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Abstract-State-of-the-art statistical learning techniques are 
adapted in this contribution for real-time wind power forecasting. 
Spatio-temporal wind power outputs are modeled as a linear 
combination of "few" atoms in a dictionary. By exploiting 
geographical information of wind farms, a graph Laplacian­
based regularizer encourages positive correlation of wind power 
levels of adjacent farms. Real-time forecasting is achieved by 
online nonnegative sparse coding with elastic net regularization. 
The resultant convex optimization problems are efficiently solved 
using a block coordinate descent solver. Numerical tests on real 
data corroborate the merits of the proposed approach, which 
outperforms competitive alternatives in forecasting accuracy. 

I. INTRODUCTION 

With environmental and economical ramifications of fossil 
fuel-based generation, renewable energy sources, such as wind 
and solar, have been actively pursued over the last few decades. 
Achieving over a 30% annual growth rate, wind power gen­
eration reached 318 GW worldwide capacity by the end of 
2013 [7]. Both the United States and European Union set a 
goal to recruit wind energy to meet up to 20% of electricity 
demands by 2030 and 2020, respectively [1]. 

However, full benefits of wind power can only be achieved 
by properly mitigating its inherent variability and limited 
predictability. In both forward and spot electricity markets, 
renewable asset owners make their strategic bidding decisions 
according to wind predictions [19]. Wind forecasts may also 
serve for unit commitment and economic dispatch imple­
mented by the independent system operators to ensure the 
grid's economic and reliable operations. In addition, accurate 
wind forecasts are useful for planning the maintenance of 
conventional power plants, onshore/offshore wind farms, as 
well as transmission lines [18]. Thus, to boost the wind 
power penetration in the future grid, it is critical for the 
system operators, wind power producers, as well as the utility 
companies to obtain accurate wind energy forecasts. 

Wind power generation depends on various meteorological 
factors (e.g., wind speed/direction and air density/pressure), as 
well as turbine deployment conditions, such as the type and 
the height. In addition, annual, seasonal, diurnal and hourly 
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patterns change dramatically across regions. All these factors 
make wind forecasting quite challenging. 

Depending on various applications, wind speed or power 
forecasting can be classified into three categories in terms of 
the time scale, namely short-term (up to several hours ahead), 
medium-term (day ahead), and long-term (several days/months 
ahead). Existing prediction methods mainly aim at forecasting 
the wind speed and generation of a single turbine or multiple 
wind farms via AR(I)MA time-series models [12], [17], neural 
networks [11], [3], [22], support vector regression [23], [14], 

and k-nearest neighbors regression [21]. Markov-switching 
autoregressive models were proposed for forecasting of off­
shore wind power fluctuations [20]. However, schemes of 
forecasting wind speed and mapping to wind generation are 
likely to have error magnification incurred by the nonlinear 
wind-speed-to-wind-power mappings. Approaches relying on 
separate processing per time series fail to capitalize on spatial 
correlations. A space-time Kalman filtering approach was 
studied to incorporate spatial correlation in forecasting ozone 
concentration [8], but the computational burden is substantial. 
State-of-the-art wind forecasting techniques are surveyed in 
recent articles [15], [5]. 

In this paper, spatially correlated wind power outputs are 
directly forecasted using the state-of-the-art machine learning 
and compressive sensing techniques. Measurements of wind 
power generation may not always be available due to e.g. 
meter failures. Hence, imputation of missing observations must 
be taken into account in the learning task. The framework of 
dictionary learning [16] is adapted here to learn the spatio­
temporal patterns of the wind power outputs. Leveraging the 
topology information of multiple wind farms, a Laplacian­
based regularizer is utilized to aid in spatial interpolation. 
Nonnegative sparse coding with an elastic-net regularizer 
is proposed for the interpolation and the extrapolation. In 
addition to a batch algorithm, an online alternative featuring 
low computational burden and memory cost is also developed 
to capture the temporal correlation of the underlying process. 

The remainder of the paper is organized as follows. Sec­
tion II introduces the system model and the problem. In 
Section III, the spatio-temporal dictionary learning algorithms 
are developed for interpolating missing measurements and 
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Fig. 1. Wind power prediction problem: Given the observations (blue), 
interpolate the missing mea�urements (brown), and foreca�t the future values 
(green). 

extrapolating future outputs. Numerical results are reported in 
Section IV, and concluding remarks are given in Section V. 
Notation. Boldface lower (upper) case letters represent vectors 
(matrices); nNxM and nN stand for spaces of N x M and 
N x 1 real matrices and vectors, respectively; ( - )' indicates 
transpose; (>9 the Kronecker product; and � vector entrywise 
inequality. n.{A} is the indicator function equal to 1 if the 
condition A is satisfied, and 0 otherwise. diag(x) returns a 
square diagonal matrix with the elements of vector x on 
the main diagonal. Finally, x+ := max{ 0, x} denotes the 
projection of x onto the nonnegative orthant. 

II. PROBLEM STATEMENT 

Consider the wind power generation at sites N ' ­

{I, 2, . . .  , N}, and across time slots T := {I, 2, ... , T}. Let 

Pt := [Pl,t, . . .  , PN,t] ' E nN denote the power outputs of all 
N sites at time t. It is postulated that Pt can be represented as 
a linear combination of a small number of bases taken from 
a sufficiently rich dictionary D := [d1, . . .  , dM ] E nNxM. 
Mathematically, this can be written as 

Pt = Dst, Vt E T (1) 

where vectors {sd [=1 are sparse. At each time t, a subset 
�obs <;;; N of wind farms observe N�bs := INtobsl wind power 
outputs. These measurements can be collected in a vector 
y�bs E nN�bS given as 

obs 0 + Yt = tPt Zt, Vt E T (2) 

where Ot E nN�bS x N is the observation matrix consisting of 
the n-th row of the N x N identity matrix for all n E �ob\ 
and Zt E n N�bS is the measurement noise vector. 

Given the past and current observations {y�bs}�=I' the 
task here is to predict the missing wind power Pn,t for 
n E NtrrUss := N\�obs, and the future outputs Pt+l, as shown 
in Fig. 1. To solve this problem, a graph based dictionary 
learning approach will be developed in the ensuing section. 

III. SPATIO- TEMPORAL WIND POWER PREDICTION USING 

DICTIONARY LEARNING 

Some off-the-shelf dictionaries such as the Fourier, 
Hadamard, or wavelet bases exhibit good performance in many 
applications with natural or artificial signals. Instead of using 

existing dictionaries, a data-driven one is proposed to learn 
from historical data and the network topology information. 
Such dictionary learning techniques have been successfully 
applied to image processing [16], network load prediction [6], 

and cognitive radio spectrum sensing [13]. 

A. Batch Algorithm 

1) Training phase: Let S := [SI, . . .  , ST ] E nMxT collect 
all sparse codes across the time slots T In order to capture the 
spatial correlation across wind farms, consider an undirected 
weighted graph 9(V, E) with V and E denoting the sets 
of vertices and edges, respectively. The weighted adjacency 
matrix W E nNxN has its (i,j)-entry Wij 2: 0, which can 
be set inversely proportional to the distance between the sites 
i and j. Then, the graph Laplacian matrix L is defined as 

L := diag(WIN) - W (3) 

where IN is N-dimensional all-ones vector. Dictionary D can 
then be learned by solving a joint optimization problem 

where 

ft(D, St) := 

A 1 T 
D:= argmin T Lft(D, st) 

DED,SES t=1 
(4) 

� lly�bS _ OtDStll� + AIil Stlll + �21IStll� + 
A
2
LS�D'LDSt 

(5) 

V := {D I dm � 0, Ildmll� � 1, m = 1, ... , M} (6) 

S := {S I St � 0, t = 1, ... , T}. (7) 

The objective (5) consists of three parts: the least-squares data 
fitting error, the elastic net, and the Laplacian regularizer. The 
elastic net regularizer is a linear combination of the sparsity­
promoting t\-norm (Lasso) and the £2-norm (ridge) of St, 
which can yield a better performance than plain Lasso [24]. 

The Laplacian regularizer can be equivalently rewritten as 

N 
, , 1 ""' 

( )2 StD LDst = 2 � Wij Pi,t - Pj,t 
i,j=1 

(8) 

which clearly encourages the difference between Pi,t and Pj,t 
to be small if the two sites i and j are close. The norm of 
each atom dm is bounded in (6) to prevent the degeneracy 
of obtaining arbitrarily large D by replacing (D, St) with 
(�D,cst) for c« 1. Since the wind power outputs {pd[=l 
are inherently nonnegative, naturally (D, S) are constrained to 
be nonnegative as well. 

Problem (4) is nonconvex, and hence difficult to solve in 
general. However, if either D or S is fixed, the problem is 
convex in the remaining variable. This motivates the use of 
the block coordinate descent (BCD) solver, with convergence 



Algorithm 1 Batch dictionary learning 

I: Initialize D = Do 
2: repeat 
3: Find sparse codes with fixed D : 
4: for t = 1, 2, . . .  , T do 
5: St = arg mins,>-o h(D, St) 
6: end for 

-

7: Update the dictionary with fixed {St}[=l: 
A T 

8: D = argmin L �lly�bS - OtDstII� + .\{'s�D'LDSt 
DED t=1 

9: until convergence 

guaranteed. Specifically, BCD updates at the k-th iteration are 

T 
{st(k)}:= argmin Lft(D(k - 1), st) 

SES t=l 
T 

D(k):= argmin Lft(D, st(k)). 
DED t=l 

(9) 

(10) 

The overall steps of the batch dictionary learning are tabulated 
in Algorithm 1. Note that here IIs I11 is equivalent to the sum of 
all its entries L�=1 8m because S � O. Therefore, the problem 
in step 5 is essentially a convex quadratic program (QP) 
constrained in the positive orthant, which can be efficiently 
solved by the BCD or off-the-shelf QP solvers. Closed-form 
updates are available for step 8 via further applying BCD over 
the columns of D; see e.g., [13]. 

2) Operational phase: Upon obtaining D from historical 
data, the power outputs {pt} can be predicted in the opera­
tional phase. The "optimal" sparse code corresponding to D 
and y�bs is first obtained by solving the problem 

St = argmin �lly�bS - OtDstll� + AdStl 11 + A211stll� 
St�O 2 2 

AL A A 
+ 2s�D'LDst. (11) 

Then, the wind power generation Pt with possible missing 
entries can be recovered by Pt = Dst. 

B. Online Algorithm 

An online dictionary learning algorithm is useful to track 
the time-varying signals, and reduce the computational com­
plexity [13]. Specifically, both the dictionary D and the sparse 
code St are updated when a new observation y�bs arrives at 
time t, which can be obtained by solving 

(12) 

where (3 E (0, 1] is a forgetting factor that gradually dimin­
ishes the effect of past data. The spare coding is performed at 

Algorithm 2 Online dictionary learning 

I: Initialize Do = Do, Ao = 0, A6n) 0, \In E N, and 
Bo = 0 

2: for t = 1, 2, . . .  do 
3: Obtain sparse code St with fixed Dt-1 via (13) 

4: Output prediction Pt = Dt-1St 
5: Upda!e matric�s At, A�n), and Bt via (14)-(16) 

6: Set [d1,t, ... , dM,t] = Dt-1 
7: repeat 
8: for i = 1, . . .  , M do 
9: Update di,t as (l7)-(19) 

10: end for 
11: until convergence 
12: Set Dt = [d1,t, ... , dM,t] 
13: end for 

each time t with fixed Dt-1, which is given as 

St = argmin �lly�bS - OtDt-1S II� + Adsl 11 
s�O 2 

A2 2 AL A A 
+211s 112 + 2s'D�_lLDt-1S, (13) 

With fixed {ST }�=1' the dictionary can be updated in an 
online fashion. Define first the following quantities featuring 
recursive computations. 

T=l 

n E N  
t 

B '= '" (3t-To' yobss' = (3B + O,yobss' t· � T T T t-1 t t t 
T=1 
t 

v;,j := L(3t-TSi'TSj'T(O�OT + ALL) 
T=1 

(14) 

(15) 

(16) 

= diag([Ag;t " " , A;f,2] ) + ALAij,tL, i,j = 1, . . .  , M 
(l7) 

where Si,T denotes the i-th entry of ST' A;;'� and Aij,t repre­

sent the (i, j)-th entry of matrices A�n) and At, respectively. 
Let bi,t denote i-th colurr�n of Bt. Then, a column-wise BCD 
update of the dictionary Dt is given as 

d- - (Vi,i)-l (b '" Vi,jdA ) i,t - t i,t - � t j,t 
]i.i 

(18) 

(19) 

Under certain mild conditions, it can be shown that as t --+ 
00, Dt converges almost surely to the set of stationary points 
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Fig. 2. Reconstruction of the missing wind power outputs of the sites #4069 
and #4086 across 96 hours. 

of the dictionary learning problem [16, Prop. 4]. The overall 
online approach is tabulated as Algorithm 2. 

C. Real-Time Wind Forecasting 

Partially missing data can be easily recovered in the pre­
ceding procedure. However, in order to predict the future 
wind power outputs, temporal correlation has to be incor­
porated in the learning process. Here, the idea is to simply 
exploit available information of the past measurements over 
consecutive Tc coherent slots [13]. Specifically, define an 
augmented measurement :nbs, observation matrix Ot, and 
Laplacian matrix L as 

-obs [Obsl obs ']' Yt := Yt , ... , Yt-Tc+l 
Ot := [O�, ... , O�-Tc+!l' 
L:= ITc 0L. 

(20) 

(21) 

(22) 

A temporal dictionary Dt can be first learned by replac­
ing {y�bs, Ot, L} with {y�bs, Ot, L} in Algorithm 2. Upon 
d fi 

. . l b ' -obs v [obs I obs '] I e mng a vlrtua 0 servatlOn Yt+i := Yt , ... , Yt-Tc+2 ' 
assuming the entire Y��1 is missing. Then, compute the 
corresponding optimal sparse coefficient s�+1 by executing 
step 3 of Algorithm 2. The prediction Pt+! can thus be 
obtained as 

Pt+! = D[l:N,:],tS�+! 
where D[l:N,:],t is the first N rows of Dt. 

IY. NUMERICAL TESTS 

(23) 

In this section, numerical results are presented to verify the 
performance of the novel inference approach. The forecasting 
performance was tested using the Western Wind Resources 
Dataset created by 3TIER with oversight and assistance from 
NREL [2]. Hourly wind power outputs were sampled across 
N = 18 neighboring wind farms that are located in the east 
of the city of Albuquerque, New Mexico. Each site has ten 
3 MW Vestas V90 turbines, a total of 30 MW generation 
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Fig. 3. Forecasting performance of the site $4077 across 48 hours. 

capacity. Wind speed of the region is often near the cut-out 
rate (25 m/s). Consequently, wind turbines cannot restart until 
the wind speed drops below a cut-back-in speed (20 m/s). 
Taking the possible turbine hysteresis effect into account, the 
"CorrectedScore" values in the dataset are accurate in the long­
term, and hence were treated as the actual wind power outputs. 

Let i, j E N  index the wind farms. The total 18 wind farms 
from the site #4069 (i = 1) to #4086 (i = 18) align in a 
straight line. To construct the Laplacian matrix L [cf. (3)], 
entries of the matrix W were simply chosen as Wij = 1 for 
all i i- j, Ii - jl ::; 2, and 0 otherwise. The number of atoms 
in D is M = 50. For both the batch and online algorithms, 
the whole data of the year 2005 were used to train the initial 
dictionary Do. The prediction performance was tested across 
two evaluation periods in 2006. 

Fig. 2 shows the performance of imputing the missing 
values via the batch algorithm. The values of AI, A2, AL 
were set to 0.25, 0.002, and 2.5 x 10-4, respectively. The 
measurements of the first and last sites are assumed to be 
missing across a consecutive period of 96 hours. It can be 
seen that the missing values are accurately recovered for the 
two sites. 

The proposed online algorithm was used for forecasting the 
wind generation in the next hour. The relevant parameters 
were set as (3 = 0.99, Tc = 3, Al = 0.75, A2 = 0.95, 
and AL = 5 X 10-5. Specifically, three methods were tested: 
(i) the proposed online dictionary learning approach; (ii) the 
persistent method, which simply repeats the last measurement; 
and (iii) the ARIMA model trained independently across 
different sites. The R package "forecast" [9] were used re­
garding the last one. The model were estimated based on 
the Akaike's information criterion (AlC) [4] via the func­
tion auto. arima, while the next-hour wind power outputs 
were predicted using forecast. 

Fig. 3 depicts the forecasting performance of the site #4077 
across an evaluation period of 48 hours. Clearly, the proposed 
novel approach outperforms both the persistence and ARIMA 



TABLE I 
FORECASTING ERRORS AVERAGED OVER 48 HOURS. THE UNIT OF RMSE 

AND MAE IS MW. 

Novel 
RMSE 2.6517 
MAE 2.232 

Persistence 
2.9631 
2.3458 

ARIMA 
3.5103 
2.8806 

schemes. Note that by the definition of the persistence method, 
its curve is simply shifted from the actual's by one hour. It 
can be seen that at the peaks and valleys of the actual outputs, 
the novel approach deviates from the persistent one, yielding 
improved average forecast accuracy [cf. Table I]. It is worth 
stressing that as the standard benchmark of the short-term 
forecasting, the persistent method is actually hard to beat [10]. 
Two forecasting errors were evaluated: the root mean-square 
error (RMSE) Ilpt - ptI12/JN, and the mean-absolute errors 
(MAE) II Pt - Pt II 1/ N. Clearly, the proposed novel forecast 
attains the lowest averaged RMSE and MAE, as listed in 
Table I. 

V. CONCLUSION 

A novel spatio-temporal learning approach has been devel­
oped for wind forecasting in this paper. Leveraging the known 
locations of correlated wind farms, a topology-cognizant dic­
tionary of the wind power generation was first learned using 
historical data. Missing measurements of the wind power out­
puts can be readily interpolated using nonnegative sparse cod­
ing. Based on the virtual observations accounting for temporal 
correlations, real-time forecasts can be efficiently obtained via 
the online dictionary learning. The novel approach yields lower 
forecasting errors than those of existing alternatives. 

A number of interesting research directions open up towards 
extending the proposed framework. Atmospheric factors in­
cluding wind speed and temperature should be incorporated as 
exogenous variables in the learning process to further enhance 
the prediction accuracy. Kernel dictionary learning can offer 
improved predictors with nonlinear structures. 
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