per slot

t , which is upper bounded by Pi,g; that is,

0 ≤ Pt
i,g ≤ Pi,g, ∀i ∈ I, t ∈ T. (11)

The change of CG energy output in two consecutive slots is
bounded by the following so-termed ramping constraints:

Pt
i,g − Pt−1

i,g ≤ Rup
i , Pt−1

i,g − Pt
i,g ≤ Rdw

i , ∀i ∈ I, t ∈ T (12)

where Rup
i and Rdw

i are the ramping-up and ramping-down
limits of CG at DC i .

Consider now the RES vector ei := [E1
i , . . . , ET

i ]′ generated
at DC i across all slots. Due to the unpredictable and intermit-
tent nature of RES, ei is unknown a priori. In general, uncertain
quantities can be modeled by postulating either an underlying
probability distribution or an uncertainty region. Probability
distributions (possibly mixed discrete/continuous) of the
RES generation are seldom available in practice. Although
(non-)parametric approaches can be used to learn these distribu-
tions, the processes can be very complicated due to the spatio-
temporal correlations incurred by various meteorological fac-
tors [28]. On the contrary, the proposed method of postulating
an uncertainty region provides the decision maker with ranges
instead of point forecasts, which is essentially a distribution-
free deterministic set and robust to prediction errors.

The actual RES generation ei is assumed to lie in an uncer-
tainty set Ei , which can be obtained via forecasting or inference
using historical measurements. In particular, the following
polyhedral uncertainty set is considered (see also [29], [30])

Ei :=
{

ei |Et
i ≤ Et

i ≤ E
t
i , T =

S⋃
s=1

Ti,s,

�low
s ETi,s

+ (1 −�low
s )Eavg

Ti,s
≤

∑
t∈Ti,s

Et
i

≤ (1 −�
up
s )E

avg
Ti,s

+�
up
s ETi,s

}
(13)

where Et
i (E

t
i ) denotes the lower (upper) bound on the actual

Et
i ; T is partitioned into consecutive but non-overlapping

sub-horizons Ti,s , s = 1, . . . , S; Eavg
Ti,s

is the sample aver-

age of total renewables
∑

t∈Ti,s
Et

i ; the total renewables over

Ti,s are bounded by ETi,s
and ETi,s ; and the parameter

�low
s (�

up
s ) ∈ [0, 1] represents the level of robustness for the

lower (upper) bound of the sth sub-horizon. Note that all the
aforementioned statistics can be directly obtained using real
RES generations from public sources.

Clearly, parameters �low
s , �up

s trade off robustness for con-
servatism of the resultant solutions. Based on the CAISO solar
generations during Mar. 1 – Oct. 30, 2012 [31], examples are
given in Fig. 3 for |Ti,s | = 2; e.g., each sub-horizon consists
of two time slots. When the robustness levels �low

s and �up
s are

high, the uncertainty set is large, which includes most of histori-
cal samples thus usually leading to conservative solutions when
the degree of uncertainty is high; if�low

s and�up
s are low, some

of samples are excluded from the uncertainty set, which reduces
the robustness of the resultant solutions.

Here it is also instructive to point out that by further capturing
the maximum variation of RES over two consecutive slots ∂E

t
i ,

a more accurate polyhedral set can be written as (see Fig. 3(d))

Ěi :=
{

ei |Et
i ≤ Et

i ≤ E
t
i , |Et

i − Et−1
i | ≤ ∂E

t
i , T =

S⋃
s=1

Ti,s,

�low
s ETi,s

+ (1 −�low
s )Eavg

Ti,s
≤

∑
t∈Ti,s

Et
i

≤ (1 −�
up
s )E

avg
Ti,s

+�
up
s ETi,s

}
. (14)

This modification allows a decision maker to reduce the uncer-
tainty region, without missing many potential samples. It makes
sense intuitively since in a short time scale (e.g., 15 min, or,
an hour), the RES are highly correlated over successive slots.
Although the aforementioned practical models only capture
RES uncertainty across the scheduling horizons per DC, our
proposed approach could be easily extended to include joint
spatio-temporal uncertainty models.

To mitigate the variability of RES, energy storage devices
are recently considered so as to store the surplus renewables
for later shortage [32]. We consider a storage unit with finite
capacity Ci , and let C0

i and Ct
i denote the initial energy level
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of the storage unit in DC i at the beginning of time slot t .
Since storage devices become unreliable with high depth-of-
discharge4 (DoD), a nonzero minimum level Ci can avoid high
DoD. Such a level could also support the DC operation in the
event of a grid outage. Let Pt

i,ch and Pt
i,dis denote the amounts

of power charging and discharging the storage unit (battery) in
DC i at slot t . Due to AC/DC power conversion during the
(dis-)charging process, the power conversion losses need to
be accounted for by the (dis-)charging efficiency δ ∈ (0, 1].
In addition, dissipation losses due to battery energy leakages
are captured by the efficiency coefficient η ∈ (0, 1], which ren-
ders a decreasing energy level even if there is no (dis-)charging
operation. In short, the energy storage unit can be compactly
described as

Ct+1
i = ηCt

i + δPt
i,ch − Pt

i,dis

δ
, ∀i ∈ I, t ∈ T (15)

Ci ≤ Ct
i ≤ Ci , ∀i ∈ I, t ∈ T (16)

0 ≤ Pt
i,dis ≤ P i,dis; 0 ≤ Pt

i,ch ≤ P i,ch, ∀i ∈ I, t ∈ T (17)

where the bounds P i,dis and P i,ch on (dis-)charging amounts
are dictated by physical limits.

Let Pt
i,out denote the total energy consumption of DC i per

slot t including the IT operating consumption, cooling power
consumption, and battery charged power; that is, [cf. Lemma 1]

Pt
i,out = Pt

i + Pt
i,ch. (18)

Likewise, the total energy supply Pt
i,in in DC i per slot t is

given by

Pt
i,in = Pt

i,g + Et
i + Pt

i,dis. (19)

Under constraints (11)–(19), the power supply opti-
mization variables are CG and battery power amounts
{Pt

i,g, Pt
i,dis, Pt

i,ch,Ct
i }.

D. Cost-Revenue Model

In addition to the internal energy resources (namely, CG, RG,
storage unit), DCs can resort to the main grid market in an on-
demand manner. With a two-way energy trading facility, each
DC can buy energy from external energy markets in the case
of a deficit (Pt

i,out > Pt
i,in), or, sell energy to the markets in the

case of a surplus (Pt
i,out < Pt

i,in). Clearly, the shortage energy
that needs to be purchased by the DC is [Pt

i,out − Pt
i,in]+; while

the surplus energy that can be sold is [Pt
i,in − Pt

i,out]
+. Note that

both the shortage and surplus energies are non-negative, and at
most one of them is positive at any slot t .

Suppose that the energy can be purchased from the wholesale
electricity market around DC i in period t at price αt

i , while the
energy is sold at price β t

i . Notwithstanding, we shall always
set αt

i ≥ β t
i to avoid less relevant buy-and-sell activities of the

4DoD is the percentage of maximum charge removed during a discharge
cycle.

DC for profit. For DC i , the worst-case transaction cost for the
whole scheduling horizon is defined as

Gi ({Pt
i,out}, {Pt

i,in}) := max
ei ∈Ei

T∑
t=1

αt
i

[
Pt

i,out − Pt
i,in

]+
− β t

i

[
Pt

i,in − Pt
i,out

]+ (20)

which is the point-wise maximum over any realization of the
random RES generation in the uncertainty set.

In addition, let function GCi (P
t
i,g) denote the cost of CG

at DC i in slot t , which is convex piecewise linear or smooth
quadratic [33]. The revenue considered here comes from pro-
cessing delay-tolerant workloads. Specifically, for the qth job,
the revenue earned per slot t can be generally modeled as a con-
cave function U t

q(b
t
i,q), which reflects the diminishing marginal

sensitivity of end users to the increasing gains.

III. ROBUST WORKLOAD AND ENERGY MANAGEMENT

Based on the practical models in Section II, we pursue in this
section a robust workload and energy management approach
for the considered DC network. Over the scheduling horizon T,
the system operator per MN performs an (e.g. hour-) ahead-of-
time schedule to optimize workloads routing {at

ji , b̃t
i,q}, while

the system operator in each DC optimizes servers and work-
loads scheduling {mt

i , bt
i,q}, CG generation {Pt

i,g}, and battery
(dis-)charging energy {Pt

i,ch, Pt
i,dis}. The optimal management

strategy minimizes the worst-case net cost �̃, which includes
the worst-case transaction cost, the CG cost and the revenue of
delay-tolerant workloads, subject to DC operating and power
supply constraints. Note that the worst-case net cost here is
the maximum net cost for any realization of the random RES
generation in the uncertainty set.

With x̃ collecting all the optimization variables
{at

ji , bt
i,q , b̃t

i,q , dt
i ,mt

i , Pt
i,g, Pt

i,ch, Pt
i,dis,Ct

i }, we wish to
solve

�̃∗ := min
x̃

I∑
i=1

Gi ({Pt
i,out}, {Pt

i,in})

+
T∑

t=1

I∑
i=1

⎛
⎝GCi (P

t
i,g)−

∑
q∈Q

U t
q(b

t
i,q)

⎞
⎠ (21a)

subject to:

Ct+1
i = ηCt

i + δPt
i,ch − Pt

i,dis

δ
, ∀i ∈ I, t ∈ T (21b)

Ci ≤ Ct
i ≤ Ci , ∀i ∈ I, t ∈ T (21c)

0 ≤ Pt
i,dis ≤ P i,dis, ∀i ∈ I, t ∈ T (21d)

0 ≤ Pt
i,ch ≤ P i,ch, ∀i ∈ I, t ∈ T (21e)

0 ≤ Pt
i,g ≤ Pi,g, ∀i ∈ I, t ∈ T (21f)

Pt
i,g − Pt−1

i,g ≤ Rup
i , ∀i ∈ I, t ∈ T (21g)

Pt−1
i,g − Pt

i,g ≤ Rdw
i , ∀i ∈ I, t ∈ T (21h)

Mi ≤ mt
i ≤ Mi , ∀i ∈ I, t ∈ T (21i)

0 ≤ dt
i ≤ mt

i Di , ∀i ∈ I, t ∈ T (21j)
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at
ji +

∑
q∈Q j

b̃t
i,q ≤ Lt

ji , ∀ j ∈ J, i ∈ I, t ∈ T (21k)

I∑
i=1

at
ji = At

j , ∀ j ∈ J, t ∈ T (21l)

Eq∑
t=Sq

I∑
i=1

b̃t
i,q = Bq , ∀q ∈ Q (21m)

Qt+1
i,q = Qt

i,q − bt
i,q + b̃t

i,q , ∀i ∈ I, t ∈ T, q ∈ Q (21n)

Pt
i,out = Pt

i (d
t
i ,mt

i )+ Pt
i,ch, ∀i ∈ I, t ∈ T (21o)

Pt
i,in = Pt

i,g + Et
i + Pt

i,dis, ∀i ∈ I, t ∈ T (21p)

Q
Sq
i,q = Q

Eq+1
i,q = 0, Qt

i,q ≥ 0, ∀i ∈ I, q ∈ Q, t ∈ Tq (21q)

dt
i =

J∑
j=1

at
ji +

∑
q∈Q

bt
i,q , ∀i ∈ I, t ∈ T (21r)

0 ≤ bt
i,q ≤ Bq , ∀t ∈ Tq; bt

i,q = 0, ∀i ∈ I, q ∈ Q, t /∈ Tq

(21s)

0 ≤ b̃t
i,q ≤ Bq , ∀t ∈ Tq; b̃t

i,q = 0, ∀i ∈ I, q ∈ Q, t /∈ Tq

(21t)

0 ≤ at
ji ≤ At

j , ∀ j ∈ J, i ∈ I, t ∈ T. (21u)

It is worth mentioning that thanks to the worst-case trans-
action cost Gi ({Pt

i,out}, {Pt
i,in}), the objective of (21) has an

implicit min-max form, and the RES induced randomness can
be eliminated; thus, (21) contains only deterministic variables.
However, the objective of (21) is to minimize a point-wise max-
imum function, which is generally not differentiable when the
maximum is attained by more than one solution. In addition,
since Pt

i is a nonlinear function with respect to {dt
i ,mt

i }, then
(21o) are nonlinear equality constraints representing a noncon-
vex feasible set [34, Chap. 4]. Thus, problem (21) is nonsmooth
and nonconvex, which is hard to be handled by existing solvers.
To turn (21) into a tractable form, a reformulation relying on
epigraph-based relaxation is pursued next.

A. Convex Reformulation

Define ψ t
i := (αt

i − β t
i )/2, φt

i := (αt
i + β t

i )/2, and Rt
i =

Pt
i + Pt

i,ch − Pt
i,dis − Pt

i,g; and then rewrite (20) as

Gi ({Rt
i }) = max

ei ∈Ei

T∑
t=1

(
ψ t

i |Rt
i − Et

i | + φt
i

(
Rt

i − Et
i

))
. (22)

In order to convexify the (21) and facilitate a distributed
implementation, we define x collecting all the optimization
variables {at

ji , bt
i,q , b̃t

i,q ,mt
i , dt

i , Rt
i , Pt

i,g, Pt
i,ch, Pt

i,dis,Ct
i }, and

rewrite (21) as (RWEM):

�∗ := min
x

T∑
t=1

I∑
i=1

⎛
⎝GCi (P

t
i,g)−

∑
q∈Q

U t
q(b

t
i,q)

⎞
⎠

+
I∑

i=1

Gi ({Rt
i }) (23a)

subject to:

(21b)− (21m), (21s)− (21u) (23b)

Rt
i ≥ Pt

i (d
t
i ,mt

i )+ Pt
i,ch − Pt

i,dis − Pt
i,g, ∀i ∈ I, t ∈ T

(23c)
Eq∑
τ=Sq

b̃τi,q =
Eq∑
τ=Sq

bτi,q ,
t∑

τ=Sq

b̃τi,q ≥
t∑

τ=Sq

bτi,q ,

∀i, q ∈ Q, t ∈ [Sq , Eq − 1] (23d)

dt
i =

J∑
j=1

at
ji +

∑
q∈Q

bt
i,q , ∀i ∈ I, t ∈ T. (23e)

Convexity of the worst-case net cost � is established in the
following proposition.

Proposition 1: If αt
i ≥ β t

i holds for all i ∈ I and t ∈ T, then
RWEM problem (23) is convex and strong duality holds.

Proof: See Appendix B. �
With x̃∗ and x∗ denoting the optimal solutions for (21) and

(23), we arrive at the following claim.
Proposition 2: Problem (21) is equivalent to problem (23) in

the sense that �∗ = �̃∗, and x∗ = x̃∗.

Proof: See Appendix C. �

B. Lagrange Dual Approach

Notice that constraints (23c)–(23e) couple variables across
MNs, DCs, workloads, and the RES, so a system operator
over the entire network is essential to collect all the informa-
tion and solve the problem in a centralized way, which may
not be feasible in an Internet-scale network [35]. However,
since (23) is a convex problem [cf. Proposition 1], a Lagrange
dual approach can be developed to efficiently find its optimal
dual solution with zero duality gap in a decentralized manner
[36]. Let {π t

i }, {λt
i,q} and {νt

i } denote the Lagrange multipli-
ers associated with the constraints (23c)–(23e). For notational
convenience, let λt

i,q = 0,∀i, q ∈ Q, t /∈ Tq . And with � col-
lecting all the Lagrange multipliers, the partial Lagrangian
function of (23) is

L(x,� ) :=
I∑

i=1

⎡
⎣Gi ({Rt

i })+
T∑

t=1

GCi (P
t
i,g)−

∑
q∈Q

U t
q(b

t
i,q)

⎤
⎦

+
I∑

i=1

T∑
t=1

νt
i

⎛
⎝dt

i −
J∑

j=1

at
ji −

∑
q∈Q

bt
i,q

⎞
⎠

+
I∑

i=1

∑
q∈Q

T∑
t=1

λt
i,q

⎛
⎝ t∑
τ=Sq

bτi,q −
t∑

τ=Sq

b̃τi,q

⎞
⎠

+
I∑

i=1

T∑
t=1

π t
i

(
Pt

i + Pt
i,ch − Pt

i,dis − Pt
i,g − Rt

i

)
.

If X denotes the set of x satisfying constraints (21b)–(21m),
and (21s)–(21u), the Lagrange dual function is given by

D(� ) := min
x∈X

L(x,� ) (24)
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and the dual problem of (23) is

max D({π t
i }, {λt

i,q}, {νt
i })

s. t. π t
i ≥ 0, νt

i ∈ R,∀i ∈ I, t ∈ T

λt
i,q ≥ 0,∀i ∈ I, q ∈ Q, t ∈ [Sq , Eq − 1]

λt
i,q ∈ R,∀i ∈ I, q ∈ Q, t = Eq . (25)

For the dual problem (25), standard subgradient iterations
can be employed to obtain the optimal � ∗, namely

π t
i (k + 1) = [π t

i (k)+ μgπ t
i
(k)]+, ∀i ∈ I, t ∈ T (26a)

λt
i,q(k + 1) = [λt

i,q(k)+ μgλt
i,q
(k)]+, ∀i, q, t ∈ [Sq , Eq − 1]

λt
i,q(k + 1) = λt

i,q(k)+ μgλt
i,q
(k), ∀i, q, t = Eq (26b)

νt
i (k + 1) = νt

i (k)+ μgνt
i
(k), ∀i ∈ I, t ∈ T (26c)

where k is the iteration index, and μ > 0 is a constant stepsize,
and {gπ t

i
(k), gλt

i,q
(k), gνt

i
(k)} are the subgradients of (24) with

respect to the Lagrange multipliers. Specifically, we have

gπ t
i
(k) = Pt

i (k)+ Pt
i,ch(k)− Pt

i,dis(k)− Pt
i,g(k)− Rt

i (k)

(27a)

gλt
i,q
(k) =

t∑
τ=Sq

bτi,q(k)−
t∑

τ=Sq

b̃τi,q(k) (27b)

gνt
i
(k) = dt

i (k)−
J∑

j=1

at
ji (k)−

∑
q∈Q

bt
i,q(k) (27c)

where primal variables x(k) can be obtained as{
at

ji (k), b̃t
i,q(k)

}
i∈I,t∈T,q∈Q j

∈ arg min
{at

ji ,b̃
t
i,q }

T∑
t=1

I∑
i=1

⎡
⎣−at

jiν
t
i (k)−

∑
q∈Q j

b̃t
i,q

T∑
τ=t

λτi,q(k)

⎤
⎦

s. t. (21k)− (21m), (21t)− (21u) (28)

{bt
i,q(k)}t∈T,q∈Q

∈ arg min
{bt

i,q }

T∑
t=1

[
bt

i,q

(
T∑
τ=t

λτi,q(k)− νt
i (k)

)
− U t

q(b
t
i,q)

]

s. t. (21s) (29)

and (30), shown at the bottom of this page.

The subproblems (28)–(29) are linear programs (LPs) over
{at

ji , b̃t
i,q , bt

i,q}T
t=1; hence, they can be optimally solved using

available efficient LP solvers. Due to the convexity of Gi ({Rt
i }),

the subproblems (30) are convex per DC i . However, since
Gi ({Rt

i }) is non-differentiable due to the absolute value oper-
ator and the maximization over ei ∈ Ei , (30) still challenges
existing solvers. To address this, consider splitting (30) into two
subproblems, one being (31), shown at the bottom of this page,
and the second solving

{Rt
i (k)}T

t=1 ∈ arg min
{Ri ≤Rt

i ≤Ri }
Gi ({Rt

i })−
T∑

t=1

π t
i (k)R

t
i . (32)

Note that because of the exact relaxation [cf. Proposition 2], Ri
and Ri are lower and upper bounds of the right hand side of
(23c). Depending on the function GCi (P

t
i,g), subproblem (31)

is either an LP or a quadratic program. Hence, the optimal
solution can be obtained by existing solvers. And for nons-
mooth subproblems (32), a standard subgradient iteration can
be employed to obtain the optimal solution as

Rt
i (�+ 1) = Rt

i (�)− μ(�)gRt
i
(�), ∀t ∈ T (33)

where � denotes iteration index, and {μ(�)} is a non-summable
but square-summable stepsize sequence; while the partial sub-
gradient of Gi ({Rt

i }) with respect to Rt
i is obtained as

gRt
i
(�) :=

∂
(

Gi ({Rt
i })−∑T

t=1 π
t
i (k)R

t
i

)
∂Rt

i

=
{
αt

i − π t
i (k), if Rt

i (�) ≥ Et
i
∗
(�)

β t
i − π t

i (k), if Rt
i (�) < Et

i
∗
(�)

(34)

where e∗
i (�) := [E1

i
∗
(�), . . . , ET

i
∗
(�)]′ for the given {Rt

i (�)} is
found using

e∗
i ∈ arg max

ei ∈Ei

T∑
t=1

(
ψ t

i |Rt
i (�)− Et

i | + φt
i (R

t
i (�)− Et

i )
)
.

(35)

It can be seen that the objective function in (35) is convex
in ei under the condition αt

i ≥ β t
i , ∀t ∈ T. However, comput-

ing where the maximum of a convex function is attained can be
NP-hard, in general. Fortunately, the globally optimal solution
is attainable at the extreme points of Ei for convex maximiza-
tion [37, Sec. 2.4]. Leveraging the polyhedral structure of Ei ,

{Rt
i (k),mt

i (k), Pt
i,ch(k), Pt

i,dis(k),Ct
i (k), Pt

i,g(k), dt
i (k)}T

t=1

∈ arg min{
mt

i ,P
t
i,ch,P

t
i,dis,R

t
i ,P

t
i,g,d

t
i

} Gi ({Rt
i })+

T∑
t=1

[
νt

i (k)d
t
i + GCi (P

t
i,g)+ π t

i (k)(P
t
i + Pt

i,ch − Pt
i,dis − Pt

i,g − Rt
i )
]

s.t. (21b)− (21j) (30)

{mt
i (k), Pt

i,ch(k), Pt
i,dis(k),Ct

i (k), Pt
i,g(k), dt

i (k)}T
t=1

∈ arg min
{Pt

i,ch,P
t
i,dis,m

t
i ,P

t
i,g,d

t
i }

T∑
t=1

[
π t

i (k)(P
t
i + Pt

i,ch − Pt
i,dis − Pt

i,g)+ νt
i (k)d

t
i + GCi (P

t
i,g)

]
s.t. (21b)− (21j) (31)
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Algorithm 1. Subgradient iteration for solving (32)

1: Initialize: Generate all the vertices of the polyhedral
uncertainty set Ei ; choose a proper {Rt

i (0)} and stepsize
sequence μ(�)

2: repeat � = 0, 1, 2 . . .
3: Evaluate all the vertices in Ei and find e∗

i (�) in (35)
4: Calculate subgradients via (34)
5: Update {Rt

i (�)} via (33)
6: until Convergence

Algorithm 2. Distributed workload and energy management

1: Initialize: Choose a proper � (0) and stepsize μ
2: repeat k = 0, 1, 2 . . .
3: Each DC obtains {bt

i,q(k), Rt
i (k),mt

i (k), Pt
i,ch(k),

Pt
i,dis(k),Ct

i (k), Pt
i,g(k), dt

i (k)} by solving (29) and
(31)–(32) separately

4: Each MN solves (28) and sends {at
ji (k), b̃t

i,q(k)} to
each DC

5: DCs update � (k) via (26) and send them to MNs
6: Run averages to recover primal variables via (36)
7: until Convergence

we utilize an efficient vertex enumerating algorithm to evaluate
the objective in (35), and obtain e∗

i directly; see Algorithm 1.
Although the number of vertices may increase exponentially
with the number of variables and constraints, all the vertices of
Ei need be generated only once before running Algorithm 1,
which means that Algorithm 1 is computational affordable. In
fact, our simulations in Section IV will corroborate that the
vertex generating procedure can be completed within several
seconds.

C. Optimality and Distributed Implementation

For the subgradient iterations (33), if a diminishing stepsize
satisfying (i)

∑∞
�=0 μ(�) = ∞, and (ii)

∑∞
�=0 μ(�)

2 < ∞ is
adopted, the sequence (33) converges as � → ∞ to the opti-
mal {Rt

i (k)
∗} [37]. As a constant stepsize μ is used in (26),

the subgradient iterations will converge to a neighborhood of
the optimal solution � ∗ [37]. The size of the neighborhood is
proportional to the stepsize μ. Since the objective (23a) is not
strictly convex, running averages of the primal sequence {x(k)}
can be used to recover the optimal primal solutions, which are
given by

x(k) = 1

k
x(k − 1)+ k − 1

k
x(k − 1), ∀k (36)

where x(k) is the average of all primal solutions up to itera-
tion k − 1. Since set X is convex and x(i) ∈ X, 0 ≤ i ≤ k − 1,
it turns out that x(k) is a feasible point in X. In addition, it can
be shown that x(k) is also asymptotically feasible for primal
problem (23) [38].

It is also worth noting that RWEM can afford a dis-
tributed implementation, where optimization tasks are dis-
tributed among MNs and individual DCs; see Algorithm 2. In

TABLE I
POWER SUPPLY PARAMETERS. THE UNITS ARE KW

RWEM, dual variable updates (26) are all implemented at each
DC locally. Subproblem (28) is solved by each MN operator,
while each DC operator solves subproblems (29) and (31)–(32).
To make these distributed implementations possible, a bidirec-
tional message passing between MNs and DCs is necessary. At
every iteration, workload routing variables {at

ji (k), b̃t
i,q(k)} are

sent from each node to each DC, while the dual variables {λt
i,q}

and {νt
i } are fed back to each MN in turn to solve (28). Note

that instead of real-time power and workload schedules, only
Lagrange multipliers are sent back to MNs, which could be
further leveraged to enhance privacy-preserving operations.

In addition, the worst-case complexity of solv-
ing a general convex program is on the order
O
(
max{Nc, Nv}4√Nv log(1/ε)

)
, where Nv, Nc are the

total number of variables and constraints, and ε > 0 is the
given accuracy [39]. Hence, solving subproblems (28)–(29),
(31)–(32) in a distributed fashion incurs a markedly lower
complexity than directly tackling (23) in a centralized fashion.
Faster implementations are possible if we further decentralize
(31), and let operators of conventional generation, storage
units, delay-tolerant workloads, solve subproblems separately.

IV. NUMERICAL EVALUATION

In this section, results of simulated tests are presented to
demonstrate the merits of the proposed approach.

A. Experiment Setup

The Matlab-based modeling package CVX 2.1 [40] is used
to solve the optimization problems involved. The DC network
includes 4 DCs and 4 MNs uniformly located in the eastern,
central, mountain and western parts of the US. Each DC is
connected to a microgrid, of which the power supply param-
eters are listed in Table I. A polyhedral uncertainty set (13)
with a single sub-horizon (no partition, Ti,s = T) is considered
for the RES. The upper/lower limits {E

t
i , Et

i , ETi,s , ETi,s
} and

the average RES over scheduling horizon Eavg
Ti,s

were rescaled
from the CAISO solar generations during Mar. 1-Oct. 30, 2012;
see [31] for detailed description. The upper and lower levels of
robustness are set by default to �up

s = �low
s = 1. Table II lists

the energy purchase prices αt
i , which are obtained by scaling

the hourly electricity prices of the New York City [41]. The
selling price is set to β t

i = ξαt
i with ξ = 0.6, while the CG cost

is considered as Gci (P
t
i,g) = ωi Pt

i,g with ωi = (1/T )
∑T

t=1 α
t
i .

The total number of servers Mi is set to 80, with com-
mon � = 0.4, Pi,s = 500 W and Mi = 5 for all DC i . The

cooling parameters are set to γ = 0.2, κ t
i = 2 × 10−9, P

t
i,a =

30 kW,∀i ∈ I, t ∈ T. For simplicity, the unit of workloads in
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TABLE II
ENERGY PURCHASE PRICES. THE UNITS ARE $/KWH

Fig. 4. Real-time arrival rate of interactive workloads.

TABLE III
DELAY-TOLERANT WORKLOADS PARAMETERS. THE UNITS FOR B j

ARE NORMALIZED, AND THE UNITS FOR uq , uq ARE $/UNIT

this setting is normalized by the server is per-slot capacity Di ,
with common Di for all DCs. The interactive workload arrival
rates at MNs are depicted in Fig. 4, rescaled from the real traf-
fic of Wikipedia [42]. Eight different delay-tolerant workloads
(DWs) are specified in Table III. For job q, the revenue func-
tion is considered U t

q(b
t
i,q) = −0.01ut

q(b
t
i,q)

2 + ut
qbt

i,q $/unit,
where ut

q is linearly decreasing from to ūq across its active
interval [Sq , Eq ]. The bandwidth limits L j i t are assumed to be
time-invariant, given by

Lt =

⎡
⎢⎢⎣

90 60 40 40
40 80 40 50
50 40 100 30
40 40 50 90

⎤
⎥⎥⎦ , ∀t ∈ T.

Note that the homogenous settings of data centers are consid-
ered here in order to exemplify the impact of other factors (e.g.,
prices and RES).

The time horizon spans T = 12 hours, corresponding to
the interval 1PM–12AM in Eastern Time Zone. Here we use
the Eastern Time Zone for time-keeping, and the real data
have been shifted to show the effect of time zone differences.
As a result, the peaks of workload demands, RES and prices
are different in the four areas, which provide an opportunity
for spatio-temporal workload and energy management. Finally,

Fig. 5. Comparison of worst-case net costs.

two benchmarks are compared in this setting: A robust local
policy allocating all workloads from each MN to its nearest DC,
and a non-robust geographical load balancing policy, which
predicts the RES at each slot via its sample mean from the
historical dataset. Interestingly, our proposed approach can be
reduced to the local policy if the bandwidth matrix Lt only has
positive diagonal entries, and to the non-robust policy if we set
�

up
s = 0,�low

s = 0, and |Ti,s | = 1 in (13).

B. Numerical Results

Fig. 5 depicts the evolution of the worst-case net cost for the
proposed algorithm, as well as the two alternatives. Within 300
iterations, the proposed algorithm converges to a worst-case net
cost 19% lower than that of the non-robust approach, and 51%
lower than that of the local policy. Recall that the non-robust
approach is sensitive to the RES prediction error, while the local
policy can not perform geographical load balancing. In contrast,
the proposed RWEM takes advantage of both factors, and pur-
chases less amount of expensive energy from the spot market
that results in a smaller worst-case net cost.

To better illustrate this point, sensitivity analysis to the level
of robustness �low

s is first studied in Fig. 6. As expected,
the proposed RWEM outperforms the non-robust approach in
all cases. Meanwhile, the worst-case net costs of both robust
and non-robust scheme grow up as the �low

s increases. This
makes sense intuitively because a larger �low

s implies a big-
ger uncertainty set [cf. (13)], which will eventually increase the
worst-case net cost. Hence, the selection of �low

s is critical for
various scenarios. While a large �low

s guarantees robustness of
the resultant solution, a small one can moderately reduce its
conservatism. We waive the analysis of �up

s here, because it
plays a less important role in cost minimization (21), due to the
monotonicity of the objective (21a) with respect to Et

i .
The optimal workload schedules dt

i of the proposed RWEM
and the local policy are compared in Figs. 7 and 8, respec-
tively. The worst-case renewable generations {Et

i
∗} are shown

to illustrate the principle of geographical workload distribu-
tion. Compared with the local policy, the proposed RWEM can
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Fig. 6. Worst-case net costs versus the level of robustness �low
s .

Fig. 7. Optimal workload schedule dt
i of the proposed algorithm.

Fig. 8. Optimal workload schedule dt
i of the local policy.

intelligently route workloads to a remote DC where the sys-
tem IT demand is lower, RES availability is higher, or, the
local energy price is more affordable. To see this, both interac-
tive and flexible workloads are uniformly routed to each DC in

Fig. 9. Optimal power consumption schedule in DC 1.

Fig. 10. Optimal power supply schedule in DC 1.

Fig. 7, thus the entire DC network can process more workloads
when the RES generations are ample (1PM-6PM). An interest-
ing observation is that even if DC 4 in the Western US enjoys a
relatively higher RES, due to its high energy purchase price αt

i
[cf. Table II], the MNs are more likely to route workloads to the
areas having lower prices, when there is no renewable surplus
in DC 4.

In contrast to Fig. 7, the workload schedules in Fig. 8 are
more isolated and thus inefficient. Without coordinating all
DCs, the local policy cannot “smooth” the IT demand with the
additional degree of freedom in space. Specifically, when the
system demand is low in DC 1 as well as DC 3 (10-12 PM), no
flexible workloads can be scheduled. Likewise, the RES is not
fully utilized in DC 2 (1-3PM). This high fluctuation of system
workloads will also cause switching on/off servers frequently,
thus incurring an implicitly higher wear-and-tear cost.

The optimal power consumption and supply schedules of
DC 1 are depicted in Figs. 9 and 10, respectively. The scaled
fluctuation of energy purchase price αt

1 is also plotted to gain
intuition on the optimal power schedules. Clearly, less power
is consumed when αt

1 is higher (6PM). Using combined cool-
ing sources, the average cooling coefficient of the proposed
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Fig. 11. Optimal battery (dis-)charging schedule in all DCs.

algorithm is around 0.17, which is more efficient than the sim-
ple chilled-water cooling with a constant coefficient γ = 0.2.
Furthermore, with the goal of mitigating the high variability
of RES, batteries are encouraged to charge when the worst-
case renewable generations are high and the energy prices
are low (1PM-4PM). Thus, batteries can be discharged when
less renewables are available at night (e.g., 5-7PM in Fig. 10.
Likewise, Fig. 11 shows that all the batteries exhibit a similar
trend in response to RES and price fluctuations. From the power
supply perspective, the lower purchase price αt

1 encourages pur-
chasing more energy from the external grid market, while the
peak of αt

1 results in a higher power usage from the CG.

V. CONCLUSIONS

Robust ahead-of-time workload and energy management for
green DCs was considered in this paper. Practical models of
IT, cooling, and power supply subsystems were first intro-
duced. Taking into account the spatio-temporal variations of
workloads, renewables and electricity market prices, a resource
allocation problem was formulated to minimize the system net
cost including the network operational cost and the worst-case
energy transaction cost. Relying on the strong duality of the
convex reformulation, a Lagrange dual based distributed solver
was developed to yield the optimal solution. Extensive numeri-
cal tests further corroborated the effectiveness and merits of the
proposed scheme. Without specific assumption on the underly-
ing distribution of the renewable generation process, we offer
a new perspective in dealing with the uncertainties involved
in operating sustainable DCs. The novel robust optimization
framework of the present paper opens up some interesting
research directions, such as integrating additional uncertainties
from the interactive workloads and real-time energy prices.

APPENDIX

A. Proof of Lemma 1

Function Pi,I T (dt
i ,mt

i ) is jointly convex in {dt
i ,mt

i } because
of its quadratic-over-linear form [cf. (7)]. Hence, the composite

function Ft
i (Pi,I T (dt

i ,mt
i )) is jointly convex in {dt

i ,mt
i } since

Ft
i (P

t
i,I T ) is convex and nondecreasing [34, Sec. 3.2]; and, so is

Pt
i (d

t
i ,mt

i ).

B. Proof of Proposition 1

Since the absolute value function is convex, and the opera-
tions of nonnegative weighted summation and pointwise max-
imum preserve convexity, it is easy to see that Gi ({Rt

i }) is
convex in {Rt

i }. In addition, GCi (P
t
i,g) is convex in Pt

i,g and
U t

q(b
t
i,q) is concave in bt

i,q ; hence, the objective function (23a)
is jointly convex in {Rt

i , Pt
i,g, Pt

i,ch, Pt
i,dis}. The constraints

except (23c) are linear, while (23c) defines a feasible set which
is actually the epigraph of a convex function [cf. Lemma 1].
Since the epigraph of a convex function is a convex set [34,
Chap. 3.1], it follows that (23) is a convex problem, and strong
duality holds.

C. Proof of Proposition 2

Compared to (21), (21n)–(21q) are replaced by (23d), and
(21o)–(21p) are substituted by (23c) to convexify the problem,
and facilitate distributed implementation in (23). By summing

(21n) from Sq to t ∈ [Sq , . . . , Eq − 1], we find Qt
i,q = Q

Sq
i,q −∑t

τ=Sq
bτi,q +∑t

τ=Sq
b̃τi,q . Then, due to (21q), we have that∑t

τ=Sq
b̃τi,q ≥ ∑t

τ=Sq
bτi,q . Likewise, we obtain

∑Eq
τ=Sq

b̃τi,q =∑Eq
τ=Sq

bτi,q , which establishes the equivalence of (21n)–(21q)
with (23d). In addition, since the objective (23a) is monotoni-
cally increasing with Rt

i , it is easy to see that (23c) is always
binding at the optimal solution x∗, which implies that the opti-
mal solution x∗ is also an optimal solution (21); and thus,
�∗ = �̃∗.
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