CONTEÚDO

XXIX OLIMPIADA BRASILEIRA DE MATEMATICA Problemas e Soluções da Primeira Fase	2
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Segunda Fase	15
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Terceira Fase	35
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Primeira Fase – Nível Universitário	57
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Segunda Fase – Nível Universitário	62
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Premiados	73
AGENDA OLÍMPICA	77
COORDENADORES REGIONAIS	78

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e soluções da Primeira Fase

PROBLEMAS - NÍVEL 1

Λ1)	Observe	20	multi	nlicad	2000	2	comir
UI,	Observe	as	munn	pncac	zoes	а	seguir:

 $101 \times 11 = 1111$ $101 \times 111 = 11211$ $101 \times 1111 = 112211$ $101 \times 11111 = 1122211$

. . .

Qual é a soma dos algarismos do número obtido quando multiplicamos 101 pelo número 11111...11?

2007 algarismos 1

A) 1001

B) 2007

C) 2009

D) 4008

E) 4014

02) Quantos números inteiros positivos de três algarismos têm a soma de seus algarismos igual a 4?

Observação: lembre-se de que zeros à esquerda não devem ser contados como algarismos; por exemplo, o número 031 tem dois algarismos.

A) 4

B) 6

C) 7

D) 10

E) 12

03) Juntando dois retângulos iguais lado a lado, sem sobreposição, podemos formar dois tipos de figura: um quadrado de área igual a 144 cm² ou um retângulo de largura diferente do comprimento. Qual é o perímetro deste último retângulo, em cm?

A) 12

B) 24

C) 48

D) 60

E) 72

04) A figura ao lado é formada por dois quadrados de área 100 cm² cada um, parcialmente sobrepostos, de modo que o perímetro da figura (linha mais grossa) é igual 50 cm. Qual é a área da região comum aos dois quadrados, em cm²?

A) 20 **E)** 50

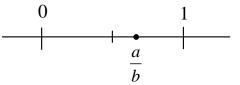
B) 25

C) 30

D) 40

- **05)** A soma de todos os números positivos ímpares até 2007 menos a soma de todos os números positivos pares até 2007 é igual a:
- **A)** 1003
- **B**) 1004
- **C**) 2005
- **D**) 2006
- **E**) 2007
- **06**) Sílvia pensou que seu relógio estava atrasado 10 min e o acertou, mas na verdade o relógio estava adiantado 5 min. Cristina pensou que seu relógio estava adiantado 10 min e o acertou, mas na verdade o relógio estava atrasado 5 min. Logo depois, as duas se encontraram, quando o relógio de Sílvia marcava 10 horas. Neste momento, que horas o relógio de Cristina indicava?
- **A)** 9h 30min
- **B**) 9h 50min
- **C**) 10h
- **D**) 10h 5min
- **E**) 10h 15min

07) A fração $\frac{a}{b}$, onde a e b são inteiros positivos, representa um número entre 0 e 1, na posição indicada no desenho ao lado. Qual é um possível valor para a soma a+b?

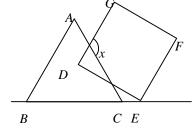


- **A**) 1
- **B**) 2
- **D**) 4 **E**) 5
- **08)** Em uma prova de olimpíada, 15% dos estudantes não resolveram nenhum problema, 25% resolveram pelo menos um problema, mas cometeram algum erro, e os restantes, 156 estudantes, resolveram todos os problemas corretamente. O número de estudantes que participaram da olimpíada foi:
- **A)** 200
- **B**) 260
- **C**) 93

C)3

- **D**) 223
- **E**) 300
- **09**) Em uma certa cidade, a razão entre o número de homens e mulheres é 2 : 3 e entre o número de mulheres e crianças é 8 : 1. A razão entre o número de adultos e crianças é:
- **A)** 5:1
- **B**) 16:1
- **C**) 12:1
- **D**) 40 : 3
- **E**) 13:1
- **10**) Na figura, o lado \overline{AB} do triângulo equilátero ABC é paralelo ao lado \overline{DG} do quadrado DEFG. Qual é o valor do ângulo x?
- **A)** 80°
- **B**) 90°
- **C**) 100°

- **D**) 110°
- **E**) 120°



11) Uma loja de CD's realizará uma liquidação e, para isso, o gerente pediu para Anderlaine multiplicar todos os preços dos CD's por 0,68. Nessa liquidação, a loja está oferecendo um desconto de:

A) 68%

B) 6.8%

C) 0.68%

D) 3.2%

E) 32%

12) Esmeralda e Pérola estão numa fila. Faltam 7 pessoas para serem atendidas antes de Pérola e há 6 pessoas

depois de Esmeralda. Duas outras pessoas estão entre Esmeralda e Pérola. Dos números abaixo, qual pode ser o número de pessoas na fila?

A) 9

B) 11

C) 13

D) 14

E) 15

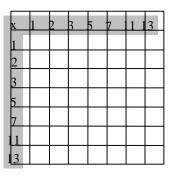
13) Preenchemos as casas vazias da tabela ao lado com o produto dos números que estão sombreados na mesma linha e na mesma coluna da casa vazia a ser preenchida. Quantas dessas casas conterão números primos?

A) 6

B) 7

C) 12

D) 14 **E**) 26



14) O conteúdo de uma garrafa de refrigerantes enche três copos grandes iguais e mais meio copo pequeno ou 5 desses copos pequenos iguais mais a metade de um daqueles grandes. Qual é a razão entre o volume de um copo pequeno e o de um grande?

A) $\frac{2}{5}$

B) $\frac{3}{7}$ C) $\frac{7}{10}$ D) $\frac{5}{9}$ E) $\frac{3}{5}$

15) Um código de barras é formado por barras verticais pretas de três larguras diferentes. Duas barras pretas sempre são separadas por uma barra branca, também com três larguras diferentes. O código começa e termina com uma barra preta, como no exemplo ao lado.

Considere um código S, formado por uma barra preta fina, duas médias e uma grossa, separadas por barras brancas finas. Quantos códigos S diferentes podem ser assim formados?

A) 4

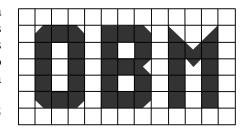
B) 6

C) 12

D) 24

E) 36

16) No quadriculado ao lado, cada quadradinho tem 1 cm². Os segmentos inclinados ligam pontos médios dos lados dos quadradinhos ou um vértice ao centro de um quadradinho. Qual é a área ocupada pela sigla OBM, em cm²?



A) 28

B) 32

C) 33

D) 34

E) 35

17) Lina e Lana brincam da seguinte maneira: a primeira a jogar pensa em um número de 10 a 99 e diz apenas a soma dos algarismos do número; a segunda tem então que adivinhar esse número. Qual é o maior número de <u>tentativas erradas</u> que a segunda pessoa pode fazer?

A) 7

B) 8

C) 9

D) 10

E) 11

18) Anita imaginou que levaria 12 minutos para terminar a sua viagem, enquanto dirigia à velocidade constante de 80 km/h, numa certa rodovia. Para sua surpresa, levou 15 minutos. Com qual velocidade constante essa previsão teria se realizado?

A) 90 km/h

B) 95 km/h

C) 100 km/h

D) 110 km/h

E) 120 km/h

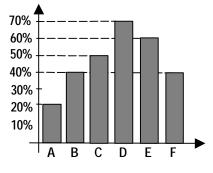
19) O gráfico ao lado mostra o percentual de acertos numa prova de 60 testes de seis candidatos finalistas de um concurso. Qual foi o número médio de questões erradas por esses candidatos nessa prova?

B) 24

C) 30

D) 32

E) 40



20) Ao efetuar a soma $13^1 + 13^2 + 13^3 + \dots + 13^{2006} + 13^{2007}$ obtemos um número inteiro. Qual é o algarismo das unidades desse número?

A) 1

B) 3

C) 5

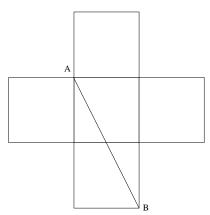
D) 7

E) 9

PROBLEMAS - NÍVEL 2

- 01) Veja o problema No. 1 do Nível 1.
- 02) Veja o problema No. 7 do Nível 1.
- 03) Veja o problema No. 10 do Nível 1.
- 04) Em uma certa cidade, a razão entre o número de homens e mulheres é 2 : 3 e entre o número de mulheres e crianças é 8 : 1. A razão entre o número de adultos e crianças é:
- **A**) 5 : 1
- **B**) 16:1
- **C**) 12:1
- **D**) 40:3
- **E**) 13:1

- **05**) Veja o problema No. 8 do Nível 1.
- **06**) Se N é o quadrado do quadrado de um número inteiro e tem 12 como fator, o menor valor para $\frac{N}{12}$ é:
- **A**) 3
- **B**) 12
- **C**) 36
- **D**) 54
- **E**) 108
- 07) O jardim da casa de Maria é formado por cinco quadrados de igual área e tem a forma da figura abaixo. Se AB = 10 m, então a área do jardim em metros quadrados é:



- **A)** 200
- **B**) $10\sqrt{5}$
- **C**) 100
- **D**) $\frac{500}{3}$ **E**) $\frac{100}{3}$

08) Sejam a,b,c e k números reais diferentes de zero satisfazendo as relações $k = \frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$. Qual é o número de possíveis valores que k pode assumir?

- **A**) 0
- **B**) 1
- **C**) 2
- **D**) 3
- **E**) 4

09) Doze pontos estão sobre um círculo. Quantos polígonos convexos podemos formar com vértices nesses 12 pontos?

- **A)** 4017
- **B**) 220
- **C**) 4095
- **D**) 66
- **E**) 3572

10) De quantas maneiras diferentes podemos escrever o número 2007 como soma de dois ou mais números inteiros positivos e consecutivos?

- **A**) 1
- **B**) 2
- **C**) 3
- **D**) 4
- **E**) 5

11) As equações do 2° grau $2007x^2 + 2008x + 1 = 0$ e $x^2 + 2008x + 2007 = 0$ têm uma raiz comum. Qual é o valor do produto das duas raízes que não são comuns?

- **A**) 0
- **B**) 1
- **C**) 2007
- **D**) 2008
- **E**) 2007

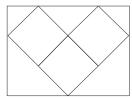
12) Qual é o máximo valor que o número a(b+c)-b(a+c) pode assumir se a,b e c, são inteiros satisfazendo $1 \le a \le 10$, $1 \le b \le 10$ e $1 \le c \le 10$?

- **A)** 80
- **B**) 81
- **C**) 84
- **D**) 90
- **E**) 100

13) A quantidade de inteiros x com três dígitos tais que 6x e 7x possuem a mesma quantidade de

- dígitos é: **A)** 767
- **B**) 875
- **C**) 876
- **D**) 974
- E) 975

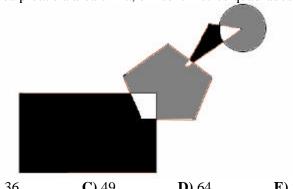
14) A figura abaixo é formada por três quadrados de lado 1 e um retângulo que os contorna.



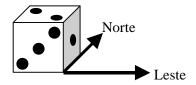
A área do retângulo é:

- **A)** $3\sqrt{2}$
- **B**) $4\sqrt{2}$
- **C**) 6
- **D**) $6\sqrt{2}$
- **E**) 8

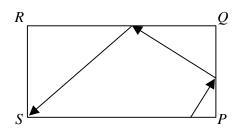
- **15**) Se x é real positivo e $1 + (x^2 + x)(x^2 + 5x + 6) = 181^2$, então o valor de x(x + 3)
- **A)** 180
- **B**) 150
- **C**) 120
- **D**) 182
- **E**) 75
- 16) A figura abaixo mostra um retângulo, um pentágono, um triângulo e um círculo, com áreas respectivamente 121, 81, 49 e 25 centímetros quadrados. A diferença entre a área preta e a área cinza, em centímetros quadrados, é:



- **A)** 25
- **B**) 36
- **C**) 49
- **D**) 64
- **E**) 81
- 17) As seguradoras de automóveis A e B cobram um valor anual (prêmio) mais um valor que o usuário deve pagar em caso de acidente (franquia). Jean quer fazer um seguro para seu automóvel e recebeu as seguintes propostas das seguradoras:
- Seguradora A: Prêmio anual de R\$ 1500,00 e franquia de R\$ 1400,00
- Seguradora B: Prêmio anual de R\$ 1700,00 e franquia de R\$ 700,00
- Para valer a pena Jean contratar a Seguradora A, ele não deve se acidentar com o carro por pelo menos N anos. O valor de N é:
- **A)** 2
- **B**) 3
- **C**) 4
- **D**) 5
- **E**) 6
- 18) O desenho abaixo mostra um dado comum cujas somas das pontuações em faces opostas é
- sempre igual a 7. Ele é colocado em uma mesa horizontal com a face "1" voltada para Leste. O dado é, então, movido quatro vezes.



do primeiro mo "2", então a "3"	Um movimento consiste em uma rotação de 90° em relação a uma aresta. Depois do primeiro movimento a face em contato com a mesa passa a ser a "1", depois a "2", então a "3" e, finalmente, a face "5". Para que sentido está voltada a face "1" após esta seqüência de movimentos? A) Oeste B) Leste C) Norte D) Sul E) Cima							
 19) Uma avenida possui 100 prédios numerados de 1 a 100, onde prédios com numeração par se situam do lado direito da rua e prédios com numeração ímpar se situam no lado esquerdo. A quantidade de andares de cada prédio é igual à soma dos algarismos do número correspondente ao prédio. Assim, podemos afirmar que: A) A quantidade de prédios com mais de 10 andares é maior do lado direito da rua. B) A quantidade de prédios com menos de 5 andares é maior do lado direito da rua. C) Pelo menos metade dos prédios possui 10 ou mais andares. D) Em ambos os lados da rua há a mesma quantidade de prédios com exatos 8 andares. E) Pelo menos 25% dos prédios possui menos de 5 andares. 								
	•	•	um triângulo qu	ue possui um dos				
lados com medi	ida igual a $\frac{5\sqrt{3}}{2}$!						
A) 8	B) 9	C) 10	D) 11	E)12				
 21) Determine em qual dos horários abaixo o ângulo determinado pelos ponteiros de um relógio é o menor. A) 02h30 B) 06h20 C) 05h40 D) 08h50 E) 09h55 								
22) O máximo divisor comum entre os números 1221, 2332, 3443, 4554,, 8998 é:								
A) 3	B) 33	C) 37	D) 11	E) 101				
23) Uma mesa de bilhar tem dimensões de 3 metros por 6 metros e tem caçapas nos seus quatro cantos P , Q , R e S . Quando uma bola bate na borda da mesa, sua trajetória forma um ângulo igual ao que a trajetória anterior formava.								



Uma bola, inicialmente a 1 metro da caçapa P, é batida do lado SP em direção ao lado PQ, como mostra a figura. A quantos metros de P a bola acerta o lado PQ se a bola cai na caçapa S após duas batidas na borda da mesa?

- **A**) 1

- C) $\frac{3}{4}$ D) $\frac{2}{3}$ E) $\frac{3}{5}$

24) Considere todos os números abc de três algarismos onde $b = a^2 + c^2$ e $a \ne a$ 0. A diferença entre o maior e o menor destes números é um número:

A) Múltiplo de 3

- **B**) Primo
- C) Com último algarismo igual a 7
- **D)** Cuja soma dos algarismos é 10

E) Múltiplo de 7

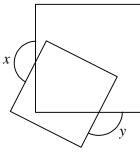
25) Seja $\{a_n\}$ uma seqüência na qual cada termo é definido como o dobro da soma dos algarismos do termo anterior, mais uma unidade. Por exemplo, se a_n = 234, então $a_{n+1} = 2(2+3+4)+1$.

Se, $a_1 = 1$ o valor de $a_{31} + a_{32} + a_{33} + a_{34} + a_{35}$ é igual a:

- **A)** 44
- **C**) 64
- **D**) 77
- **E**) 84

PROBLEMAS - NÍVEL 3

01) A figura mostra dois quadrados sobrepostos. Qual é o valor de x + y, em graus?



- **A)** 270
- **B**) 300
- **C**) 330
- **D**) 360
- **E**) 390

Sociedade Brasileira de Matemática

- **02)** Um número de quatro dígitos é dito *peroba* se possui pelo menos dois dígitos vizinhos com a mesma paridade. Quantos números *perobas* existem?
- A) 8999
- **B**) 8874
- **C**) 7875
- **D**) 8000
- **E**) 7750

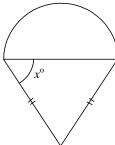
- 03) Veja o problema No. 15 do Nível 2.
- **04)** Veja o problema No. 18 do Nível 2.
- **05**) Os números 72, 8, 24, 10, 5, 45, 36, 15 são agrupados em duplas de modo que o produto de cada dupla é o mesmo. Qual número fica com o 10?
- **A)** 36
- **B**) 45
- **C**) 24
- **D**) 15
- **E**) 72
- **06)** Tintas pretas opacas absorvem 97% da luz, refletindo o restante. Cientistas desenvolveram uma nova cobertura superpreta que é "dez vezes mais preta" que tintas pretas opacas, querendo dizer que ela reflete 1/10 da luz refletida pelas tintas pretas opacas. Que porcentagem de luz a nova cobertura absorve?
- **A)** 9,7
- **B**) 90,3
- **C**) 99,7
- **D**) 99,9
- **E**) 970

- **07**) Considere a seguinte seqüência:
- $27 = 3 \times 3 \times 3$, $207 = 3 \times 3 \times 23$, $2007 = 3 \times 3 \times 223$, $20007 = 3 \times 3 \times 2223$, ...
- Qual dos seguintes inteiros é um múltiplo de 81?
- **A)** 200.007

- **B**) 20.000.007
- **C**) 2.000.000.007
- **D**) 200.000.000.007
- **E**) 20.000.000.000.007
- 08) Qual dos inteiros positivos abaixo satisfaz a seguinte equação:

$$\frac{4}{n^4} + \frac{5}{n^4} + \frac{6}{n^4} + \dots + \frac{n^4 - 6}{n^4} + \frac{n^4 - 5}{n^4} + \frac{n^4 - 4}{n^4} = 309?$$

- **A)** 2007
- **B**) 309
- C) 155
- **D**) 25
- **E**) 5
- **09)** O desenho abaixo mostra um semicírculo e um triângulo isósceles de mesma área. Qual é o valor de tg x° ?



A) 1 **B)** $\frac{\sqrt{3}}{2}$ **C)** $\frac{\pi}{\sqrt{3}}$ **D)** $\frac{2}{\pi}$ **E)** $\frac{\pi}{2}$

10) Um episódio muito conhecido na Matemática foi quando ao visitar o grande matemático Ramanujam no hospital, o outro grande matemático Hardy disse que o número do táxi que o trouxe, 1729, era um número sem graça; Ramanujam respondeu prontamente: "Não diga isso, Hardy! 1729 é o menor número inteiro positivo que pode ser escrito como soma de dois cubos perfeitos positivos de duas maneiras diferentes!" De fato, $1729 = 10^3 + 9^3 = 12^3 + 1^3$.

Um outro episódio não muito conhecido na Matemática foi quando o pequeno matemático Muralijam foi visitado pelo outro pequeno matemático Softy, que disse que o número do lotação que o trouxe era um número sem graça. Muralijam responde imediatamente: "Não, Softy, ele é o menor inteiro positivo que pode ser escrito como soma de dois quadrados perfeitos positivos de duas maneiras diferentes!"

A que número Muralijam e Softy se referem?

A) 18 B) 41 C) 45 D) 50 E) 65

11) Dizemos que uma palavra Q é quase-anagrama de outra palavra P quando Q pode ser obtida retirando-se uma letra de P e trocando a ordem das letras restantes, resultando em uma palavra com uma letra a menos do que P. Um quase-anagrama pode ter sentido em algum idioma ou não. Por exemplo, RARO, RACR e ARCO são quase-anagramas de CARRO.

Quantos são os quase-anagramas da palavra BACANA que começam com A?

A) 48 B) 60 C) 72 D) 96 E) 120

12) As cidades Aópolis, Beópolis e Ceópolis são ligadas por estradas retas. Sabese a estrada que liga Aópolis e Beópolis é perpendicular à estrada que liga Aópolis e Ceópolis. Rubens mora em Beópolis e tem um compromisso em Ceópolis. Todavia, a estrada que liga Beópolis a Ceópolis está interditada, de modo que Rubens é obrigado a fazer o trajeto Beópolis-Aópolis-Ceópolis. Para chegar ao compromisso na hora certa, Rubens trafega com uma velocidade 24% maior do que trafegaria se utilizasse a estrada interditada.

Se a é o menor ângulo do triângulo determinado pelas três estradas, então

A)
$$0 < tg a < \frac{1}{6}$$

B) $\frac{1}{6} < tg a < \frac{1}{5}$

C) $\frac{1}{5} < tg a < \frac{1}{4}$

D) $\frac{1}{4} < tg a < \frac{1}{3}$

E) $\frac{1}{3} < tg a < 1$

Sociedade Brasileira de Matemática

13) Todo número real a pode ser escrito de forma única como $a = \lfloor a \rfloor + \{a\}$, em
que $\lfloor a \rfloor$ é inteiro e $0 \le \{a\} < 1$. Chamamos $\lfloor a \rfloor$ parte inteira de a e $\{a\}$ parte
fracionária de a.

Se $x + |y| + \{z\} = 4,2$, $y + |z| + \{x\} = 3,6$ e $z + |x| + \{y\} = 2$, quanto vale x - y + y = 2*z*?

A) -1

B) -0.5

C) 0

D) 0.5

E) 1

14) Dizemos que um natural X é um *repunit* quando os seus algarismos são todos iguais a 1, ou seja, quando X é da forma 11...1.

Sejam p, q e r inteiros, p > 0, tais que $pX^2 + qX + r$ é um repunit sempre que X é um repunit. Qual dos valores a seguir é um possível valor de q?

A) -2

B) -1

 \mathbf{C}) 0

E) 2

15) O conjunto dos valores de c para os quais a equação $\sqrt{x} = \sqrt{\sqrt{x} + c}$ possui solução real está contido em:

A) [−1;∞[

B) $]-\infty;1]$

C) [-3:2]

D) [-2;3]

 \mathbf{E}) Z

16) No triângulo ABC, AD é a altura relativa ao lado BC. Se AB = DC = 1, assinale a alternativa que corresponde à área máxima do triângulo ABC.

C) $\frac{\sqrt{2}}{3}$ D) $\frac{\sqrt{2}}{2}$

17) O número de pares (x, y) de inteiros positivos que satisfazem a equação

$$x^8 + 3y^4 = 4x^2y^3$$

com $1 \le y \le 2007$, é igual a:

A) 40

B) 41

C) 42

D) 43

E) 44

18) Sejam $a, b \in c$ números tais que

$$a^{2} - ab = 1$$
$$b^{2} - bc = 1$$
$$c^{2} - ac = 1$$

O valor de $abc \cdot (a + b + c)$ é igual a:

A) 0

B) 1

C) 2

D) -1

E) -3

19) Veja o problema No. 19 do Nível 2.

20) Veja o problema No. 20 do Nível 2.

21) Veja o problema No. 21 do Nível 2.

Sociedade Brasileira de Matemática

22) O máximo divisor comum entre os números 1221, 2332, 3443, 4554,......, 8998 é:

A) 3

B) 33

C) 37

D) 11

E) 101

- 23) Veja o problema No. 23 do Nível 2.
- 24) Veja o problema No. 24 do Nível 2.
- 25) Veja o problema No. 25 do Nível 2.

GABARITO

NÍVEL 1 (5^a. e 6^a. Séries)

1) E	6) A	11) E	16) D
2) D	7) E	12) B	17) B
3) D	8) B	13) C	18) C
4) E	9) D	14) D	19) D
5) B	10) E	15) C	20) E

NÍVEL 2 (7^a. e 8^a. Séries)

1) E	6) E	11) B	16) D	21) E
2) E	7) C	12) D	17) B	22) D
3) E	8) C	13) C	18) A	23) B
4) D	9) A	14) C	19) B	24) Anulada
5) B	10) E	15) A	20) B	25) Anulada

NÍVEL 3 (Ensino Médio)

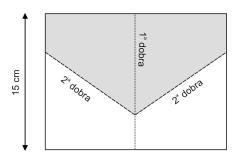
1) A	6) C	11) B	16) A	21) E
2) C	7) E	12) D	17) E	22) D
3) A	8) E	13) B	18) D	23) B
4) A	9) E	14) E	19) B	24) Anulada
5) A	10) D	15) A	20) B	25) D

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Segunda Fase

PROBLEMAS – Nível 1 PARTE A (Cada problema vale 5 pontos)

- 01. O número $N=10100101010101\dots$ contém somente os algarismos 0 e 1, de modo que o número de algarismos 0 entre dois algarismos 1 é um ou dois, alternadamente. O número N tem exatamente 101 algarismos. Qual é a soma de todos os algarismos do número N?
- 02. Uma folha de papel tem 20 cm de comprimento por 15 cm de largura. Dobramos essa folha ao meio, paralelamente à sua largura. Em seguida, dobramos a folha retangular dupla, de modo que dois vértices opostos coincidam. Ao desdobrar a folha, as marcas da segunda dobra dividem a folha em duas partes, conforme mostrado na figura ao lado. Qual é a área da parte escura, em cm²?



03. Observe as igualdades a seguir:

$$1+2+1=4$$

$$1+2+3+2+1=9$$

$$1+2+3+4+3+2+1=16$$

$$\vdots$$

$$1+2+3+\cdots+2006+2007+2006+\cdots 3+2+1=A$$
Qual \(\epsilon\) o valor de $\frac{A}{223^2}$?

04. Uma folha retangular de cartolina foi cortada ao longo de sua diagonal. Num dos pedaços restantes, na forma de um triângulo retângulo, foram feitos dois cortes, paralelos aos lados menores, pelos meios desses lados. Ao final sobrou um retângulo de perímetro 129 cm. O desenho abaixo indica a seqüência de cortes.

Em centímetros, qual era o perímetro da folha antes do corte?

- 05. Um reservatório cúbico internamente tem 2 metros de lado e contém água até a sua metade. Foram colocados no reservatório 25 blocos retangulares de madeira, que não absorvem água, de dimensões $20\times30\times160$ centímetros. Sabendo que 80% do volume de cada bloco permanece submerso na água, calcule, em centímetros, a altura atingida pela água, no reservatório.
- **06.** A adição ao lado está incorreta. Entretanto, se substituirmos *somente* um certo algarismo a, toda vez que ele aparece, por um certo algarismo b, a conta fica correta. Qual é o valor de a^b ?

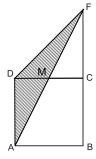
PARTE B

(Cada problema vale 10 pontos)

PROBLEMA 1

A área do quadrado ABCD é 300 cm². Na figura, M é ponto médio de CD e o ponto F pertence à reta BC.

- a) Qual é a área do triângulo ABF?
- b) Qual é a área do triângulo ADF?



PROBLEMA 2

Esmeralda comprou seis discos de ferro para usar num aparelho de ginástica. Esses discos têm massas 1, 2, 3, 4, 5 e 6 quilogramas, respectivamente. Esmeralda pode combiná-los e obter outras massas, como por exemplo:

1 disco de 2 kg + 1 disco de 6 kg = 8 kg.

Qual a maior quantidade de massas diferentes que ela pode obter?

PROBLEMA 3

Observe como o quadriculado ao lado é preenchido.

- a) Qual é a soma dos elementos da diagonal 9?
- b) Qual é o resto da divisão por 100 da soma dos elementos da diagonal 2007?

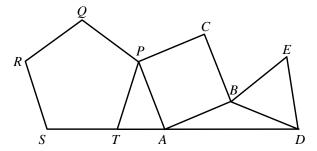
	The British of the State of the									
		\angle	_	1	1					
0	1	2	3	A	5	6	7	8	9	10
1	2	3	A	5	6	7	8	9	0	1
2	3	A	5	6	7	8	9	0	1	2
3	A	5	6	7	8	9	0	1	2	3
A	5	6	7	8	9	0	1	2	3	4
5	6	7	8	9	0	1	2			

PROBLEMAS – Nível 2 PARTE A (Cada problema vale 4 pontos)

01. Ludmilson descobriu que o produto da idade que tinha há 55 anos atrás pela idade que terá daqui a 55 anos é igual ao cubo de um número primo. Qual é a idade atual de Ludmilson?

02. Sendo
$$f(x) = 100x + 3$$
, calcule o valor de $\frac{f(10^{-8}) - f(10^3)}{10^{-8} - 10^3} - f(-1)$.

03. Na figura abaixo temos um pentágono regular, um quadrado e um triângulo eqüilátero, todos com a mesma medida de lado.



Determine a medida, em graus, do ângulo ∠QCE.

- 04. Um inteiro positivo K tem n algarismos e é igual a 2608.n. Determine a soma dos algarismos de K
- 05. Em 1949 o matemático indiano D. R. Kaprekar, inventou um processo conhecido como *Operação de Kaprekar*. Primeiramente escolha um número de

quatro dígitos (não todos iguais), em seguida escreva a diferença entre o maior e o menor número que podem ser formados a partir de uma permutação dos dígitos do número inicial. Repetindo o processo com cada número assim obtido, obtemos uma sequência. Por exemplo, se o primeiro número for 2007, o segundo será 7200 - 0027 = 7173. O terceiro será 7731 - 1377 = 6354.

Começando com o número 1998, qual será o 2007-ésimo termo da seqüência?

PROBLEMAS – Nível 2 PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

O triângulo ABC é retângulo em B. Sejam I o centro da circunferência inscrita em ABC e O o ponto médio do lado AC. Se $\angle AOI = 45^{\circ}$, quanto mede, em graus, o ângulo $\angle ACB$?

PROBLEMA 2

Sejam \mathbf{a} e \mathbf{b} as raízes da equação quadrática (x-2)(x-3) + (x-3)(x+1) + (x+1)(x-2) = 0.

Determine o valor de
$$\frac{1}{(a+1)(b+1)} + \frac{1}{(a-2)(b-2)} + \frac{1}{(a-3)(b-3)}$$
.

PROBLEMA 3

- a) Determine a quantidade de divisores do número $N = 23^5 23$.
- b) Mostre que para todo número natural n, $n^5 n$ é múltiplo de 30.

PROBLEMA 4

Um quadrado 4×4 é dividido em 16 quadrados unitários. Cada um dos 25 vértices desses quadrados deve ser colorido de vermelho ou azul. Ache o número de colorações diferentes tais que cada quadrado unitário possua exatamente dois vértices vermelhos.

PROBLEMAS – Nível 3 PARTE A (Cada problema vale 4 pontos)

01. Quantos divisores positivos do número 123456 são menores que 2007?

02. Considere o conjunto A dos pares ordenados (x;y) de reais não negativos tais que x + y = 2. Se a probabilidade de um elemento de A escolhido aleatoriamente estar a uma distância da origem menor ou igual a $\frac{5}{3}$ é p, quanto vale $2^5 3^5 p^2$?

- 03. Qual é a soma dos algarismos do inteiro mais próximo de $\sqrt{111...1}$?
- 04. Veja o problema 1 da parte B do nível 2.
- 05. Veja o problema 4 da parte B do nível 2.

PROBLEMAS – Nível 3 PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

Ache todos os pares (x, y) de inteiros positivos tais que $2(x + y) + xy = x^2 + y^2$.

PROBLEMA 2

Encontre todos os números n de seis algarismos da forma AAABBB, em que A e B são algarismos diferentes e não nulos e n+1 é um quadrado perfeito.

PROBLEMA 3

No quadrilátero convexo ABCD, $\angle A + \angle B = 120^{\circ}$, AD = BC = 5 e AB = 8. Externamente ao lado CD, construímos o triângulo equilátero CDE. Calcule a área do triângulo ABE.

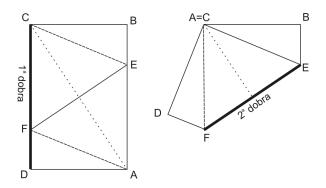
PROBLEMA 4

Em um certo país há 21 cidades e o governo pretende construir *n* estradas (todas de mão dupla), sendo que cada estrada liga exatamente duas das cidades do país. Qual o menor valor de *n* para que, independente de como as estradas sejam construídas, seja possível viajar entre quaisquer duas cidades (passando, possivelmente, por cidades intermediárias)?

Soluções Nível 1 - Segunda Fase - Parte A

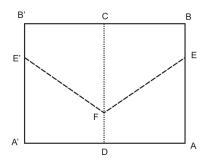
Problema	01	02	03	04	05	06
Resposta	41	150	81	258	148	64

- 1. **[41]** O número é formado por blocos iguais, de 5 algarismos na forma "10100". Como o número tem 101 algarismos, concluímos que é formado por 20 desses blocos inteiros mais o primeiro algarismo de um bloco, que é 1. A soma dos algarismos de cada bloco é 1 + 0 + 1 + 0 + 0 = 2, portanto a soma dos algarismos de N é $20 \times 2 + 1 = 41$.
- 2. **[150]** O desenho abaixo à esquerda mostra como fica a folha após a primeira dobra. À direita, mostra como fica a folha após as duas dobras.



Observamos que CE = EA e que CF = FA. Por uma propriedade da dobra, sabemos que o segmento FE é perpendicular ao segmento AC e esses segmentos se cruzam em seus pontos médios. Portanto, os quatro triângulos que compõem o quadrilátero AECF são congruentes; são congruentes também os triângulos EBC e FDA. Portanto, a dobra FE divide o retângulo ABCD em dois trapézios, EBCF e AEFD, de mesma área. Desdobrando inteiramente a folha, obtemos duas metades iguais. Portanto, a área do pentágono convexo BEFE'B' é igual à área do pentágono não convexo AA'E'FE, ou seja, a área da parte escura é metade da área

da folha, portanto igual a $\frac{15\times20}{2}$ = 150 cm².

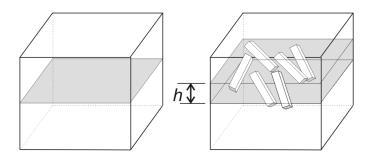


3. **[81]** Pelo padrão observado, as somas são iguais ao quadrado da parcela central (aquela cujo número de parcelas à esquerda é igual ao número de parcelas à direita).

Portanto,
$$A = 2007^2$$
 e, assim, $\frac{A}{223^2} = \frac{2007^2}{223^2} = \left(\frac{2007}{223}\right)^2 = 9^2 = 81$.

- 4. **[258]** O retângulo que sobra após os cortes tem lados iguais às metades dos lados da cartolina original, cujo perímetro, então, é o dobro do perímetro desse retângulo. Logo, o perímetro da cartolina antes do corte é $129 \times 2 = 258$ cm.
- 5. **[148]** O volume de cada bloco de madeira é $0,2\times0,3\times1,60=0,096~\text{m}^3$; o volume de cada bloco que fica submerso no líquido é $0,80\times0,096~\text{m}^3$. O volume de líquido deslocado pelos 25 blocos é igual a $25\times0,80\times0,096=1,92~\text{m}^3$. Como o reservatório é um cubo de 2 m de lado, sua base é um quadrado de área 4 m². Podemos pensar no líquido deslocado como se fosse um bloco cuja base é igual à base do reservatório, de altura h e volume acima.

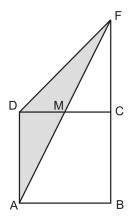
Portanto $4h=1,92 \Leftrightarrow h=\frac{1,92}{4}=0,48~\text{m}=48~\text{cm}$. Como a altura inicial do líquido era 100 cm, a nova altura será 148 cm.



6. **[64]** À primeira inspeção, podemos admitir que os três algarismos à direita de todos os números estão corretos, isto é, estão corretamente escritos os algarismos 0, 1, 3, 4, 5, 6 e 8. Portanto, dentre os algarismos 2, 7 e 9, um **deles** está escrito incorretamente. O 9 está escrito corretamente, pois se o mudarmos, a soma com 2 não estará certa. Logo ou 2 ou 7 está errado. Se o 7 estiver errado, então 2 estará correto, mas isso não é possível pois a soma de 2 com 4 mais 1 não estaria certa. Logo, o 2 é que deve ser substituído; olhando novamente a soma de 2 com 4 mais 1 resultando 1 vemos que o resultado só dará certo se no lugar de 2 colocarmos 6. Fazendo a substituição, verificamos que o resto se encaixa. Teremos, então, $a^b = 2^6 = 64$.

Soluções Nível 1 – Segunda Fase – Parte B

1. Temos $m(F\hat{M}C) = m(A\hat{M}D)$ (ângulos opostos pelo vértice), $m(A\hat{D}M) = m(F\hat{C}M)$ (pois ABCD é quadrado, logo esses ângulos são retos) e MC = MD (pois M é ponto médio de CD). Logo, os triângulos AMD e FMC são congruentes.



a) Vemos que a área $\triangle ABF = \text{área } \triangle FMC + \text{área } ABCM$.

Como área ΔFMC = área ΔAMD , temos:

área $\triangle ABF$ = área $\triangle AMD$ + área ABCM = área do quadrado ABCD = 300 cm².

b) $\acute{a}rea \ \Delta ADF = \acute{a}rea \ \Delta AMD + \acute{a}rea \ \Delta DMF =$ = $\acute{a}rea \ \Delta FMC + \acute{a}rea \ \Delta DMF = \acute{a}rea \ \Delta FCD$

Como AD = FC, CD é lado comum e os ângulos \hat{C} e \hat{D} são retos, concluímos que os triângulos FCD e ADC são congruentes, logo área ΔFCD = área ΔADC = $\frac{\text{área }ABCD}{2}$. Portanto, a área do triângulo

 $ADF \text{ \'e igual a } \frac{300}{2} = 150 \text{ cm}^2.$

- 2. Dadas as massas de 1 a 6, podemos adicionar 1 a 6, 2 a 6, etc, até obter todos os pesos de 7 a 11; podemos adicionar 1 + 5 a 6, 2 + 5 a 6, etc, até obter todos os pesos de 12 a 15; podemos adicionar 1 + 4 + 5 a 6, etc, obtendo os pesos de 16 a 18; somando 1 + 3 + 4 + 5 a 6 obtemos 19; 2 + 3 + 4 + 5 a 6 obtemos 20 e, finalmente, somando 1 + 2 + 3 + 4 + 5 a 6 obtemos 21. Portanto, a quantidade de massas diferentes que Esmeralda pode obter é 21.
- 3. Pode-se concluir, examinando a tabela, que a soma dos elementos da diagonal n é igual a 2n + (n-1)k, onde k é o algarismo das unidades do número n. Por exemplo, na diagonal de número 4 a soma dos números é

Sociedade Brasileira de Matemática

 $2\cdot 4+(4-1)\cdot 4=20$, na diagonal de número 10 a soma dos números é $2\cdot 10+(10-1)\cdot 0=20$, etc.

- a) Na diagonal de número 9, a soma dos elementos é $2 \cdot 9 + (9-1) \cdot 9 = 90$. De outra forma, na diagonal 9 há 10 números 9; portanto a soma é $10 \cdot 9 = 90$.
- b) Na diagonal 2007 a soma será $2 \cdot 2007 + (2007 1) \cdot 7 = 4014 + 14042 = 18056$.

O resto da divisão desse número por 100 é 56.

Soluções Nível 2 - Segunda Fase - Parte A

Problema	01	02	03	04	05
Resposta	66	197	174	8	6174

01. Seja x a idade de Ludmilson. Logo, $(x-55)(x+55) = p^3$, onde p é primo. Temos então, duas possibilidades:

i)

$$\begin{cases} x - 55 = 1 \\ x + 55 = p^3 \end{cases}$$

Nesse caso teríamos x = 56 e p = 111, absurdo, pois 111 não é primo.

ii)

$$\begin{cases} x - 55 = p \\ x + 55 = p^2 \end{cases}$$

Com isso, $110 = p^2 - p = p(p-1) = 11.10$. E assim teremos p = 11 e x = 66. Logo, a idade de Ludmilson é 66 anos.

02.
$$(100.10^{-8} + 3 - 100.10^{-3} - 3) / (10^{-8} - 10^{-3}) - 100.(-1) - 3 = 100(10^{-8} - 10^{-3}) / (10^{-8} - 10^{3}) + 97 = 100 + 97 = 197.$$

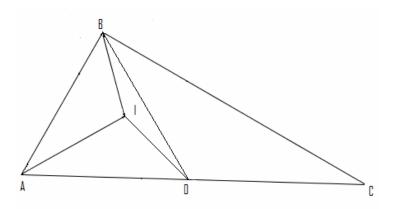
03. Note que os triângulos *PTA*, *ABD*, *BCE*, e *PQC* são todos isósceles. Como $\angle STP = 108^\circ$, $\angle PTA = \angle PAT = 72^\circ$. Assim, temos que $\angle TPA = 36^\circ$ e $\angle BAD = \angle BDA = 18^\circ$. Além disso, $\angle ABD = 144^\circ$ e $\angle CBE = 66^\circ$. Como $\angle QPC = 126^\circ$, temos que $\angle QCP = 27^\circ$ e $\angle ECB = 57^\circ$. Logo, $\angle QCE = 174^\circ$.

04. Tente 1, 2, 3 ... e perceba que, somente com n = 5, K terá 5 algarismos. Assim, K = 2608. S = 13040. Com isso, a soma dos algarismos de K é 8.

05. A partir do sétimo termo, todos serão iguais a 6174.

Soluções Nível 2 - Segunda Fase - Parte B

SOLUÇÃO DO PROBLEMA 1:



Como ABC é um triângulo retângulo, então AO = BO = CO. Se $\angle ABI = \angle AOI = 45^{\circ}$ e $\angle BAI = \angle OAI$, então ?ABI = ?AOI (ALA). Com isso, AB = AO = BO, e portanto, triângulo ABO é eqüilátero. Assim, $\angle ACB = 30^{\circ}$.

SOLUÇÃO DO PROBLEMA 2:

É fácil ver que (x-2)(x-3)+(x-3)(x+1)+(x+1)(x-2)=3(x-a)(x-b). Fazendo x=-1, 2 e 3, nesta igualdade, temos que,

$$(\mathbf{a}+1)(\mathbf{b}+1) = 4$$
, $(\mathbf{a}-2)(\mathbf{b}-2) = -1$, $(\mathbf{a}-3)(\mathbf{b}-3) = \frac{4}{3}$.

Com isso,
$$\frac{1}{(a+1)(b+1)} + \frac{1}{(a-2)(b-2)} + \frac{1}{(a-3)(b-3)} = \frac{1}{4} - 1 + \frac{3}{4} = 0.$$

SOLUÇÃO DO PROBLEMA 3:

a)
$$N = 23 \cdot (23^4 - 1) = 23 \cdot (23^2 + 1)(23^2 - 1) = 23 \cdot (23^2 + 1)(23 + 1)(23 - 1) =$$

 $23.530.24.22 = 2^5.3.5.11.23.53$ O número de divisores (positivos) de *N* é $6\times2\times2\times2\times2\times2=192$.

b)
$$N = n^5 - n = n(n^2 + 1)(n + 1)(n - 1)$$
.

Necessariamente, n ou n+1 é par. Logo, 2 divide N. Do mesmo modo, um dos números n-1, n ou n+1 é múltiplo de 3. Logo 3 também divide N. Finalmente, se nenhum dos 3 números n-1, n ou n+1 é múltiplo de 5, então n é da forma 5k+2 ou 5k+3. No primeiro caso, temos $n^2+1=25k^2+10k+5$ e, no segundo, $n^2+1=25k^2+15k+10$, ambos múltiplos de 5. Portanto, um dos números n, n-1, n+1 ou n^2+1 é múltiplo de 5.

Assim N é, simultaneamente, múltiplo dos números primos entre si 2, 3 e 5, o que prova que N é múltiplo de 30.

SOLUÇÃO DO PROBLEMA 4:

Vamos começar colorindo a primeira linha de vértices. Cada coloração dessa linha é uma seqüência de letras "A" e "V", por exemplo, A V V A V. Observe que, uma vez colorida a primeira linha, se aparecerem duas letras consecutivas iguais, o restante dos vértices do tabuleiro já estão determinados. De fato, ao aparecer dois V's consecutivos, os dois vértices imediatamente abaixo deles deverão ser coloridos com dois A's, os que estão mais abaixo deverão ter dois V's, e assim por diante. Isto completa a coloração dessas duas colunas. Dessa forma, cada coluna vizinha também estará determinada, pois em cada retângulo teremos três vértices previamente coloridos, o que obriga o quarto vértice a ter sua cor determinada. Então, para cada seqüência de A's e V's na primeira linha que contém pelo menos duas letras iguais consecutivas, há exatamente uma maneira de colorir o tabuleiro. Como há $2^5 - 2 = 30$ de tais seqüências, contamos 30 colorações possíveis.

Falta-nos analisar um segundo caso, em que não há duas letras consecutivas iguais na primeira linha. Há duas possibilidades de seqüências: começando com A ou começando com V.

Para cada uma dessas seqüências, há duas maneiras de escolhermos a primeira letra da segunda linha. Uma vez escolhida esta letra, a segunda linha inteira também estará determinada. Para a primeira letra da terceira linha também há 2 possibilidades. Com este raciocínio, cada vez que escolhemos a primeira letra de uma linha, determinamos a coloração desta linha. Logo, como há duas maneiras de escolhermos a primeira letra de cada linha, há $2^5 = 32$ maneiras de colorirmos o tabuleiro, neste segundo caso. Logo, o total de colorações é igual a 30 + 32 = 62.

Observação: Veja que, no caso geral, para um quadrado $n \times n$, o raciocínio é análogo. No primeiro caso, teremos $2^{n+1} - 2$ colorações; no segundo caso, mais 2^{n+1} . Logo, teremos $2 \cdot 2^{n+1} - 2 = 2^{n+2} - 2$ colorações.

Soluções Nível 3 – Segunda Fase – Parte A

Problema	01	02	03	04	05
Resposta	17	3024	1500	30	62

- 01. Seja a fatoração de $123456 = 2^6 \cdot 3 \cdot 643$ e seja d um de seus divisores menores do que 2007. Podemos analisar dois casos:
- d não é múltiplo de 643: então d é um divisor de $2^6 \cdot 3 = 192 < 2007$. Portanto podemos contar todos os divisores de 192, que são (6+1)(1+1) = 14 divisores.
- d é múltiplo de 643: $1 \cdot 643 = 643$, $2 \cdot 643 = 1286$ e $3 \cdot 643 = 1929$ são menores que 2007, mas a partir de $4 \cdot 643 = 2572$, eles são maiores que 2007. Portanto há 3 divisores neste caso.

Portanto o total de divisores d de 123456 menores do que 2007 é 14 + 3 = 17.

02. Seja B o conjunto dos pontos de A cuja distância à origem é menor do que $\frac{5}{3}$ e seja P = (x; y) um ponto de B. Sabe-se que P está sobre o segmento

x + y = 2; $x, y \ge 0$ e que a distância $\sqrt{x^2 + y^2}$ de P à origem é menor ou igual a $\frac{5}{3}$. Portanto:

$$\begin{vmatrix} x + y = 2 \\ x^2 + y^2 \le \left(\frac{5}{3}\right)^2 & \Leftrightarrow \begin{vmatrix} y = 2 - x \\ x^2 + 4 - 4x + x^2 \le \frac{25}{9} & \Leftrightarrow \end{vmatrix} 2x^2 - 4x + \frac{11}{9} \le 0$$

As raízes de $2x^2 - 4x + \frac{11}{9} = 0$ são $x_0 = \frac{4 \pm \sqrt{16 - 8\frac{11}{9}}}{4} = 1 \pm \frac{\sqrt{14}}{6}$, que nos dá os

pontos extremos
$$P_1 = \left(1 - \frac{\sqrt{14}}{6}; 1 + \frac{\sqrt{14}}{6}\right)$$
 e $P_2 = \left(1 + \frac{\sqrt{14}}{6}; 1 - \frac{\sqrt{14}}{6}\right)$ de B . Pela

inequação, temos que os pontos de B estão na reta x + y = 2, delimitados pelos pontos P_1 e P_2 , logo B é o segmento de reta $\overline{P_1P_2}$.

Queremos a probabilidade p de escolher um ponto do conjunto A estar contido no segmento $\overline{P_1P_2}$, que é a razão entre P_1P_2 e o comprimento de A. Como A está delimitado pelos pontos (0;2) e (2;0), seu comprimento $\sqrt{(0-2)^2 + (2-0)^2} = 2\sqrt{2}$. O comprimento de *B* vale

$$\sqrt{\left(1 + \frac{\sqrt{14}}{6} - 1 + \frac{\sqrt{14}}{6}\right)^2 + \left(1 - \frac{\sqrt{14}}{6} - 1 - \frac{\sqrt{14}}{6}\right)^2} = \sqrt{2\left(\frac{\sqrt{14}}{3}\right)^2} = \frac{2\sqrt{7}}{3}, \quad \text{portanto}$$

$$p = \frac{2\sqrt{7}}{3} = \frac{\sqrt{14}}{6} = 2^5 3^5 p^2 = 2^5 \cdot 3^5 \cdot \frac{14}{36} = 2^4 \cdot 3^3 \cdot 7 = 3024.$$

03. Inicialmente,

temos
$$\underbrace{11...1}_{1000 \, \text{ups}} = \frac{\overbrace{99...9}^{1000 \, \text{noves}}}{9} = \frac{10^{1000} - 1}{9}$$
. Porta

$$\underbrace{\sqrt{11...1}}_{1000\,\mathrm{uns}} = \sqrt{\frac{10^{1000}-1}{9}} \ .$$

Com isso, observando que
$$\sqrt{\frac{10^{1000} - 1}{9}} = \sqrt{\frac{(10^{500} - 1)(10^{500} + 1)}{9}} > \sqrt{\frac{(10^{500} - 1)(10^{500} - 1)}{9}} = \frac{10^{500} - 1}{3} e$$

$$\sqrt{\frac{10^{1000} - 1}{9}} < \sqrt{\frac{10^{1000}}{9}} = \frac{10^{500}}{3}, \text{ temos } \frac{10^{500} - 1}{3} < \underbrace{\sqrt{11...1}}_{1000 \, \text{uns}} < \frac{10^{500}}{3}.$$

Como $\frac{10^{500}-1}{3}$ é inteiro e seu consecutivo, $\frac{10^{500}+2}{3}$, é maior do que $\frac{10^{500}}{3}$, o

inteiro mais próximo de $\sqrt{11...1}$ é $\frac{10^{500}-1}{3} = \frac{99...9}{3} = 33...3$, cuja soma dos dígitos é 3.500 = 1500.

- 04. Veja a solução do problema 1 da parte B do nível 2.
- 05. Veja a solução do problema 4 da parte B do nível 2.

Soluções Nível 3 - Segunda Fase - Parte B

SOLUÇÃO DO PROBLEMA 1:

Uma solução:

Multiplicando a equação dada por 2, obtemos $2x^2 + 2y^2 - 2xy - 4x - 4y = 0$, ou ainda,

$$(x^2 - 4x + 4) + (y^2 - 4y + 4) + (x^2 - 2xy + y^2) = 8.$$

Daí, $(x-2)^2 + (y-2)^2 + (x-y)^2 = 8$. A única maneira de escrevermos 8 como a soma de três quadrados é 8 = 0 + 4 + 4, em alguma ordem. Logo (x-2, y-2) = (0, 2), (2, 0) ou (2, 2), de onde concluímos que as soluções são (x, y) = (2, 4), (4, 2) ou (4, 4).

Outra solução:

Escrevendo a equação dada como uma equação do segundo grau em x, temos: $x^2 - (y + 2)x + (y^2 - 2y) = 0$.

O discriminante desta equação é
$$\Delta = (y+2)^2 - 4(y^2-2y) = -3y^2 + 12y + 4$$
. Resolvendo a inequação $\Delta \ge 0$, ainda obtemos $2 - \frac{4\sqrt{3}}{3} \le y \le 2 + \frac{4\sqrt{3}}{3}$.

Como y é inteiro positivo, as únicas possibilidades são y = 1, 2, 3 ou 4.

• Se y=1, ficamos com $\Delta=13$, que não é quadrado perfeito. Logo, este caso não tem solução.

- Se y = 2, obtemos $\Delta = 16$ e $x = \frac{4 \pm 4}{2} = 0$ ou 4. Como x é inteiro positivo, a única solução neste caso é (x, y) = (4, 2).
- Se y = 3, ficamos com $\Delta = 13$, absurdo!
- Se y = 4, obtemos $\Delta = 4$. Neste caso, $x = \frac{6 \pm 2}{2} = 2$ ou 4. Logo, (x, y) = (2, 4) ou (4, 4).

Portanto, o conjunto solução é {(2, 4), (4, 2), (4, 4)}.

Mais uma solução:

Observe que $8(x + y) = 4x^2 - 4xy + 4y^2 = (x + y)^2 + 3(x - y)^2 \ge (x + y)^2$, de modo que

$$8(x + y) \ge (x + y)^2$$
, ou seja, $x + y \le 8$.

Além disso, note que $x^2 - xy + y^2 = 2(x + y)$ é par, e portanto ao menos uma das parcelas do primeiro membro é par (se todos forem ímpares, $x^2 - xy + y^2$ é ímpar), o que implica que x ou y é par. Suponha, sem perda de generalidade, que x é par. Então $y^2 = 2(x + y) + xy - x^2$ é par e, assim, y também é par.

Logo, dos dois fatos acima, conclui-se que as únicas possibilidades para os pares (x, y) são (2, 2), (2, 4), (2, 6), (4, 2), (4, 4) e (6, 2). Substituindo os pares, vemos que as únicas soluções são (2, 4), (4, 2) e (4, 4).

SOLUÇÃO DO PROBLEMA 2:

Seja \vec{k} inteiro positivo tal que $k^2 = n + 1$.

Primeiro, notemos que o algarismo das unidades dos quadrados perfeitos são 0, 1, 4, 5, 6 e 9, de modo que *B* é igual a 9, 3, 4, 5 ou 8.

Porém, podemos eliminar alguns casos:

- Se B = 9, pois nesse caso $k^2 = AAABBB + 1$ terminaria com exatamente três zeros (note que A não pode ser igual a 9, pois é diferente de B);
- Se B = 3, k^2 terminaria com 34, e seria par e não múltiplo de 4, já que os dois últimos algarismos de todo múltiplo de 4 formam outro múltiplo de 4, um absurdo.
- Se B = 4, k^2 terminaria com 45, e seria múltiplo de 5 mas não de 25, já que os dois últimos algarismos de um múltiplo de 25 são 25, 50, 75 ou 00. Outro absurdo.

Sobram somente os casos B = 5 e B = 8.

Observe que $n = k^2 - 1 = (k - 1)(k + 1) = AAABBB = 111(1000A + B)$ é múltiplo de $111 = 3 \cdot 37$ e, portanto, os primos 3 e 37 dividem k + 1 ou k - 1, de modo que k é da forma $111x \pm 1$ ou $111x \pm 38$. Além disso, $111556 \le k^2 < 1000000 \Rightarrow 300 < k < 1000$, de modo que $3 \le x \le 9$.

• $k = 111x \pm 1$:

Temos $AAABBB = k^2 - 1 = 111^2 x^2 \pm 222x \Leftrightarrow 1000A + B = 111x^2 \pm 2x$. O dígito das unidades de $1000A + B \notin B$. Note que $111x^2 \pm 2x = 2(55x^2 \pm x) + x^2$ tem a mesma paridade que x. Assim, se B = 5, $x \notin$ impar, ou seja, $\xi = 3$, $\xi = 5$,

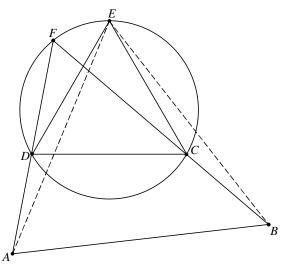
Se B=8, x é par, ou seja, é 4, 6 ou 8. Se x=4, 6, 8, o algarismo das unidades de $111x^2+2x$ é 4, 8, 0, respectivamente, de modo que obtemos x=6 e $1000A+B=111\cdot 36+12=4008$, ou seja, A=4. Obtemos assim a solução n=444888. Além disso, se x=4, 6, 8, o algarismo das unidades de $111x^2-2x$ é 8, 4, 8 respectivamente, de modo que obtemos x=4 ou x=8, para os quais 1000A+B igual a $111\cdot 16-8=1768$ e $111\cdot 64-16=7088$, respectivamente, o que não é possível.

• $k = 111x \pm 38$: Temos $AAABBB = k^2 - 1 = 111^2 x^2 \pm 2 \cdot 111 \cdot 38x + 38^2 - 1$ = $111^2 x^2 \pm 111 \cdot 76x$ + $37 \cdot 39 = 111(111x^2 \pm 76x + 13) \Leftrightarrow 1000A + B = 111x^2 \pm 76x + 13$. Estudemos, como no caso anterior, o dígito das unidades de $111x^2 \pm 76x + 13$. Se B = 5, $x \in P$ par, ou seja, $\epsilon = 13$ igual a 4, $\epsilon = 13$ ou 8. Se $\epsilon = 13$ ou 8, o algarismo das unidades de $111x^2 + 76x + 13 = 13$ ou 8, $\epsilon = 13$ ou 8, para os quais $\epsilon = 13$ quais $\epsilon = 13$ ou 8, para os quais $\epsilon = 13$ ou 9, para os quais q x=4, 6, 8, o algarismo das unidades de $111x^2-76x+13$ é 5, 3, 9, respectivamente, de modo que x=2 e 1000A+B igual a $111\cdot16-76\cdot4+13=1485$, o que não é possível.

Se B = 8, x é ímpar, ou seja, é igual a 3, 5, 7 ou 9. Se x = 3, 5, 7, 9 o algarismo das unidades de $111x^2 + 76x + 13$ é 0, 8, 4, 8, respectivamente, de modo que x = 5 ou x = 9, para os quais $1000A + B = 111 \cdot 25 + 76 \cdot 5 + 13 = 3168$ e $k = 111 \cdot 9 + 38 > 1000$, o que não é possível. Além disso, se x = 3, 5, 7, 9 o algarismo das unidades de $111x^2 - 76x + 13$ é 4, 8, 0, 0, respectivamente, de modo que x = 5, para o qual $1000A + B = 111 \cdot 25 - 76 \cdot 5 + 13 = 2408$, o que não é possível.

Portanto os únicos números n que satisfazem o enunciado são 111555 e 444888.

SOLUÇÃO DO PROBLEMA 3: Uma solução:



Prolongue AD e BC até se encontrarem no ponto F. Veja que $\angle AFB = 60^{\circ} = \angle DEC$. Com isso, o quadrilátero FECD é inscritível. Temos:

(i)
$$\angle FDE = \angle FCE = \alpha \Rightarrow \angle ADE = \angle BCE = 180^{\circ} - \alpha$$
.
(ii) $AD = BC$ e $ED = EC$.

De (i) e (ii), concluímos que $\triangle ADE \equiv \triangle BCE$. Portanto, EA = EB.

Além disso, $\angle DEA = \angle CEB$, de onde concluímos que $\angle AEB = \angle DEC = 60^\circ$. Dessa forma, o triângulo ABE é eqüilátero de lado 8 e sua área é igual a $\frac{8^2\sqrt{3}}{4} = 16\sqrt{3} \text{ cm}^2$.

Outra solução:

Considere os pontos no plano complexo. Representaremos o número complexo correspondente ao ponto X com a letra correspondente minúscula x. Fixemos o ponto médio de AB como origem e sejam a = -4 e b = 4. Assim, sendo $\mathbf{a} = \angle BAD$ e $\mathbf{b} = \angle ABC$, ambos no sentido anti-horário, podemos encontrar as coordenadas de C e D:

$$c - b = \frac{5}{8}(a - b)\operatorname{cis}(-\mathbf{b}) \Leftrightarrow c = 4 - 5\operatorname{cis}(-\mathbf{b})$$
$$d - a = \frac{5}{8}(b - a)\operatorname{cis}\mathbf{a} \Leftrightarrow d = -4 + 5\operatorname{cis}\mathbf{a}$$

Sendo $\mathbf{w} = \operatorname{cis} \frac{\mathbf{p}}{3}$ a raiz sexta da unidade e raiz da equação $x^2 - x + 1 = 0$,

$$e - d = (c - d)\mathbf{w} \Leftrightarrow e = (1 - \mathbf{w})d + c\mathbf{w} = \mathbf{w}c - \mathbf{w}^2d = 4\mathbf{w} - 5\mathbf{w}\operatorname{cis}(-\mathbf{b}) + 4\mathbf{w}^2 - 5\mathbf{w}^2\operatorname{cis}\mathbf{a}$$

$$\Leftrightarrow e = 4(\mathbf{w} + \mathbf{w} - 1) - 5\left(\operatorname{cis}\left(\frac{\mathbf{p}}{3} - \mathbf{b}\right) + \operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a}\right)\right)$$

$$\Leftrightarrow e = 4\left(2 \cdot \frac{1 + i\sqrt{3}}{2} - 1\right) - 5\left(\operatorname{cis}\left(\frac{\mathbf{p}}{3} - \frac{2\mathbf{p}}{3} + \mathbf{a}\right) + \operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a}\right)\right)$$

$$\Leftrightarrow e = 4\sqrt{3}i - 5\left(\operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a} + \mathbf{p}\right) + \operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a}\right)\right)$$

$$\Leftrightarrow e = 4\sqrt{3}i - 5\left(-\operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a}\right) + \operatorname{cis}\left(\frac{2\mathbf{p}}{3} + \mathbf{a}\right)\right) = 4\sqrt{3}i$$

Assim, o triângulo ABE, com pontos de coordenadas A=(-4,0), B=(4,0) e $E=(0,4\sqrt{3})$, é equilátero e tem área $\frac{8\cdot 4\sqrt{3}}{2}=16\sqrt{3}$ cm².

SOLUÇÃO DO PROBLEMA 4:

Escolha 20 das cidades do país. Ligando duas quaisquer delas por uma estrada, utilizaremos $\binom{20}{2} = \frac{20.19}{2} = 190$ estradas, e a cidade restante não poderá ser alcançada de automóvel. Logo se deve construir pelo menos 191 estradas. Vamos mostrar que com essa quantidade é possível atingir nosso objetivo.

Suponha que n=191, mas que seja possível dividir as cidades do país em dois grupos A e B, digamos com a e b cidades, respectivamente, de tal sorte que nenhuma cidade de A possa ser alcançada de automóvel a partir de qualquer

cidade de B. Então o número de estradas no país é no máximo $\binom{a}{2} + \binom{b}{2}$, de

modo que $\binom{a}{2} + \binom{b}{2} \ge 191$, ou ainda, $(a^2 + b^2) - (a + b) \ge 2.191 = 382$.

Como a+b=21, segue da inequação acima que $a^2+b^2 \ge 282+21=403$. Logo $ab=\frac{(a+b)^2-(a^2+b^2)}{2} \le \frac{441-403}{2}=19.$

Mas, como a+b=21 e a e b são naturais, temos $ab \ge 1.20=20$, uma contradição.

Logo, se n = 191, sempre é possível viajar entre quaisquer duas cidades.

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

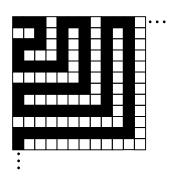
Problemas e Soluções da Terceira Fase

PROBLEMAS - NÍVEL 1

PROBLEMA 1

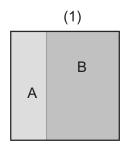
Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo ao padrão apresentado pelo desenho ao lado.

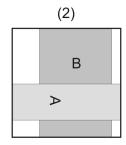
- a) Quantas casas serão pintadas num quadriculado com 14 linhas e 14 colunas, de acordo com esse padrão?
- b) Quantas linhas tem um quadriculado com 199 casas pintadas?



PROBLEMA 2

Uma sala quadrada com 81 m^2 de área tem o seu piso inteiramente coberto por dois tapetes retangulares A e B, que não se superpõem, conforme mostrado na figura (1) abaixo. Em certo momento, o tapete B é deslocado, o tapete A é girado de 90° e colocado sobre o tapete B, conforme indicado na figura (2).





Sabendo que a área do tapete B é o dobro da área do tapete A, calcule a área da parte do piso que ficou descoberta.

PROBLEMA 3

Em uma face de cada um de três cartões foi escrito um número inteiro positivo. Em seguida, os cartões foram colocados lado a lado sobre uma mesa, com a face numerada para baixo.

Arnaldo, Bernaldo e Cernaldo sabem que:

- I. Os números escritos nos cartões são todos diferentes.
- II. A soma dos três números é 13.
- III. Os números crescem da esquerda para a direita.
- a) Considerando as condições I, II e III, escreva todas as possibilidades de numeração dos cartões.
- b) Agora é hora de descobrir os números que foram escritos nos cartões.

Primeiramente, Arnaldo olha o número do primeiro cartão à esquerda e diz que não tem informações suficientes para descobrir os outros dois números sem levantar os outros cartões. Depois, Bernaldo levanta o último cartão à direita, olha o número e diz também que não consegue descobrir os dois números à esquerda, sem levantar todos os cartões. E o mesmo acontece com Cernaldo, que levanta o cartão do meio, olha seu número e afirma que não consegue descobrir os números nos outros dois cartões.

Sabendo que todos ouvem o que os demais dizem, mas não vêem o cartão que o outro olhou, qual número está escrito no cartão do meio?

PROBLEMA 4

Considere a tabela a seguir com quatro linhas (fileiras horizontais) e quatro colunas (fileiras verticais) a qual está preenchida com números naturais, ocorrendo repetições de números:

1	0	0	3
5	1	2	4
1	1	2	3
6	1	4	0

Ao somarmos os números de cada uma de suas linhas (L1, L2, L3 e L4) e colunas (C1, C2, C3 e C4) obtemos 8 números distintos: 3, 4, 7, 8, 10, 11, 12, 13. Veja:

	C1	C2	C3	C4	Soma da linha
L1	1	0	0	3	4
L2	5	1	2	4	12
L3	1	1	2	3	7
L4	6	1	4	0	11
Soma da coluna	13	3	8	10	

Apresente, se for possível:

- a) uma tabela com 4 linhas e 4 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 8.
- b) uma tabela com 8 linhas e 8 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 16.
- c) uma tabela com 9 linhas e 9 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 18.

Atenção: caso seja impossível montar alguma tabela, você deve explicar porque.

PROBLEMA 5

Sendo $A = \underbrace{555555 \cdots 5}_{2007 \text{ cincos}} \times \underbrace{222222 \cdots 2}_{2007 \text{ dois}}$, calcule a soma dos algarismos de

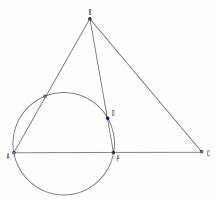
9 × A . Não se esqueça de justificar a sua resposta.

PROBLEMAS – NÍVEL 2

PROBLEMA 1

Seja ABC um triângulo e O seu circuncentro. Seja ainda P a intersecção das retas BO e AC e S a circunferência circunscrita a AOP. Suponha que BO = AP e que a medida do arco OP em S que não contém A é 40° . Determine a medida do ângulo $\angle OBC$.

Obs: A circunferência circunscrita de um triângulo é a circunferência que passa pelos seus vértices e seu centro é chamado de circuncentro.



PROBLEMA 2

Considere a tabela a seguir com quatro linhas (fileiras horizontais) e quatro colunas (fileiras verticais) a qual está preenchida com números naturais, ocorrendo repetições de números:

1	0	0	3
5	1	2	4
1	1	2	3
6	1	4	0

Ao somarmos cada uma de suas linhas (L1, L2, L3 e L4) e colunas (C1, C2, C3 e C4) obtemos 8 números distintos: 3, 4, 7, 8, 10, 11, 12, 13. Veja:

	C1	C2	C3	C4	Soma da
					Linha
L1	1	0	0	3	4
L2	5	1	2	4	12
L3	1	1	2	3	7
L4	6	1	4	0	11
Soma da	13	3	8	10	
Coluna					

Apresente, se for possível:

- a) uma tabela com 4 linhas e 4 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 8.
- b) uma tabela com 8 linhas e 8 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 16.
- c) uma tabela com 9 linhas e 9 colunas, formada por números naturais, podendo ocorrer repetições de números, na qual apareçam como somas de linhas ou colunas os números de 1 a 18.

Atenção: caso seja impossível montar alguma tabela, você deve explicar porque.

PROBLEMA 3

Mostre que existe um inteiro positivo a tal que $\frac{a^{29}-1}{a-1}$ tem pelo menos 2007 fatores primos distintos.

SEGUNDO DIA

PROBLEMA 4

Prove que não existem soluções inteiras e positivas para a equação $3^m + 3^n + 1 = t^2$.

PROBLEMA 5

Seja ABC um triângulo retângulo isósceles. $K \in M$ são pontos sobre hipotenusa AB, com K entre $A \in M$, e o ângulo $\angle KCM = 45^{\circ}$. Prove que $AK^2 + MB^2 = KM^2$.

PROBLEMA 6

Quadradinhos iguais estão arrumados formando um tabuleiro $n \times n$. Ludmilson e Ednalva jogam o seguinte estranho jogo. Cada jogada de Ludmilson consiste em retirar 4 quadradinhos que formem um quadrado 2×2 . Cada jogada de Ednalva consiste em retirar apenas 1 quadradinho. Ludmilson e Ednalva jogam alternadamente, sendo Ludmilson o primeiro a jogar. Quando Ludmilson não puder fazer sua jogada, então Ednalva fica com todas as peças restantes do tabuleiro. Ganha o jogo aquele que possuir mais quadradinhos no final. Diga se é possível que Ednalva ganhe o jogo, não importando como Ludmilson jogue, em cada um dos seguintes casos:

- a) n = 10.
- b) Caso geral (*n* qualquer).

TERCEIRA FASE – NÍVEL 3 (Ensino Médio)

PRIMEIRO DIA

PROBLEMA 1

Seja $f(x) = x^2 + 2007x + 1$. Prove que, para todo n inteiro positivo, a equação $\underbrace{f(f(...(f(x))...))}_{n \text{ vezes}} = 0$ tem pelo menos uma solução real

PROBLEMA 2

Para quantos números inteiros c, $-2007 \le c \le 2007$, existe um inteiro x tal que $x^2 + c$ é múltiplo de 2^{2007}

PROBLEMA 3

São dados n pontos no plano, os quais são os vértices de um polígono convexo. Prove que o conjunto das medidas dos lados e das diagonais do polígono tem pelo menos $\lfloor n/2 \rfloor$ elementos distintos.

Observação: $\lfloor x \rfloor$ denota o maior número inteiro que não excede x. Por exemplo, $\lfloor 2,5 \rfloor = 2$, $\lfloor 3 \rfloor = 3$ e $\lfloor -1,2 \rfloor = -2$.

SEGUNDO DIA

PROBLEMA 4

Arrumam-se 2007^2 quadradinhos iguais, formando um tabuleiro 2007×2007 . Arnaldo e Bernaldo disputam o seguinte jogo: cada jogada de Arnaldo consiste em retirar 4 quadradinhos que formem um quadrado 2×2 . Cada jogada de Bernaldo consiste em retirar apenas 1 quadradinho. Os jogadores jogam alternadamente, sendo Arnaldo o primeiro a jogar. Quando Arnaldo não puder fazer sua jogada, Bernaldo fica com todas as peças restantes do tabuleiro. Ganha o jogo aquele que possuir mais quadradinhos no final.

É possível que Bernaldo ganhe o jogo, não importando como Arnaldo jogue?

PROBLEMA 5

Seja ABCD um quadrilátero convexo, P a interseção das retas AB e CD, Q a interseção das retas AD e BC e O a interseção das diagonais AC e BD. Prove que se $\angle POQ$ é um ângulo reto então PO é bissetriz de $\angle AOD$ e QO é bissetriz de $\angle AOB$.

PROBLEMA 6

Dados números reais $x_1 < x_2 < \ldots < x_n$, suponha que todo número real ocorre no máximo duas vezes entre as diferenças $x_j - x_i$, com $1 \le i < j \le n$. Prove que há pelo menos $\lfloor n/2 \rfloor$ números reais que ocorrem exatamente uma vez entre tais diferenças.

Observação: caso você tenha se esquecido da prova de ontem, $\lfloor x \rfloor$ denota o maior número inteiro que não excede x. Por exemplo, $\lfloor 2,5 \rfloor = 2$, $\lfloor 3 \rfloor = 3$ e $\lfloor -1,2 \rfloor = -2$.

SOLUÇÕES - NÍVEL 1

SOLUÇÃO DO PROBLEMA 1: LIARA GUINSBERG (SÃO PAULO - SP)

Considerando a figura, conseguimos ver um padrão (de cima para abaixo e da esquerda para a direita).

Número de quadrados pintados:

 $2 \times 2 : 2$

 $3 \times 3 : 7$

 $4 \times 4 : 8$

 $5 \times 5 : 17$

 $6 \times 6 : 18$

 $7 \times 7 : 31$

 $8 \times 8 : 32$

Podemos perceber que, do 3×3 (7 pintados) para o 4×4 (8 pintados) que o número aumentou 1 unidade pintada.

O fato se deve à seqüência de quadrados pintados, do 2×2 para o 3×3 , o número de quadrados pretos cresceu em 5 unidades enquanto o branco permaneceu igual, mas do 3×3 para o 4×4 , o número de brancos aumentou 6, enquanto o preto somente 1. Em geral, se n é par, do $n \times n$ para o $(n+1) \times (n+1)$ o número de quadrados pretos cresce em 2n+1 unidades, mas se n é ímpar cresce em apenas 1 unidade.

Para o caso do quadrado $n \times n$, com n par, como a quantidade de casas pretas é igual à quantidade de casas brancas, a quantidade de casas pretas será $\frac{n^2}{2}$. Para o caso do quadrado $n \times n$, com n ímpar, percebemos que, a quantidade de casas pretas será $\frac{(n+1)^2}{2}-1$ (devido às descobertas anteriores). Com efeito, para n par,

$$\frac{n^2}{2} + 2n + 1 = \frac{(n+2)^2}{2} - 1, \text{ e , para } n \text{ impar, } \frac{(n+1)^2}{2} - 1 + 1 = \left(\frac{n+1}{2}\right)^2.$$

Usando estes fatos:

- a) Num quadriculado de 14×14 , usamos o padrão para pares: $\frac{14^2}{2} = \text{número de}$ casas pretas $= \frac{196}{2} = 98 \text{ casas pretas}$.
- b) Para descobrirmos quando o quadrado tem 199 casas pintadas, vamos testar os casos:

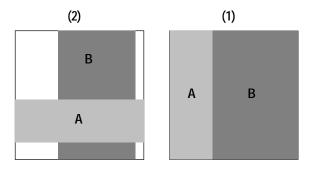
Sociedade Brasileira de Matemática

Usando o padrão para n par, temos: $\frac{n^2}{2} = 199 \Leftrightarrow n^2 = 398$, mas e equação não tem solução inteira.

Usando o padrão para *n* ímpar, vemos que:

$$\frac{(n+1)^2}{2} - 1 = 199 \Leftrightarrow \frac{(n+1)^2}{2} = 200, \text{ achamos } (n+1) = 20, \text{ donde } n = 19, \text{ portanto o número de linhas será igual a 19.}$$

SOLUÇÃO DO PROBLEMA 2: CAROLINA RODRIGUES SILVA (FORTALEZA - CE)



Na figura 1 chamamos a área de A de x e a de B de 2x. Teremos então $3x = 81 \text{ m}^2$ e $x = 27 \text{ m}^2$, então a área de $A = 27 \text{ m}^2$ e seus lados são: 3 e 9; área de $B = 54\text{m}^2$ e seus lados 6 e 9.

Na figura 2, vemos que se juntarmos as áreas descobertas teremos como largura 3 e altura 9-3=6. Obtemos assim como área do piso que ficou descoberta o seguinte valor: $6 \times 3 = 18 \text{m}^2$.

SOLUÇÃO DO PROBLEMA 3: FELIPE BELLIO DA NÓBREGA (RIO DE JANEIRO - RJ)

x, y, z: números nos cartões

vamos supor x < y < z

$$x + y + z = 13$$

a)	1 + 2 + 10	2 + 3 + 8	3 + 4 + 6	
	1 + 3 + 9	2 + 4 + 7		
	1 + 4 + 8	2 + 5 + 6		ļ
	1 + 5 + 7			ĺ

b) Quando Arnaldo olha, pode-se eliminar o 3+4+6, pois ele saberia, já que é o único que começa com 3.

Quando Bernaldo olha, pode-se eliminar o 1+2+10, o 1+3+9 e o 2+5+6. O primeiro porque é o único que acaba com 10. O segundo com 9. E o último, já que não pode ser o 3+4+6 graças a Arnaldo é o único que acaba com 6. Quando Cernaldo olha, pode-se eliminar o 1+5+7 e o 2+3+8. Já que o 2+5+6 foi eliminado por Bernaldo, o 1+5+7 é o único com 5 no meio. E já que Bernaldo também eliminou o 1+3+9, o 2+3+8 é o único com 3 no meio. **Resposta**: Assim sobraram apenas o 1+4+8 e o 2+4+7. Então o 4 está no cartão do meio.

SOLUÇÃO DO PROBLEMA 4: RAFAEL KAZUHIRO MIYAZAKI (SÃO PAULO - SP)

<u>a</u>)					
	C1	C2	C3	C4	Soma da Iinha
L1	0	0	0	1	1
L2	5	0	0	0	5
L3	2	4	1	1	8
L4	0	2	2	0	4
Soma da					
coluna	7	6	3	2	

b)									
									Soma da
	C1	C2	C3	C4	C5	C6	C7	C8	linha
L1	0	0	0	1	0	0	0	0	1
L2	0	0	0	0	4	0	1	0	5
L3	0	3	0	1	0	0	0	0	4
L4	3	0	2	0	0	0	3	0	8
L5	3	0	3	0	2	1	0	0	9
L6	0	0	3	0	1	0	2	7	13
L7	1	0	2	0	3	3	0	7	16
L8	0	0	0	0	1	11	0	0	12
Soma da									
coluna	7	3	10	2	11	15	6	14	

c) Não é possível. Para que seja possível montar uma tabela, a soma das somas das colunas e das somas das linhas deve ser igual ao dobro da soma dos números "internos" (números preenchendo a tabela, exceto os de soma).

$$1 + 2 + 3 + ... + 16 + 17 + 18 = 171$$

 $2n = 171 \Rightarrow n = \frac{171}{2}$, onde n é a soma dos números "internos" e estes devem ser naturais, mas $\frac{171}{2}$ não é natural. Portanto não podemos montar a tabela pedida.

SOLUÇÃO DO PROBLEMA 5: SOLUÇÃO DA BANCA

Observamos inicialmente que 9×5×2=9×10=90 9×55×22=9×1210=10890 9×555×222=9×123210=1108890 9×5555×2222=9×12343210=111088890 9×5555×2222=9×1234543210=11110888890

Isso nos leva a conjecturar que

$$9 \times A = 9 \times \underbrace{555...555}_{2007 \text{ cincos}} \times \underbrace{222...22}_{2007 \text{ dois}} = \underbrace{111...111}_{2006 \text{ uns}} \underbrace{0888...88}_{2006 \text{ oitos}} 90$$

Para mostrar que nossa conjectura é verdadeira, devemos garantir que, ao continuar as multiplicações acima, o padrão se repete. Digamos que você já tenha feito n multiplicações e tenha obtido

9×555...555×222...22 = 111...1110888...8890. Então

9×555...555×222...22 = 9×
$$\left(\frac{555...55550}{n \text{ cincos}}\right)$$
 × $\left(\frac{222...220+2}{n \text{ dois}}\right)$ =

9×555...5550×222...220+9×555...55550×2+9×5×222...220+9×5×2 =

9×555...5555×222...2200+9×111...111100+9×111...111100+90 =

111...1110888...889000+2×999...9900+90 =

111...1110888...889000+1999...9800+90 =

111...1110888...889000+1999...9800+90 =

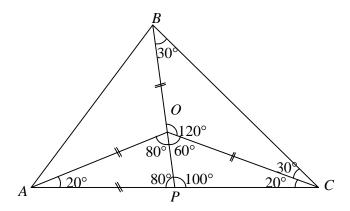
111...1110888...889000+1999...9800+90 =

111...1110888...88900

Portanto, nossa conjectura é verdadeira. Logo, a soma dos algarismos de $9 \times A$ é igual a $2006 \times 1 + 2006 \times 8 + 9 = 2006 \times 9 + 9 = 2007 \times 9 = 18063$.

SOLUÇÕES - NÍVEL 2

PROBLEMA 1: SOLUÇÃO DE HERMANO HENRIQUE DA SILVA (FORTALEZA - CE)



Propriedade do circuncentro:

Está a igual distância dos vértices!

Como O é o circuncentro, AO = BO = AP, logo $\triangle APO$ é isósceles e como o $\widehat{OP} = 40^{\circ} \Rightarrow \angle OAP = 20^{\circ}, \angle AOP = \angle APO = 80^{\circ}.$

Daí, $\angle OPC = 100^{\circ}$, $\angle OCP = 20^{\circ}$, $\angle POC = 60^{\circ}$. Logo $\angle BOC = 120^{\circ}$, mas $\triangle BOC$ é isosceles, daí $\angle OBC = \angle OCB = 30^{\circ}$.

PROBLEMA 2: Veja a solução do problema No. 4 do Nível 1.

PROBLEMA 3: SOLUÇÃO DA BANCA

Observe a seguinte fatoração

$$\frac{(a^2)^{29}-1}{a^2-1} = \frac{a^{29}+1}{a+1} \cdot \frac{a^{29}-1}{a-1}.$$

Sabemos que $a^{29} + 1 = (a+1)(a^{28} - a^{27} + a^{26} - \dots - a + 1)$ e

$$a^{29}-1=(a-1)(a^{28}+a^{27}+...+a+1)$$
. Dessa forma cada uma das frações $\frac{a^{29}+1}{a+1}$ e $\frac{a^{29}-1}{a-1}$ é inteira.

Além disso, se a for par, pelo lema de Euclides:

$$mdc(a^{29} + 1, a^{29} - 1) = mdc(a^{29} + 1, 2) = 1.$$

Sociedade Brasileira de Matemática

Assim, $mdc\left(\frac{a^{29}+1}{a+1},\frac{a^{29}-1}{a-1}\right)=1$. Com isso, podemos concluir que, se a for maior que 1, $\frac{(a^2)^{29}-1}{a^2-1}$ possui pelo menos um divisor primo a mais do que $\frac{a^{29}-1}{a-1}$. Portanto, o número $a=3^{2^{2007}}$ satisfaz às condições do problema.

PROBLEMA 4: SOLUÇÃO DE MATHEUS SECCO TORRES DA SILVA (RIO DE JANEIRO – RJ) $3^m + 3^n + 1 = t^2$.

Sabe-se que todos os números da forma 3^k são ímpares. Assim, $3^m + 3^n$ é um número par obrigatoriamente. Logo, $3^m + 3^n + 1$ é um ímpar. Sendo t^2 um número ímpar, t também deve ser ímpar, então podemos escrever t = 2k + 1, onde k é inteiro positivo.

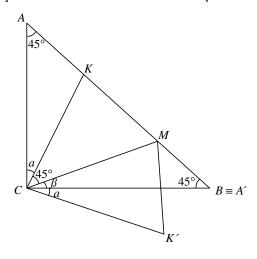
Voltando à equação original, obtemos: $3^m + 3^n + 1 = 4k^2 + 4k + 1$; $3^m + 3^n = 4k(k+1)$.

Pelo princípio da Casa dos Pombos, k(k + 1) é um número par necessariamente, fazendo com que 4k (k + 1) seja múltiplo de 8.

Devemos ter então $3^m + 3^n \equiv 0 \pmod{8}$. Porém, $3^m \equiv 1$ ou $3 \pmod{8}$ e $3^n \equiv 1$ ou $3 \pmod{8}$. Assim, $3^m + 3^n \equiv 0 \pmod{8}$ é um absurdo!

Por isso, a equação $3^m + 3^n + 1 = t^2$ não tem soluções nos inteiros positivos (c.q.d.)

PROBLEMA 5: SOLUÇÃO DE DEBORAH BARBOSA ALVES (SÃO PAULO - SP)



Girando o $\triangle AKC$ em torno de C, até $A' \equiv B$, temos o $\triangle CK'A'$ (ou $\triangle CK'B$) em que $\angle CA'K' = \angle CAK = 45^{\circ}$, então $\angle MBK'$ é reto.

Sendo $\angle ACK = a$ e $\angle MCB = b$, $\angle BCK' = \angle ACK = a$.

Como $\angle ABC$ é retângulo, e a hipotenusa é AB, $\angle ACB$ é reto. Então $\mathbf{a} + \mathbf{b} + 45^\circ = 90^\circ \Leftrightarrow \mathbf{a} + \mathbf{b} = 45^\circ$.

Como KC = K'C; $\angle MCK' = \mathbf{a} + \mathbf{b} = 45^{\circ} = \angle KCM$ e como ΔMCK e $\Delta MCK'$ são congruentes (caso LAL) Então, todos os seus ladas e ângulos são iguais. Assim, KM = K'M.

 ΔACK é congruente com $\Delta A'CK'$, por construção.

Então AK = A'K' = BK'.

 $\Delta MK'B$ (ou $\Delta MK'A'$) é retângulo.

Então, pelo teorema de Pitágoras, temos:

$$MB^2 + BK^2 = MK^2$$

e como BK' = A'K' = AK e MK' = KM, $AK^2 + MB^2 = KM^2$.

PROBLEMA 6:

BASEADA NA SOLUÇÃO DE JOÃO MENDES VASCONCELOS (FORTALEZA - CE)

a) Se n é par, dividimos o tabuleiro em $\frac{n^2}{4}$ quadrados 2×2 . Em cada jogada, Ludmilson retira um quadrado 2×2 desses em que dividimos o tabuleiro. Nas primeiras $\left| \frac{n^2}{8} \right|$ jogadas, Ednalva retirou quadrados pertencentes a, no máximo,

$$\left| \frac{n^2}{8} \right|$$
 desses quadrados 2 × 2. Assim, se $k-1 < \frac{n^2}{8}$, no momento de Ludmilson

fazer a k-ésima jogada, foram tocados no máximo $k-1+\left\lfloor\frac{n^2}{8}\right\rfloor < \frac{n^2}{8} + \frac{n^2}{8} = \frac{n^2}{4}$

desses quadrados 2×2 , e portanto sobra algum desses quadrados para Ludmilson retirar. Assim, Ludmilson consegue retirar pelo menos $\left\lceil \frac{n^2}{8} \right\rceil$ desses quadrados,

que contêm $4\left\lceil \frac{n^2}{8} \right\rceil \ge \frac{n^2}{2}$ quadrados 1×1 , ficando com pelo menos a metade dos quadradinhos do tabuleiro.

Se
$$n = 10$$
, $4 \left\lceil \frac{n^2}{8} \right\rceil = 4 \cdot 13 = 52 > \frac{10^2}{2}$, e Ludmilson de fato ganha o jogo.

Obs.: [x] denota o menor inteiro que é maior ou igual a x

b) Para fazermos o caso geral, dividiremos em casos:

Primeiro caso: n é par:

Como vimos acima, Ludmilson consegue retirar pelo menos metade dos quadradinhos do tabuleiro, e logo Ednalva não consegue ganhar o jogo. Na verdade Ludmilson ganha se n for da forma 4k + 2 e o jogo empata se n for da forma 4k.

Segundo caso: n é ímpar.

Nós faremos uma pintura como segue:

A cada duas linhas, uma ficará em branco e outra será pintada em um quadradinho sim e um não.

Veja a figura para melhor compreensão:



Como n é ímpar, as linhas pintadas terão um quadradinho pintado a menos que os não pintados. Pelo mesmo motivo, o número de linhas pintadas será uma unidade menor que o de não pintadas. Isso garante que o número de casas pintadas seja mínimo e nós possamos ter ao mesmo tempo todos os quadrados 2×2 com uma casa pintada. Agora vamos contar o número de quadrados pintados:

Em cada linha pintada, nós temos $\frac{n-1}{2}$ quadrados pintados.

Como são $\frac{n-1}{2}$ linhas pintadas, o total de quadradinhos pintados será $\frac{(n-1)^2}{4}$.

A estratégia de Ednalva se resume a retirar, a cada jogada, um quadradinho preto até que não reste mais nenhum. Percebemos também que a cada jogada de Ludmilson ele também retira um quadradinho preto obrigatoriamente, já que todos os quadrados 2×2 do tabuleiro estão pintados em uma casa.

Desse modo, após
$$\left\lceil \frac{(n-1)^2}{8} \right\rceil$$
 jogadas de Ludmilson, e $\left\lfloor \frac{(n-1)^2}{8} \right\rfloor$ jogadas de

Ednalva, são retiradas
$$\left\lceil \frac{(n-1)^2}{8} \right\rceil + \left\lceil \frac{(n-1)^2}{8} \right\rceil = \frac{(n-1)^2}{4}$$
 casas pintadas, ou seja,

todas as casas pintadas, e Ludmilson não consegue mais jogar. Como, ao final,

Ludmilson tem
$$4\left\lceil \frac{(n-1)^2}{8} \right\rceil \le 4\left(\frac{(n-1)^2}{8} + \frac{1}{2} \right) = \frac{(n-1)^2}{2} + 2 < \frac{n^2}{2}$$
 quadradinhos

(pois $n \ge 3$ nesse caso), Ednalva vence sempre nesse caso.

SOLUÇÕES – NÍVEL 3

PROBLEMA 1: BASEADA NA SOLUÇÃO DE LEANDRO FARIAS MAIA (FORTALEZA - CE)

Sejam $f^{1}(x) = f(x)$ e para cada $n \ge 1$, $f^{n+1}(x) = f(f^{n}(x))$.

Sejam
$$\Delta_1 = 2007^2 - 4$$
, $x_1 = \frac{-2007 + \sqrt{\Delta_1}}{2}$.

Temos $f(x_1) = 0$. Vamos mostrar por indução que existe uma sequência de reais

positivos
$$(\Delta_n)$$
 tal que, definindo $x_n = \frac{-2007 + \sqrt{\Delta n}}{2}$, temos $f(x_{n+1}) = x_n$, para todo n , donde $f^{n+1}(x_{n+1}) = f^n(x_n) = 0$.

Para isso, note que a maior raiz de
$$x^2 + 2007x + 1 = x_n$$
 é $\frac{-2007 + \sqrt{\Delta_{n+1}}}{2}$, onde $\Delta_{n+1} = 2007^2 - 4 + 4x_n = 2007^2 - 4018 + 2\sqrt{\Delta_n} > 0$, c.q.d.

PROBLEMA 2: SOLUÇÃO DE RAMON MOREIRA NUNES (FORTALEZA - CE)

Vamos provar que todo número da forma 8q + 1 é resíduo quadrático módulo 2^n (usaremos no que segue a palavra resíduo significando resíduo quadrático) e que são os únicos resíduos ímpares para n maior ou igual a 3.

Temos que 1 é o único resíduo ímpar módulo 8. De fato, $(2k+1)^2 = 4k(k+1) + 1 \equiv 1 \pmod{8}, \forall k \in \mathbb{Z}$. Assim, se $n \ge 3$ então todo número ímpar que é resíduo módulo 2^n é congruente a 1 módulo 8.

Mostraremos, por indução que todo número da forma 8q + 1 é resíduo mod 2^k , para todo $k \ge 3$.

Caso inicial k = 3: 8q + 1 é resíduo mod 8 porque 1 é resíduo mod 8.

Passo: Todo número da forma 8q+1 é resíduo mod 2^k ; tome x dessa forma. Então, existe $y \in \mathbb{Z}$ com $y^2 \equiv x \pmod{2^k}$. Se $y^2 \equiv x \pmod{2^{k+1}}$, acabou. Senão,

$$y^2 \equiv x + 2^k \pmod{2^{k+1}}, \ e\left(y + 2^{k-1}\right)^2 = y^2 + 2^k y + 2^{2k-2} \equiv y^2 + 2^k \equiv x \pmod{2^{k+1}},$$

donde x é resíduo módulo 2^{k+1} , e concluímos a demonstração.

Aprendemos a contar os números ímpares resíduos quadráticos. Como $x^2 + c \equiv 0 \pmod{2^{2007}}$ para algum x é o mesmo que $-c \equiv x^2 \pmod{2^{2007}}$ para algum x, queremos saber o número de c's tais que -c é resíduo quadrático; bem, entre os ímpares temos: -2001,...,+2007. Quantos números temos entre eles?

Como -2001 = -8(250) - 1 e $2007 = 8 \cdot 251 - 1$, temos 502 ímpares.

Agora para os pares: é claro que c tem que ser múltiplo de 4, pois $x^2 + c \equiv 0 \pmod{2^{2007}} \Rightarrow x^2 + c \equiv 0 \pmod{4}$, que só acontece para c múltiplo de 4. Bem, claro também que x deve ser par, ou seja, x = 2y; queremos $4y^2 + 4d \equiv 0 \pmod{2^{2007}} \Leftrightarrow y^2 + d \equiv 0 \pmod{2^{2005}}$; novamente, sabemos contar os y impares.

Tínhamos os seguintes múltiplos de 4: -2004, ..., 2004; dividindo por 4, ficamos com: -501, -500, ..., 500, 501. Os ímpares da forma -8q - 1 são -497,..., 495; como -497 = -8 (62) -1 e 495 = -8 (-62) -1, temos 125 ímpares aqui.

Agora, seguindo o algoritmo, pegamos os múltiplos de 4:

-500,...,500 e vemos quais deles são simétricos de resíduos mod 2^{2005} .

Dividindo por 4, vemos que eles correspondem aos elementos de -125,...,125 que são simétricos de resíduos mod 2^{2003} .

Encontramos agora os números -8q - 1 entre esses:

Veja que -121 = -8(15) - 1 e 119 = -8(-15) - 1; são 31 números aqui.

Múltiplos de 4: -124, ..., 124, dividindo por 4: -31,..., 31 (mod $2^{200\bar{1}}$ agora)

-25 = -8(3) - 1 e 31 = -8(-4) - 1; temos 8 números aqui.

Múltiplos de 4: -28, ..., 28, dividindo por 4: -7, ..., 7 (módulo 2^{1999} agora).

-1 = -8(0) - 1 e 7 = -8(-1) - 1; temos 2 números aqui.

Múltiplos de 4: -4, 0, 4, dividindo: -1, 0, 1 (mod 2^{1997} agora); desses números somente -(-1) e -(0) (1 e 0) são resíduos, -(1) não é, logo temos 2 números aqui. Total: 502 + 125 + 31 + 8 + 2 + 2 = 670 números.

PROBLEMA 3: SOLUÇÃO DA BANCA

Primeiro considere dois pontos P e Q do polígono cuja distância é máxima. Tome Q de modo que PQ separe o polígono em dois polígonos, um deles com PQ como única distância máxima.

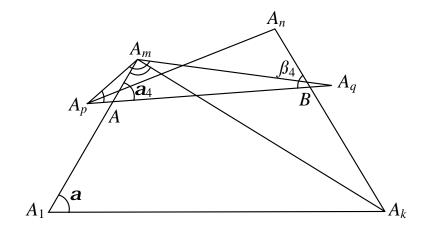
Em cada um desses dois polígonos vamos aplicar o seguinte

Lema: Seja $A_1A_2...A_k$ um polígono convexo tal que a maior distância entre dois de seus vértices, incluindo diagonais, é A_1A_k . Então esse polígono tem k-2 distâncias diferentes; caso A_1A_k seja a única distância máxima, então há k-1 distâncias diferentes.

Demonstração: Sejam A_p e A_q , 1 dois vértices do polígono. Vamos provar que, para quaisquer <math>m e n com $p < m \le n < q$ um dos segmentos $A_p A_n$, $A_q A_m$ é menor do que $A_p A_q$. Em seguida, conseguiremos uma seqüência de k-2 distâncias diferentes.

Como conseguir distâncias menores? Ou, de modo mais geral, como compara segmentos? Muitas vezes é melhor transferir tudo para ângulos, para que possamos fazer...isso mesmo, um arrastão!

Sejam $\mathbf{a} = \angle A_m A_1 A_k$, $\mathbf{a}_1 = \angle A_1 A_m A_k$, $\mathbf{a}_2 = \angle A_p A_m A_q$, $\mathbf{a}_3 = \angle A_q A_p A_m$, A a interseção de $A_p A_q$ e $A_1 A_m$ (note que, como o polígono é convexo, A está no interior do segmento $A_p A_q$) e $\mathbf{a}_4 = \angle A_m A A_q$.



Suponha que $A_p A_q \le A_m A_q$. Então, no triângulo $A_m A_p A_q$, $\mathbf{a}_2 \le \mathbf{a}_3$. Além disso, pelo teorema do ângulo externo no triângulo $AA_p A_m$, $\mathbf{a}_3 < \mathbf{a}_4$. Ademais, $\mathbf{a}_1 < \mathbf{a}_2$ e, sendo

 A_1A_k a maior distância de todas (e esse é o passo decisivo da demonstração e mostra o poder do princípio do extremo), no triângulo $A_1A_mA_k$, $a < a_1$. Logo $a < a_1 < a_2 \le a_3 < a_4 \Rightarrow a < a_4$.

Definindo os \mathbf{b} 's analogamente e supondo que $A_p A_q \leq A_n A_p$, obtemos $\mathbf{b} < \mathbf{b}_4$. Porém, observando os quadriláteros $A_1 A_k A_n A_m$ e $ABA_n A_m$, temos que $\mathbf{a} + \mathbf{b} + \angle A_1 A_m A_n + \angle A_k A_n A_m = \mathbf{a}_4 + \mathbf{b}_4 + \angle A A_m A_n + \angle B A_n A_m = 360^\circ \Rightarrow \mathbf{a} + \mathbf{b} = \mathbf{a}_4 + \mathbf{b}_4$. Mas

$$\begin{vmatrix} a < a_4 \\ b < b_4 \end{vmatrix} \Rightarrow a + b < a_4 + b_4,$$

contradição.

O caso em que m = n fica a cargo do leitor.

Para terminar, basta fazer uma espécie de "zigue-zague". Comece com A_2A_{k-1} , que é menor do que A_1A_k (por quê?). Pelo que acabamos de provar, A_2A_{k-2} ou A_3A_{k-1} é menor do que A_2A_{k-1} . Suponha, por exemplo, que A_3A_{k-1} seja menor. Então, aplicando o nosso fato de novo, A_4A_{k-1} ou A_3A_{k-2} é menor do que A_3A_{k-1} . Continuamos assim, até acabar o polígono, e assim conseguimos k-2 distâncias diferentes.

No caso em que A_1A_k é a única distância máxima, fica para você provar (use o poder do arrastrão novamente!) que, no quadrilátero $A_1A_2A_{k-1}A_k$, uma das diagonais (na verdade as duas) é menor do que A_1A_k (bem, isso é imediato) e maior do que A_2A_{k-1} , de modo que ganhamos mais uma distância, totalizando k-1.

Agora, vamos terminar o problema. Lembre que cortamos o polígono original do problema em dois por uma diagonal PQ com medida máxima. Suponha que os polígonos obtidos tenham k+1 e n-k+1 lados, sendo que o de k+1 lados tem a distância máxima única. Nele, obtemos (k+1)-1=k distâncias diferentes, e no outro, (n-k+1)-2=n-k-1. Então conseguimos $d=m\acute{a}x\{k,n-k-1\}$

distâncias. Mas
$$d \ge \frac{k + (n - k - 1)}{2} = \frac{n - 1}{2} \Rightarrow d \ge \left\lfloor \frac{n}{2} \right\rfloor$$
.

PROBLEMA 4: SOLUÇÃO DE HENRIQUE PONDÉ DE OLIVEIRA PINTO (SALVADOR – BA) Numeremos as casas do tabuleiro de acordo com o seguinte padrão:

Sociedade Brasileira de Matemática

Α	В	Α	В	Α	В
С	D	С	D	С	D
Α	В	Α	В	Α	В
С	D	С	D	С	D
Α	В	Α	В	А	В
С	D	С	D	С	D

É fácil ver que cada quadrado 2×2 de Arnaldo ocupa exatamente uma casa de cada tipo $(A; B; C \in D)$.

Agora uma contagem simples nos mostra a quantidade de casas de cada tipo.

Tipo	Quantidade			
А	1004²			
В	1004 1003			
С	1003 · 1004			
D	10032			

Veja que a soma total é de fato 2007².

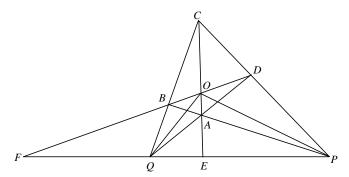
Veja que as casas tipo D são as menos numerosas. Agora suponha que Bernaldo só jogue em casas tipo D. Teremos que a cada jogada de cada um dos jogadores exatamente uma casa tipo D é ocupada. Assim após 1003^2 jogadas Arnaldo não

poderá mais jogar. Como Arnaldo começa, quando ele fizer sua $\frac{1003^2+1}{2}$ -ésima jogada acabarão as casas D, então Bernaldo pode escolher qualquer casa que Arnaldo não poderá jogar novamente. Então assim Arnaldo terá $4\cdot\frac{(1003^2+1)}{2}$

casas. Ele só ganha se pegar mais que
$$\frac{2007^2}{2}$$
 ou seja $\frac{4(1003^2+1)}{2} > \frac{2007^2}{2} \Rightarrow 2006^2+4 > 2007^2$. Absurdo.

Logo jogando assim Bernaldo ganha independentemente de como Arnaldo jogar.

PROBLEMA 5: SOLUÇÃO DE RAFAEL TUPYNAMBÁ DUTRA (BELO HORIZONTE - MG) Sejam E a interseção de OC e PQ e F a interseção de BD e PQ.



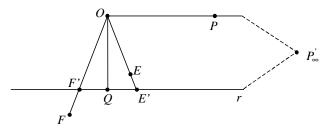
Pelo teorema de Ceva aplicado ao triângulo CPQ, $\frac{PE}{QE} \cdot \frac{CD}{PD} \cdot \frac{QB}{CB} = 1$.

Pelo teorema de Menelaus aplicado ao triângulo CPQ, $\frac{PF}{QF} \cdot \frac{CD}{PD} \cdot \frac{QB}{CB} = 1$.

Assim, temos $\frac{PE}{QE} = \frac{PF}{QF}$ e, portanto, P, Q, E, F formam uma quádrupla

harmônica. Assim sendo, OP, OQ, OE, OF formam um feixe harmônico. Portanto qualquer reta intersecta esse feixe em uma quádrupla harmônica.

Vamos criar uma reta r que passa por Q e é perpendicular a OQ.



Supondo $P\hat{O}Q = 90^{\circ}$, provaremos que OQ é bissetriz de $F\hat{O}E$, o que mostra que OQ é bissetriz de $A\hat{O}B$. Analogamente, teremos OP bissetriz de $A\hat{O}D$ (as duas bissetrizes das retas AC e BD são perpendiculares).

Como $P\hat{O}Q = 90^{\circ}$, temos OP // r. Assim, r intersecta o feixe harmônico na quádrupla harmônica P_{∞} , Q, F', E', sendo P_{∞} o ponto do infinito correspondente ao feixe de retas paralelas a r. Dessa forma, precisamos ter QE' = QF', ou seja, Q é o ponto médio de E'F'. Assim, pelo teorema de Pitágoras, temos $OF' = OE' = \sqrt{OQ^2 + QE'^2}$ e, como o triângulo OE'F' é isósceles, a altura OQ também é bissetriz de $E'\hat{O}F'$, de $E\hat{O}F$ e de $A\hat{O}B$, como queríamos demonstrar.

Observação: a maioria das soluções utilizou trigonometria ou geometria analítica, eventualmente com algumas aplicações dos teoremas de Menelaus e de Ceva. A demonstração de Rafael é bastante interessante por explorar o potencial da Geometria Projetiva, evitando cálculos. Veja a edição 8 da Eureka! para ver a teoria utilizada nesse problema.

PROBLEMA 6: SOLUÇÃO DE RÉGIS PRADO BARBOSA (FORTALEZA - CE)

Seja $A_i = \{x_j - x_i, i < j \le n\}$. Note que, se $a \ne b$, $x_a - x_i \ne x_b - x_i$ pois $x_a \ne x_b$; assim, $|A_i| = n - i$.

Considere agora $A_k \cap A_m$ com k > m. Se $|A_k \cap A_m| \ge 2$, então existem a, b, c, d distintos tais que $x_a - x_k = x_b - x_m \Leftrightarrow x_a - x_b = x_k - x_m$ e $x_c - x_k = x_d - x_m \Leftrightarrow x_c - x_d = x_k - x_m$. Assim, $x_a - x_b = x_c - x_d = x_k - x_m$, ou seja, um real aparece três vezes como diferença, um absurdo. Logo $|A_k \cap A_m| \le 1$.

Vamos contar os reais que aparecem duas vezes do seguinte modo: se ele pertence a A_k e A_m , k>m, a contagem é registrada na linha de A_k (ou seja, no conjunto de maior índice). Façamos então tal contagem, começando de A_n e indo até A_1 . Isto quer dizer que se o número aparece outra vez em outro conjunto, ele o faz em um conjunto de índice menor.

Para *n* par:

Índice	Quantidade de elementos	Reais que aparecem duas vezes
n	$ A_n = 0$	0
n-1	$\left A_{n-1}\right = 1$	≤1
•	:	•••
$\frac{n}{2}+1$	$\left A_{n/2+1}\right = \frac{n}{2} - 1$	$\leq \frac{n}{2} - 1$
$\frac{n}{2}$	$\left A_{n/2}\right = \frac{n}{2}$	$\leq \frac{n}{2} - 1$
$\frac{n}{2}-1$	$\left A_{n/2-1}\right = \frac{n}{2} + 1$	$\leq \frac{n}{2} - 2$
÷	:	:
2	$ A_2 = n - 2$	≤1
1	$ A_1 = n - 1$	0

Justificando a contagem acima: note que há $k-1 \le |A_k|$ conjuntos com índice menor do que k. Como $|A_k \cap A_m| \le 1$ para m < k, há no máximo k-1 números que podem se repetidos nos conjuntos de índice menor; ou seja, a quantidade de novos números de A_k que aparecem duas vezes é menor ou igual a k-1; os outros podem aparecer duas vezes, mas eles já foram contados nos conjuntos de índice maior. Além disso, a quantidade de números de A_k que aparecem duas vezes é menor ou igual à quantidade total de elementos de A_k . Logo a quantidade de novos números que aparecem duas vezes é no máximo $\min\{|A_k|, k-1\}$.

Com isso, a quantidade de números que aparecem duas vezes é menor ou igual a $2\left(1+2+3+\cdots+\frac{n}{2}-1\right)=2\cdot\frac{\left(\frac{n}{2}-1\right)\cdot\frac{n}{2}}{2}=\frac{n^2-2n}{4}$.

A quantidade dos números que aparecem uma vez pode ser obtida tomando o total de elementos $\sum_{i=1}^{n} |A_i| = \frac{n(n-1)}{2}$ e subtraindo dele duas vezes a quantidade

de números que aparecem duas vezes. Sendo d_1 a quantidade de números que aparecem uma vez e d_2 a quantidade de números que aparecem duas vezes,

então
$$d_1 = \frac{n(n-1)}{2} - 2d_2 \ge \frac{n(n-1)}{2} - 2 \cdot \frac{n^2 - 2n}{4} = \frac{n}{2} = \left\lfloor \frac{n}{2} \right\rfloor.$$

Analogamente, para n ímpar, prova-se que $d_1 \ge \frac{n-1}{2} = \left\lfloor \frac{n}{2} \right\rfloor$.

Nota dos editores: Régis fez o estudo completo do caso *n* ímpar; porém, o procedimento é totalmente análogo e foi decidido não colocá-lo aqui.

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Primeira Fase – Nível Universitário

PROBLEMA 1:

Joãozinho joga repetidamente uma moeda comum e honesta. Quando a moeda dá cara ele ganha 1 ponto, quando dá coroa ele ganha 2 pontos.

Encontre a probabilidade (em função de n) de que Joãozinho em algum momento tenha exatamente n pontos.

PROBLEMA 2:

Dados números reais $a_1,a_2,...,a_n$ não todos nulos, encontre o (menor) período da função

$$f(x) = \sum_{k=1}^{n} a_k \cos(kx).$$

PROBLEMA 3:

Calcule o volume do sólido definido pelas desigualdades abaixo:

$$z \ge 3x^2 + 2y^2$$
, $3x^2 + 2y^2 + 5z^2 \le 1$

PROBLEMA 4:

Seja *a* um inteiro não nulo.

Prove que se a é uma n-ésima potência modulo $4a^2$, ou seja, existe um inteiro b tal que $a - b^n$

é múltiplo de $4a^2$, então a é uma n-ésima potência.

PROBLEMA 5:

Calcule os autovalores da matriz $(n + 1) \times (n + 1)$ abaixo:

$$M = \begin{pmatrix} 0 & n & & & \\ 1 & 0 & n-1 & & \\ & 2 & 0 & \ddots & \\ & & \ddots & 0 & 1 \\ & & & n & 0 \end{pmatrix}$$

Em outras palavras, $M_{i,i+1} = n+1-i$, $M_{i+1,i} = i$, $M_{ij} = 0$ se $|i-j| \neq 1$.

Obs: Os autovalores de M são as raízes da seguinte equação em x: det(M - xI) = 0.

PROBLEMA 6:

Seja y(t) uma função real de variável real tal que

$$y''(t) + e^{t^2}y'(t) + 3ty(t) = 2\operatorname{sen}(t) + \operatorname{tg}(t), \ y(0) = 1, \ y'(0) = 0.$$

Calcule o limite:

$$\lim_{t\to 0}\frac{ty'(t)}{y(t)-1}.$$

Soluções Nível Universitário

SOLUÇÃO DO PROBLEMA 1:

Seja p_n a probabilidade pedida. Claramente $p_0 = 1$, $p_1 = \frac{1}{2}$.

A probabilidade de que ele *nunca* tenha n pontos é $1-p_n$. Por outro lado, a única forma de nunca ter n pontos é completar n-1 pontos e depois tirar coroa. Assim:

$$1 - p_n = \frac{p_{n-1}}{2}$$

$$\text{donde } \frac{2}{3} - p_n = \frac{p_{n-1}}{2} - \frac{1}{3} = \frac{1}{2} \left(p_{n-1} - \frac{2}{3} \right) \text{e portanto}$$

$$p_n - \frac{2}{3} = \left(p_0 - \frac{2}{3} \right) \cdot \left(-\frac{1}{2} \right)^n$$

$$p_n = \frac{2}{3} + \frac{1}{3} \left(-\frac{1}{2} \right)^n.$$

SOLUÇÃO DO PROBLEMA 2:

Seja
$$m = mdc \{ k | a_k \neq 0 \}.$$

Claramente $\frac{2\mathbf{p}}{m}$ é um período de f: afirmamos que este é o *menor* período.

Escreva
$$f(x) = \sum_{k=1}^{n} \left(\frac{a_k}{2} z^k + \frac{a_k}{2} z^{-k} \right), z = e^{ix}$$

$$f(x+p) = \sum_{k=1}^{n} \left(\frac{a_k w^k}{2} z^k + \frac{a_k w^{-k}}{2} z^{-k} \right), w = e^{ip}$$

Duas funções racionais só são iguais (ou iguais para números complexos de módulo 1) se seus coeficientes forem iguais. Assim, se p é um período, temos

$$a_k w^k = a_k$$
 para $k = 1,...,n$. Em outras palavras ou $a_k = 0$ ou $\frac{k_p}{2\mathbf{p}} \in \mathbb{Z}$.

Equivalentemente, p deve ser um múltiplo inteiro de $\frac{2\mathbf{p}}{m}$.

SOLUÇÃO DO PROBLEMA 3:

Seja A(a) a área da elipse $3x^2 + 2y^2 \le a$.

Os semieixos da elipse são
$$\sqrt{\frac{a}{2}}$$
 e $\sqrt{\frac{a}{3}}$ donde $A(a) = \frac{\mathbf{p}a}{\sqrt{6}}$.

O sólido do problema pode ser descrito como a união disjunta de

$$3x^2 + 2y^2 \le z, 0 \le z < b, b = \frac{\sqrt{21} - 1}{10}$$

$$3z^2 + 2y^2 \le 1 - 5z^2, b \le z \le \frac{1}{\sqrt{5}}$$

donde

$$v = \int_0^b A(z)dz + \int_b^{\frac{1}{\sqrt{5}}} A(1 - 5z^2)dz = \int_0^b \frac{\mathbf{p}z}{\sqrt{6}}dz + \int_b^{\frac{1}{\sqrt{5}}} \frac{\mathbf{p}}{\sqrt{6}} \left(1 - 5z^2\right)dz$$
$$= \frac{\mathbf{p}}{\sqrt{6}} \left(\frac{b^2}{2} + \frac{1}{\sqrt{5}} - b - \frac{1}{3\sqrt{5}} + \frac{5}{3}b^3\right) = \frac{\mathbf{p}}{\sqrt{6}} \left(\frac{31}{300} + \frac{2\sqrt{5}}{15} - \frac{7\sqrt{21}}{100}\right)$$

SOLUÇÃO DO PROBLEMA 4:

Suponha a uma n-ésima potência mod $4a^2$

Escreva
$$|a| = 2^{e_2} \cdot 3^{e_3} \dots \cdot p^{e_p} \cdot \dots$$

Vamos provar que o expoente e_p é múltiplo de n.

Segue da hipótese que $a = b \cdot p^{e_p}$ é n-ésima potência módulo p^{2e_p} onde $\mathrm{mdc}(b,p) = 1$.

Assim existem c, d com mdc(c, p) = 1,

 $c^n p^{nd} \equiv b \cdot p^{e_p} \pmod{p^{2e_p}}$ donde $nd = e_p$. Assim |a| é uma n-ésima potência.

Falta provar que se n é par então a > 0.

Suponha por absurdo o contrário: n par, a < 0.

Escreva $a = -2^{nd} \tilde{b}$, \tilde{b} impar, $\tilde{b} > 0$.

Assim a e - a são ambos n-ésimas potências módulo 2^{nd+2} :

$$c^{n} \cdot 2^{nd} \equiv -\tilde{b} \cdot 2^{nd} \pmod{2^{2nd+2}} \qquad c^{n} \equiv -\tilde{b} \pmod{2^{nd+2}}$$

$$\tilde{c}^{n} \cdot 2^{nd} \equiv \tilde{b} \cdot 2^{nd} \pmod{2^{2nd+2}} \qquad \Rightarrow \qquad \tilde{c}^{n} \equiv \tilde{b} \pmod{2^{nd+2}} \qquad \Rightarrow \qquad \tilde{b} \quad e \quad -\tilde{b} \quad s\tilde{a}o$$

quadrados módulo $4 \Rightarrow -1$ é quadrado módulo $4 \Rightarrow$ Absurdo!

SOLUÇÃO DO PROBLEMA 5:

Os autovalores são n, n-2, n-4, ..., -n+2, -n, ou seja, 2k-n para k=0,1,...,n.

Vamos exibir os autovetores de M^t .

Interprete o vetor $(a_0, a_1, ..., a_n) \in \mathbb{R}^{n+1}$ como o polinômio $P = a_0 x^n + a_1 x^{n-1} y + ... + a_n y^n$.

O polinômio correspondente a $M^{t}(a_0,...,a_n)$ é $y\frac{\partial p}{\partial x} + x\frac{\partial p}{\partial y}$. Se expandirmos

os polinômios em u = x + y e v = x - y este operador passa a ser

$$u\frac{\partial p}{\partial u} - v\frac{\partial p}{\partial v}.$$

$$\operatorname{Mas}\left(u\frac{\partial}{\partial u}-v\frac{\partial}{\partial v}\right)\left(u^{k}v^{n-k}\right)=\left(2k-n\right)u^{k}v^{n-k}.$$

Assim este é o autovetor associado ao autovalor (2k - n).

SOLUÇÃO DO PROBLEMA 6:

Expanda as funções y, e^{t^2} e 2sen(t) + tg(t) em series de potências:

$$y(t) = a_0 + a_1 t + a_2 t^2 + \dots$$

$$e^{t^2} = b_0 + b_1 t + b_2 t^2 + \dots$$

$$2sent + tgt = c_0 + c_1t + c_2t^2 + \dots$$

Temos
$$\lim_{t \to 0} \frac{ty'}{y-1} = \lim_{t \to 0} \frac{a_1t + 2a_2t^2 + \dots + na_nt^n + \dots}{a_1t + a_2t^2 + \dots + a_nt^n + \dots}$$

donde este limite é igual a N se $a_N \neq 0$ e $a_m = 0$ para 0 < m < N.

Substituindo as séries de potências na EDO:

$$2a_2 + 6a_3t + ... + (n+1)(n+2)a_{n+2}t^n + ...$$

$$+b_0a_1+(b_1a_1+2b_0a_2)t+...+(b_na_1+2b_{n-1}a_2+...+kb_{n+1-k}a_k+...+(n+1)b_0a_{n+1})t^n+3a_0t+3a_1t^2+...+$$

$$+3a_{n-1}t^n + ... = c_0 + c_1t + c_2t^2 + ... + c_nt^n + ...$$
 donde

$$a_{n+2} = \frac{1}{(n+1)(n+2)} \left(c_n - b_n a_1 - 2b_{n-1} a_2 - \dots - (n+1)b_0 a_{n+1} - 3a_{n-1} \right)$$

Segue facilmente que $a_1 = a_2 = a_3 = 0$.

Se
$$a_1 = a_2 = \dots = a_{n+1} = 0$$
 e $c_n = 0$ temos $a_{n+2} = 0$ e se

$$a_1 = a_2 = \dots = a_{n+1} = 0$$
 e $c_n \neq 0$ temos $a_{n+2} \neq 0$. Devemos portanto procurar

$$\widetilde{N}$$
 tal que $c_{\widetilde{N}} \neq 0$ e $c_m = 0$ para $1 < m < \widetilde{N}$.

Temos
$$sent = t - \frac{t^3}{6} + \frac{t^5}{120} + \dots$$

$$\tan t = t + \frac{t^3}{3} + \frac{2t^5}{15} + \dots$$

$$2sent + \tan t = 3t + \frac{3t^5}{20} + \dots$$

Assim
$$\widetilde{N} = 5$$
 donde $\lim_{t \to 0} \frac{ty'}{y-1} = 7$.

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Segunda Fase – Nível Universitário

PRIMEIRO DIA

PROBLEMA 1:

Considere a função de **R** em **R** dada por $f(x) = ax^2 + bx + c$, com $a,b,c \in \mathbb{R}$ e ac < 0. Prove que, para todo n inteiro positivo, a equação $\underbrace{f(f(...(f(x))...))}_{n \text{ vezes}} = 0$ tem

pelo menos uma solução real.

PROBLEMA 2:

Dado um inteiro positivo n, mostre que existe um inteiro positivo N com a seguinte propriedade: se A é um subconjunto de $\{1,2,...,N\}$ com pelo menos N/2 elementos, então existe um inteiro positivo $m \le N - n$ tal que

$$|A \cap \{m+1, m+2, ..., m+k\}| \ge \frac{k}{2}$$

para todo k = 1, 2, ..., n.

PROBLEMA 3:

Considere o conjunto P_n dos polinômios mônicos de grau n > 0 e coeficientes complexos $p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ satisfazendo $|a_0|^2 + |a_1|^2 + \dots + |a_{n-1}|^2 = 1$.

Para $p(x) \in P_n$, seja r(p(x)) o máximo entre os módulos das raízes de p(x) e $s(n) = \sup_{p(x) \in P_n} r(p(x))$.

Determine $\lim s(n)$.

SEGUNDO DIA

PROBLEMA 4:

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua tal que $f(f(x)) = e^x$ para todo $x \in \mathbb{R}$. Prove que, para todo n inteiro positivo,

$$\lim_{x \to +\infty} \frac{f(x)}{x^n} = +\infty.$$

PROBLEMA 5:

Seja A uma matriz real quadrada simétrica de ordem n, e $\mathbf{l}_1 \leq \mathbf{l}_2 \leq \cdots \leq \mathbf{l}_n$ seus autovalores (contados com multiplicidade). Determine, em função de $\mathbf{l}_1, \mathbf{l}_2, \cdots, \mathbf{l}_n$:

a) O número de matrizes reais B simétricas de ordem n tais que $B^2 = A$. b) O número de matrizes reais B de ordem n tais que $B^2 = A$.

PROBLEMA 6:

Para $a,b \in \mathbb{Q}$, definimos o conjunto

$$S(a,b) = \{ax^2 + by^2 \mid x, y \in \mathbb{Q}\}\$$

dos números racionais que podem ser escritos na forma $ax^2 + by^2$ com $x, y \in \mathbb{Q}$. Dados a, b, c, d racionais **não nulos**, mostre que S(a,b) = S(c,d) se, e somente se, $\frac{ab}{cd}$ é o quadrado de um racional e existe um racional não nulo $q \in S(a,b) \cap S(c,d)$,

SOLUÇÕES

PROBLEMA 1: SOLUÇÃO DE MAURÍCIO RODRIGUES COLLARES NETO (ARACAJU - SE)

1) Provemos a afirmação por indução.

Para n = 1 o discriminante da equação do segundo grau $b^2 - 4ac$ é positivo (pois ac < 0) e, portanto, a equação possui raiz real.

Suponhamos agora a afirmação válida para n. Para provar a afirmação para n + 1, vejamos que $\underbrace{f(f(...(f(x))...))}_{n+1 \text{ vezes}}$ é um polinômio cujo coeficiente do termo líder

é uma potência ímpar de a (para n = 1 isto é verdade; se isto é válido para n, temos que $\underbrace{f(...(f)_{n+1 \text{ vezes}}(x))} = f(a^{2r+1}x^k + ...) = a(a^{2r+1}x^k + ...)^2 + b(a^{2r+1}x^k + ...) + c$

que possui termo líder igual a x^{2k} com coeficiente a^{4r+3}). Assim, se a < 0(resp. a > 0), $\lim_{x \to +\infty} \underbrace{f(f(...(f(x))) = -\infty \text{ (resp.} + \infty)\text{ (basta colocar o termo)}}_{n+1\text{ vezes}}$

líder em evidência e verificar que os outros termos vão a zero). Mas

$$\underbrace{f(f(...(f(x))...))}_{n \text{ vezes}} \text{ tem uma raiz } r, \text{ por hipótese, e}$$

$$\underbrace{f(f(...(f(r))...))}_{n \text{ tem uma}} = c > 0 \text{ (resp. < 0)}. \text{ (Pois } ac < 0). \text{ Assim, pelo}$$

Teorema do Valor Intermediário, como a função passa de um valor positivo (resp. negativo) para um valor negativo (resp. positivo) e é contínua, ela tem raiz real:

PROBLEMA 2:

SOLUÇÃO ADAPTADA DA SOLUÇÃO DE RAFAEL DAIGO HIRAMA (S.J. DOS CAMPOS – SP) Fixe N. Para cada $1 \le i \le N$, defina $a_i = |A \cap \{1,...,i\}|$.

Temos

$$\left|A \cap \{m+1,...,m+k\}\right| = a_{m+k} - a_m \ge \frac{k}{2} \iff \left(a_{m+k} - \frac{m+k}{2}\right) - \left(a_m - \frac{m}{2}\right) \ge 0.$$

Isso nos induz a definir $b_i = a_i - \frac{i}{2}$, e portanto a desigualdade anterior equivale a

 $b_{m+k} \ge b_m$. Assim, queremos mostrar que, se N é suficientemente grande, então existe $m \le N - n$ tal que

$$b_m \le b_{m+1}, ..., b_{m+n}$$
. (I)

É claro que

$$\begin{aligned} b_i - \frac{1}{2} &= a_i - \frac{i+1}{2} \leq a_{i+1} - \frac{i+1}{2} \leq (a_i+1) - \frac{i+1}{2} = b_i + \frac{1}{2}, \qquad \text{ou} \qquad \text{seja:} \\ b_{i+1} &\in \left\{ b_i - \frac{1}{2}, b_i, b_i + \frac{1}{2} \right\}. \end{aligned}$$

Tome N > n(n+2) e suponha que (I) não ocorra para cada $m \le N-n$. Em particular, para m=1, existe $i_1 \in \{2,...,n+1\}$ tal que $b_{i_1} < b_1 \Rightarrow b_{i_1} \le b_1 - \frac{1}{2} < \frac{1}{2}$.

Por indução, construímos uma seqüência $i_1,...,i_{n+1}$ de índices tal que $i_{j+1} \in \{i_j+1,...,i_j+n\}$ e $b_{i_{j+1}} < b_{i_j}$. Podemos fazer isso pois N-n > n(n+1).

Daí,
$$b_{i_{n+1}} < b_{i_n} < ... < b_{i_1}$$
, e, como $b_{i_{j+1}} < b_{i_j} \Rightarrow b_{i_{j+1}} \le b_{ij} - \frac{1}{2}$, para todo $j \le n$,

temos
$$b_{i_{n+1}} \le b_{i_1} - (n+1)\frac{1}{2} \le \frac{1}{2} - (n+1) \cdot \frac{1}{2} = -\frac{n}{2}$$
.

Assim,
$$b_{i_{n+1}} \leq -\frac{n}{2}$$
.

Como $A \cap \{1,...,N\} = A$, $a_N = \left|A\right| \ge \frac{N}{2}$, donde $b_N = a_N - \frac{N}{2} \ge 0$, e a designaldade anterior garante que $i_{n+1} \le N - n$. Assim, se $b_m = \min\{b_1,...,b_N\}$, então $b_m \le -\frac{n}{2}$. (pois $b_N - b_m \ge \frac{n}{2}$ e $b_{j+1} - b_j \le \frac{1}{2}$ para todo j), o que garante que $m \le N - n$ e $b_m \le b_{m+1},...,b_{m+n}$.

PROBLEMA 3: SOLUÇÃO DE FÁBIO DIAS MOREIRA (RIO DE JANEIRO - RJ)

Por Cauchy- Schwarz, temos que

$$\left[\sum_{i=0}^{n-1} \left| a_i \right|^2 \right] \cdot \left[\sum_{i=0}^{n-1} \left| p \right|^{2i} \right] \ge \left[\left| \sum_{i=0}^{n-1} a_i p^i \right| \right]^2.$$

Chame $\mathbf{a} = |p|$; então $\frac{\mathbf{a}^{2n} - 1}{\mathbf{a}^2 - 1} \ge \left| \sum_{i=0}^{n-1} a_i p^i \right|^2$. Se p é raiz de p(x) e |p| > 1, então,

como
$$\sum_{i=0}^{n-1} a_i p^i = -p^n, \text{ temos } \frac{\boldsymbol{a}^{2n} - 1}{\boldsymbol{a}^2 - 1} \ge \boldsymbol{a}^{2n} \iff \boldsymbol{a}^{2n} - 1 \ge \boldsymbol{a}^{2n+2} - \boldsymbol{a}^{2n} \iff \boldsymbol{a}^{2n} (2 - \boldsymbol{a}^2) \ge 1,$$

logo, como $a \ge 0, a < \sqrt{2}$.

Por outro lado, se $\mathbf{a}^2 = 1 + \mathbf{e}(0 < \mathbf{e} < 1)$, a designaldade de Bernoulli diz que $\mathbf{a}^{2n} \ge 1 + n\mathbf{e}$, e portanto, para que $\mathbf{a}^{2n}(2 - \mathbf{a}^2) \ge 1 \Leftrightarrow \mathbf{a}^{2n} \ge \frac{1}{1 - \mathbf{e}}$, é suficiente que $(1 + n\mathbf{e})(1 - \mathbf{e}) \ge 1 \Leftrightarrow 1 + (n - 1)\mathbf{e} - n\mathbf{e}^2 \ge 1 \Leftrightarrow \mathbf{e} \le \frac{n - 1}{n}$.

Chame $\mathbf{I} = \sqrt{1 + \frac{n-1}{n}}$ e $k = \sqrt{\frac{\mathbf{I}^2 - 1}{\mathbf{I}^{2n} - 1}}$; defina p(x) tal que $a_i = -k \cdot \mathbf{I}^i$, para $0 \le i \le n-1$.

É fácil verificar que
$$\sum_{i=0}^{n-1} \left|a_i\right|^2 = 1$$
. Ademais, $p(\boldsymbol{l}) = \boldsymbol{l}^n - \sum_{i=0}^{n-1} k \cdot \boldsymbol{l}^{2i} = \boldsymbol{l}^n - k \cdot \frac{\boldsymbol{l}^{2n} - 1}{\boldsymbol{l}^2 - 1} = \boldsymbol{l}^n - \frac{1}{k} \le 0$, já que

$$m{I}^n - rac{1}{k} \leq 0 \Leftrightarrow m{I}^{2n} \leq rac{m{I}^{2n} - 1}{m{I}^2 - 1} \Leftrightarrow m{I}^{2n}(2 - m{I}^2) \geq 1$$
, o que é verdadeiro pela definição de $m{I}$ (temos $m{I}^2 = 1 + m{e}$, com $m{e} = rac{n-1}{n}$). Logo $p(x)$ possui uma raiz maior ou igual a $m{I}$ (já que $\lim_{x \to +\infty} p(x) = +\infty$).

Assim,
$$s(n) \ge \sqrt{1 + \frac{n-1}{n}} \Rightarrow \liminf_{n \to \infty} s(n) \ge \lim_{n \to \infty} \sqrt{1 + \frac{n-1}{n}} = \sqrt{2}$$
. Mas $\mathbf{a} < \sqrt{2}$ implies $s(n) \le \sqrt{2} \Rightarrow \limsup_{n \to \infty} s(n) \le \sqrt{2}$ e, finalmente, $\lim_{n \to +\infty} s(n) = \sqrt{2}$.

PROBLEMA 4: SOLUÇÃO DE FÁBIO DIAS MOREIRA (RIO DE JANEIRO - RJ)

Note inicialmente que $f(f(f(x)) = e^{f(x)} = f(e^x)$. Fazendo as substituições

$$x = e^{y}, y = e^{z}, z = e^{w}, \text{ temos } \lim_{x \to \infty} \frac{f(x)}{x^{n}} = \lim_{y \to \infty} \frac{e^{f(y)}}{e^{ny}} = e^{\lim_{y \to \infty} f(y) - ny}.$$

$$\lim_{y\to\infty} (f(y) - ny) = \lim_{z\to\infty} (e^{f(z)} - ne^z) = \lim_{z\to\infty} (e^z [e^{f(z)-z} - n]).$$

Logo basta provar que $\lim_{z\to\infty} (f(z)-z) = +\infty$.

Mas $\lim_{z \to \infty} (f(z) - z) = \lim_{w \to \infty} (e^w [e^{f(w) - w} - 1])$, ou seja, basta que $f(w) \ge w + c$ para c > 0 fixo e todo w suficientemente grande.

Como $f(x) = f(y) \Rightarrow f(f(x)) = f(f(y)) \Rightarrow e^x = e^y \Rightarrow x = y, f \text{ \'e injetora e,}$ em virtude de ser contínua, \'e monótona.

Se f fosse decrescente, como $]0,+\infty[\subseteq \operatorname{Im}(f), \text{ teríamos } \lim_{x\to -\infty} f(x) = +\infty \text{ mas,}$ por outro lado, $\lim_{x\to -\infty} e^x = \lim_{x\to -\infty} f(f(x)) = 0$, logo $\lim_{x\to +\infty} f(x) = 0$. Isso implica $\operatorname{Im}(f) =]0,+\infty[$, mas então $f(f(\mathbb{R})) =]0,+\infty[=f\left(]0,+\infty[\right) =]0,f(0)[$, absurdo!

Logo f é crescente.

Se $\lim_{x \to \infty} f(x) = -\infty$, então $\lim_{x \to \infty} f(f(x)) = -\infty$ mas $\lim_{x \to \infty} e^x = 0$, logo $\lim_{x \to \infty} f(x) = A$, onde A < 0 é uma constante (veja que se $A \ge 0$ então $f(f(\mathbb{R})) = f(A; +\infty[) = f(A); +\infty[\Rightarrow f(A) = 0 \Rightarrow f(A) = 0 < e^A = f(f(A)) = f(0)$, absurdo).

Defina $I_0 =]-\infty, A]$ e $I_{n+1} = f(I_n);$ assim $I_1 =]A, 0],$ $I_2 =]0, e^A], I_3 =]e^A, 1]...$ É fácil ver que os I_i 's formam uma partição de $\mathbb R$, e logo $f(x) > x, \forall x \in \mathbb R$.

Considere g(x) = f(x) - x. No intervalo $]-\infty, 2A[, g(x) > A - 2A = |A|]$. No intervalo compacto]2A,1[, a função g assume um mínimo positivo. Logo $g:]-\infty,1] \to \mathbb{R}$ assume um mínimo positivo, digamos k.

Com isso provamos que $f(x) \ge x + k$ para $x \in I_0 \cup I_1 \cup I_2 \cup I_3$; vamos provar por indução que isso vale para $x \in I_{2k} \cup I_{2k+1}$ para todo $k \ge 2$:

de fato,
$$x = f(f(y)) = e^y$$
 para $y \in I_{2k-2} \cup I_{2k-1}$ e portanto $f(x) = f(f(f(y))) = e^{f(y)} \ge e^{y+k} = e^y \cdot e^k > e^y \cdot (1+k) > e^y + k$, já que $y > 0 \Rightarrow e^y > 1$. Mas $e^y = f(f(y)) = x$ e portanto $f(x) > x + k$, concluindo a demonstração.

PROBLEMA 5: SOLUÇÃO DA BANCA

Primeiro afirmamos que o autoespaço V de A associado a um autovalor I

$$V = \{ v \mid Av = \mathbf{1}v \}$$

é invariante por B. Suponha $v \in V$. Afirmamos que $Bv \in V$.

$$A(Bv) = B^3v = B(Av) = B(Iv) = IBv.$$

Assim devemos em cada tal autoespaço definir B. Note que a definição de B em cada autoespaço é independente.

(a) Se existir algum autovalor \boldsymbol{l} negativo então não existe \boldsymbol{B} pois seus autovalores \boldsymbol{m} deveriam satisfazer $\boldsymbol{m}^2 = \boldsymbol{l} < 0 \Rightarrow \boldsymbol{m} \notin \mathbb{R}$, o que contradiz a hipótese de \boldsymbol{B} ser simétrica.

Se existir autovalor zero (I = 0) com multiplicidade k então B restrita a V deve ser igual a 0 pois B é diagonalizável e todos os seus autovalores são iguais a 0.

Se existir autovalor positivo (I > 0) com multiplicidade 1 então há duas possibilidades correspondentes a $m = \sqrt{I}$ e $m = -\sqrt{I}$.

Se existir autovalor positivo (I>0) com multiplicidade maior que 1 então há *infinitas* possibilidades pois podemos escolher de infinitas maneiras subespaços complementares para corresponderem a \sqrt{I} e $-\sqrt{I}$.

Assim, o número pedido é:

- $[0, \text{ se algum } \boldsymbol{l} \text{ for negativo.}]$
- 2^k, se nenhum *I* for negativo, se todo *I* positivo for simples e se houver *k* autovalores positivos.
 ∞, se nenhum *I* for negativo e houver pelo menos um autovalor positivo com
- ∞ , se nenhum I for negativo e houver pelo menos um autovalor positivo com multiplicidade maior que 1.

(b) Os casos l > 0 são como no item (a).

Se existir autovalor zero com multiplicidade 1 então ainda há apenas uma opção. Por outro lado, se existir autovalor zero com multiplicidade maior do que 1 então há infinitas possibilidades para B (pois há infinitas matrizes B com $B^2 = 0$).

Se existir autovalor negativo com multiplicidade par (2k) então há infinitas soluções: basta tomar $B = \sqrt{|I|} \cdot J$, $J^2 = -I$. Há infinitas tais matrizes J pois basta definir J em uma base $w_1, w_2, ..., w_k, w_{k+1}, ..., w_{2k}$ por $Jw_j = w_{k+j}, Jw_{k+j} = -w_j, j = 1, ..., k$.

Note que neste caso B tem autovalores $\sqrt{|I|}i$ e $-\sqrt{|I|}i$ com multiplicidades k e k.

Se existir autovalor negativo com multiplicidade ímpar então é impossível pois não há como os autovalores de *B* virem aos pares conjugados.

Assim, o número pedido é:

- [0, se existe autovalor negativo com multiplicidade ímpar,
- 2^k , se não existe autovalor negativo, todos os autovalores são simples, e há k autovalores positivos.
- ∞, se todos os autovalores negativos têm multiplicidade par e existe pelo menos um autovalor com multiplicidade maior do que 1.

PROBLEMA 6: SOLUÇÃO DA BANCA

 $ax^2 + by^2$ pode ser visto como $(x \cdot \sqrt{a} + y \cdot \sqrt{-b})(x \cdot \sqrt{a} - y \cdot \sqrt{-b})$, o que funciona como uma espécie de "norma" de $x \cdot \sqrt{a} + y \cdot \sqrt{-b}$. Vamos usar o fato de que o produto ou a razão de dois números dessa forma são da forma $z + w \cdot \sqrt{-ab}$, e assim a raiz quadrada que aparece só depende do produto ab.

Se $\frac{ab}{cd} = r^2$, com $r \in \mathbb{Q}^*$, $cz^2 + dw^2 = \tilde{c} \left(\frac{z}{r}\right)^2 + dw^2$, onde $\tilde{c} = cr^2$, donde $\tilde{c} = r^2cd = ab$ e $S(\tilde{c},d) = S(c,d)$. Assim, se $\frac{ab}{cd}$ é o quadrado de um racional, podemos supor sem perda de generalidade que ab = cd. Se $ax^2 + by^2 = tz^2 + \left(\frac{ab}{t}\right)w^2$ é não nulo (se $\frac{ab}{cd}$ é quadrado, podemos juntar esse quadrado com uma variável e supor ab = cd), e queremos provar que qualquer número da forma $tu^2 + \left(\frac{ab}{t}\right)v^2$ também é da forma $ar^2 + bs^2$, escrevemos

 $tu^{2} + \left(\frac{ab}{t}\right)v^{2} = \frac{\left(tz^{2} + \left(\frac{ab}{t}\right)w^{2}\right) \cdot \left(tu^{2} + \left(\frac{ab}{t}\right)v^{2}\right)}{\left(tz^{2} + \left(\frac{ab}{t}\right)w^{2}\right)} = \frac{\left(ax^{2} + by^{2}\right) \cdot \left(tu^{2} + \left(\frac{ab}{t}\right)v^{2}\right)}{\left(tz^{2} + \left(\frac{ab}{t}\right)w^{2}\right)}.$

Abusando de notação, isso é

Acontece que

$$\frac{\left(ax^{2}+by^{2}\right)\cdot\left(tu^{2}+\left(\frac{ab}{t}\right)v^{2}\right)}{\left(tz^{2}+\left(\frac{ab}{t}\right)w^{2}\right)} = \frac{N\left(x\cdot\sqrt{a}+y\cdot\sqrt{-b}\right)\cdot N\left(u\cdot\sqrt{t}+v\cdot\sqrt{\frac{-ab}{t}}\right)}{N\left(z\cdot\sqrt{t}+w\cdot\sqrt{\frac{-ab}{t}}\right)}.$$

$$\frac{\left(u\cdot\sqrt{t}+v\cdot\sqrt{\frac{-ab}{t}}\right)}{\left(z\cdot\sqrt{t}+w\cdot\sqrt{\frac{-ab}{t}}\right)} = \frac{uzt+\frac{vwab}{t}+(vz-uw)\sqrt{-ab}}{t}, \text{ que, multiplicado por } tz^{2}+\left(\frac{ab}{t}\right)w^{2}$$

$$x\cdot\sqrt{a}+y\cdot\sqrt{-b}, \text{ dá um número da forma } k\cdot\sqrt{a}+\ell\cdot\sqrt{-b}, \text{ a saber } t$$

$$\frac{\left(x\left(uzt + \frac{vwab}{t}\right) - by\left(vz - uw\right)\right)\sqrt{a} + \left(y\left(uzt + \frac{vwab}{t}\right) + ax\left(vz - uw\right)\right)\sqrt{-b}}{\left(tz^2 + \left(\frac{ab}{t}\right)w^2\right)}$$

cuja "norma" $ak^2 + bl^2$, ou seja,

$$a\frac{\left(x\left(uzt+\frac{vwab}{t}\right)-by(vz-uw)\right)^{2}}{\left(tz^{2}+\left(\frac{ab}{t}\right)w^{2}\right)^{2}}+b\frac{\left(y\left(uzt+\frac{vwab}{t}\right)+ax(vz-uw)\right)^{2}}{\left(tz^{2}+\left(\frac{ab}{t}\right)w^{2}\right)^{2}}$$

é igual a $tu^2 + \left(\frac{ab}{t}\right)v^2$, como queríamos (isso pode ser verificado diretamente, mas chutar essa última expressão seria um pouco de sorte...).

(Note que a condição de que há um valor comum não nulo das formas $ax^2 + by^2$ e $cu^2 + dv^2$ é importante. Não é o caso, por exemplo, se a = 2, b = 3, c = 6 e

Vamos agora mostrar a outra implicação. Queremos provar que se $\frac{cd}{ab}$ não é o quadrado de um racional então as imagens de $ax^2 + by^2$ e de $cx^2 + dy^2$ (quando x e y percorrem os racionais) são diferentes. A imagem de $ax^2 + by^2$ com x e y racionais não muda se multiplicarmos a ou b pelo quadrado de um racional não nulo. Assim, podemos supor que em $ax^2 + by^2$ e $cx^2 + dy^2$ temos a, b, c, d inteiros livres de quadrados. É claro que, se os sinais de ab e cd forem diferentes, as imagens não podem ser iguais. Assim, nos casos interessantes, $\frac{ab}{cd} > 0$. Basta ver então que cada primo p divide um número par

de números dentre a, b, c, d para concluir que $\frac{ab}{cd}$ é o quadrado de um racional. Se p divide exatamente 3 deles, digamos a, b e c, ou seja, a = pk, b = pl, c = pm,

temos que
$$ax^2 + by^2 = p(kx^2 + ly^2)$$
 e $cx^2 + dy^2 = pmx^2 + dy^2 = p\left(mx^2 + pd\left(\frac{y}{p}\right)^2\right)$

têm a mesma imagem se e só se $kx^2 + ly^2$ e $mz^2 + pdw^2$ têm a mesma imagem, e agora p divide exatamente um número dentre k, l, m e pd. Assim, reduzimos o problema a provar que, se um primo p divide exatamente um dentre os números a, b, c, d, digamos a, então $ax^2 + by^2$ e $cx^2 + dy^2$ não têm a mesma imagem. Suponhamos por absurdo que tenham. Notemos primeiro que para quaisquer u e v inteiros, existiriam x e y racionais com $ax^2 + by^2 = cu^2 + dv^2$. Como $p \mid a$ e a é livre de quadrados, a maior potência de p que divide ax^2 é ímpar e a maior potência de p que divide by^2 é par, donde x e y não podem ter p no denominador, senão a maior potência de pque dividiria $ax^2 + by^2$ seria negativa e logo $ax^2 + by^2 = cu^2 + dv^2$ não poderia ser inteiro. Assim, x e y podem ser vistos como inteiros módulo p, e $cu^2 + dv^2 \equiv bv^2 \pmod{p}$, donde $bcu^2 + bdv^2 \equiv (by)^2 \pmod{p}$ quadrado mod p para quaisquer u, v inteiros. Fazendo u = 1, v = 0 temos que bc é quadrado mod p. Fazendo v = 1, temos que $bcu^2 + bd$ é quadrado mod p para todo u inteiro, donde, como bc é quadrado mod p, $u^2 + d/c$ é quadrado mod p para todo u inteiro (note que b, c e d são invertíveis mod p). Ou seja, se r é quadrado mod p então $r + \frac{d}{c}$ também é, mas isso implica por indução que $r + \frac{kd}{c}$ é quadrado mod p para todo k natural, donde todo inteiro é quadrado mod p. Isso só é possível se p = 2. Se p = 2 dividir um número par de números dentre a, b, c, d teremos que todo primo p divide um número par de números dentre a, b, c, d, como queríamos. Caso contrário, teremos ainda algum trabalho extra, que realizaremos a seguir. Podemos supor como antes que 2 divide a mas não divide bcd. Sejam r = mdc(c, d) e K o produto dos primos ímpares que dividem ab mas não dividem cd. Sejam $m = \frac{c}{r}$ e $n = \frac{d}{r}$. Se n (que, como d, é ímpar) for

r=mdc(c,d) e K o produto dos primos ímpares que dividem ab mas não dividem cd. Sejam $m=\frac{c}{r}$ e $n=\frac{d}{r}$. Se n (que, como d, é ímpar) for congruente a 3 ou -3 módulo 8, tomaremos $R=(4rK)^2\cdot c+d$, e se n for congruente a 1 ou -1 módulo 8, tomaremos $R=(2rK)^2\cdot c+d$. Temos em qualquer caso que R pertence à imagem de cx^2+dy^2 . Além disso, $\frac{R}{r}$ é congruente a 3 ou -3 módulo 8 e é primo com m, n, r e K, e portanto é primo com a, b, c e d. $\frac{R}{r}$ tem que ter algum fator primo q congruente a 3 ou -3 módulo 8 que aparece com expoente ímpar em sua fatoração (pois um produto de números

que são 1 ou -1 módulo 8 ainda é dessa forma). Temos que R é um número da forma $c \cdot x^2 + d$ com x inteiro, e portanto $c \cdot x^2 + d = R = 0 \pmod{q}$, donde $-cd = (cx)^2 \pmod{q}$. Por outro lado, se as imagens são iguais, existem $u \, e \, v \, \text{racionais com} \, au^2 + bv^2 = R.$ Podemos escrever $u = \frac{U}{D} \, e \, v = \frac{V}{D}$ onde D é o menor denominador comum de u e v. Temos então $aU^2 + bV^2 = R \cdot D^2 = 0 \pmod{q}$. Se q^j é a maior potência de q que divide U e V simultaneamente, escrevemos $U=q^j\cdot T$ e $V=q^j\cdot S$ obtendo então $aT^2 + bS^2 = R \cdot q^{-2j} \cdot D^2$, que ainda é múltiplo de q. Como $q \left| \frac{R}{r} \right|$, q é primo com a e b, e logo q não pode dividir T, caso contrário q dividiria bS^2 , donde qdividiria também S, contradizendo a escolha j. $-ab \cdot T^2 = (bS)^2 \pmod{q}$ implica que -ab é um quadrado módulo q. Portanto, $\frac{ab}{cd} = \frac{(-ab)}{(-cd)}$ também é um quadrado módulo q, mas, pelas considerações anteriores, $\frac{ab}{cd} = 2 \cdot w^2$, para algum racional w, e daí seguiria que 2 é quadrado módulo q, o que é um absurdo, pois q é congruente a 3 ou -3módulo 8 (veja o artigo "Reciprocidade quadrática", de Carlos Gustavo Moreira e Nicolau Saldanha, na Eureka! No. 15).

Errata: Na Eureka! No. 27, no artigo "Substituições envolvendo números complexos", de Diego Veloso Uchoa, na página 21, o trecho entre as linhas 12 e 15 deveria ser:

Fazendo n = 2m + 1 e igualando as partes imaginárias, temos:

$$\frac{sen((2m+1)t)}{sen^{2m+1}t} = {2m+1 \choose 1} (\cos^2 t)^m - {2m+1 \choose 3} (\cos^2 t)^{m-1} + \dots + (-1)^m \cdot (*)$$

Agora podemos tratar essa igualdade por meio do polinômio

$$P_m(x) = {2m+1 \choose 1} x^m - {2m+1 \choose 3} x^{m-1} + \dots + (-1)^m.$$

XXIX Olimpíada Brasileira de Matemática Nível 1 (5ª. e 6ª. Séries)

Nome	Cidade – Estado	Prêmio
Rafael Kazuhiro Miyazaki	São Paulo – SP	Ouro
Guilherme Renato Martins Unzer	São Paulo – SP	Ouro
Marina Pessoa Mota	Fortaleza – CE	Ouro
Ivan Tadeu Ferreira Antunes Filho Danilo Hikari Motoyama Watanabe	Lins – SP São Paulo – SP	Ouro Ouro
Arthur Oenning Fagundes	Palmas – TO	Prata
Breno Levi Correa	Campo Belo – MG	Prata
Thomás Rincon Reis	Belo Horizonte – MG	Prata
Lucas Finger Roman	Florianópolis – SC	Prata
Lucas Nishida Ana Cristina Barreto Sabino de Araújo	Pedreira – SP Itapissuma – PE	Prata Prata
Gabriel Santa Rosa Cavaresi	Birigüi – SP	Prata
Victor Kioshi Higa	São Paulo – SP	Prata
Ana Beatrice Bonganha Zanon	Santo André – SP	Prata
Maria Paula Silva Serrasqueiro	Brasília – DF	Prata
Débora Barreto Ornellas	Salvador – BA	Bronze
Igor Araújo	Rio de Janeiro – RJ	Bronze
Pedro Ivo Coelho de Araújo	Caucaia – CE	Bronze
Ramon Silva de Lima	São Paulo – SP	Bronze
Dênnis Dantas de Souza	Campina Grande – PB	Bronze
Nathália Roscoe e Firace	Belo Horizonte – MG	Bronze
Renan Fernandes Moreira	Taubaté – SP	Bronze
Nicolas Seoane Miquelin	Mauá – SP	Bronze
Nicolas Fernandez Leitão	Florianópolis – SC	Bronze
Tiago Sueda Limone	Jundiaí – SP	Bronze
Gabriel Pacianotto Gouveia	São Paulo – SP	Bronze
Jonathan Henrique de Oliveira	Cordeirópolis – SP	Bronze
Murilo Dória Guimarães	São Paulo – SP	Bronze
Julio Barros de Paula	Taubaté – SP	Bronze
Cesar Nobuo Moniwa Ishiuchi	Campinas – SP	Bronze
Danilo Kenji Shido	São Paulo – SP	Menção Honrosa
Francisco Markan Nobre de Souza Filho	Fortaleza – CE	Menção Honrosa
Natália Rodrigues Parrode	Goiânia – GO	Menção Honrosa
João Felipe Ribeiro Soares	Brasília – DF	Menção Honrosa
Sofia Sayuri Yamamura	Araçatuba – SP	Menção Honrosa
Paula Dias Garcia	Brasília – DF	Menção Honrosa
Lara Timbó Araújo	Fortaleza – CE	Menção Honrosa
Nathalia Novello Fernandes Ribeiro	Rio de Janeiro – RJ	Menção Honrosa
Eric Luiz Rodrigues de França	Recife – PE	Menção Honrosa
Pedro Ducci Serafim	Campinas – SP	Menção Honrosa
Lucas Bitran Giestas	Vitória – ES	Menção Honrosa
Wederson Santos Silva	Massaranduba – PB	Menção Honrosa
Ayrton Barros de Lira	Recife – PE	Menção Honrosa
Leonardo Kazunori Tsuji	São Paulo – SP	Menção Honrosa
Lucas Guedes de Almeida Rocha	Maceió – AL	Menção Honrosa
Liang Wei Dong	Salvador – BA	Menção Honrosa
Rafael Wingester Ribeiro de Oliveira	Belo Horizonte – MG	Menção Honrosa
Hugo Diehl de Souza	Criciúma – SC	Menção Honrosa
Matheus de Oliveira Leão	Teresina – PI	Menção Honrosa
Rodolfo Vieira Fontenele	Cocal dos Alves - PI	Menção Honrosa
Henrique Gasparini Fiúza do Nascimento	Brasília – DF	Menção Honrosa
Victor Venturi	Campinas – SP	Menção Honrosa
Gabrielle Macanhan Guimarães	Anápolis – GO	Menção Honrosa
Reinaldo Abad Junior	Guarulhos – SP	Menção Honrosa
Henrique Vieira G. Vaz	São Paulo – SP	Menção Honrosa
Gabriela Loiola Vilar	Fortaleza – CE	Menção Honrosa
Igor Tetsuo Boninsenha Kunizaki	Taubaté – SP	Menção Honrosa
Marcelo Cargnelutti Rossato	Santa Maria – RS	Menção Honrosa
Arthur Ferreira do Nascimento	São Paulo - SP	Menção Honrosa
Liara Guinsberg	São Paulo – SP	Menção Honrosa
Filipe Bellio da Nóbrega	Rio de Janeiro – RJ	Menção Honrosa
Israel Rodrigues Soares	Goiânia – GO Niterói – RJ	Menção Honrosa
Matheus Carneiro Campagnani	INITEROI – KJ	Menção Honrosa

Nível 2 (7^a. e 8^a. Séries)

Nome	Cidade – Estado	Prêmio
João Mendes Vasconcelos	Fortaleza – CE	Ouro
Matheus Barros de Paula	Taubaté – SP	Ouro
Gabriel Militão Vinhas Lopes	Fortaleza – CE	Ouro
Thiago Saksanian Hallak	São Paulo – SP	Ouro
Paulo Henrique Dias Vieira	Rio de Janeiro – RJ	Ouro
João Lucas Camelo Sá	Fortaleza – CE	Prata
Ana Beatriz Prudêncio de Almeida Rebouças	Fortaleza – CE	Prata
Hanon Guy Lima Rossi	São Paulo – SP	Prata
Danilo Silva de Albuquerque	Fortaleza – CE	Prata
Felipe Vieira de Paula	Fortaleza – CE	Prata
Leonardo Ferreira Patrício	Rio de Janeiro – RJ	Prata
Deborah Barbosa Alves	São Paulo - SP	Prata
Vinicius Cipriano Klein	Venda Nova do Imigrante – ES	Prata
Fernando Fonseca Andrade Oliveira	Belo Horizonte – MG	Prata
Maria Clara Mendes Silva	Pirajuba – MG	Prata
Ruan Alves Pires	Rio de Janeiro – RJ	Bronze
Natan Lima Viana	Fortaleza – CE	Bronze
Gleycianne Arruda de Freitas Silva	Fortaleza – CE	Bronze
Matheus Secco Torres da Silva	Rio de Janeiro – RJ	Bronze
Felipe Mostavenco Carmo	Rio de Janeiro – RJ	Bronze
Jonas Rocha Lima Amaro	Fortaleza – CE	Bronze
Gustavo Lisbôa Empinotti	Florianópolis – SC	Bronze
Guilherme da Rocha Dahrug	Santo André – SP	Bronze
Victorio Takahashi Chu	São Paulo - SP	Bronze
Itamar Sales de Oliveira Filho	Cedro – CE	Bronze
Francisco Vagner Dantas Leite Filho	Fortaleza – CE	Bronze
Kayo de França Gurgel	Fortaleza – CE	Bronze
Rodrigo Rolim Mendes de Alencar	Fortaleza – CE	Bronze
Igor Rosiello Zenker	São Paulo - SP	Bronze
Daniel Lucas Filgueira	Fortaleza – CE	Bronze
Mario Valney Pereira de Andrades	Fortaleza – CE	Bronze
Rafael Dias da Fonseca	Maceió – AL	Bronze
Matheus Cordeiro Wilhelm da Costa	Rio de Janeiro – RJ	Menção Honrosa
Elder Massahiro Yoshida	São Paulo – SP	Menção Honrosa
Lucas de Freitas Smaira	Guaxupé – MG	Menção Honrosa
Léo Nunes Benevides	Fortaleza – CE	Menção Honrosa
Felipe Bento Vargas de Moraes	Rio de Janeiro – RJ	Menção Honrosa
Rubens Cainan Sabóia Monteiro	Fortaleza – CE	Menção Honrosa
Alessandro Macêdo de Araújo	Fortaleza – CE	Menção Honrosa
Sandoel de Brito Vieira	Cocal dos Alves – PI	Menção Honrosa
Rafael Ferreira Antonioli	S. B. do Campo – SP	Menção Honrosa
Leonardo Victor Maciel Pontes	Fortaleza – CE	Menção Honrosa
Bryan Levy Salinas Carrillo	São Paulo - SP	Menção Honrosa
Filipe José Oliveira Sabóia	Fortaleza – CE	Menção Honrosa
Débora Jun Portugheis	Campinas – SP	Menção Honrosa
Kelve Torres Henrique	Recife – PE	Menção Honrosa
Nicolás Francisco E. C. Hespanhol Santos	Bauru – SP	Menção Honrosa
André Austregesilo Scussel	Fortaleza – CE	Menção Honrosa
Álvaro Lopes Pedroso	Santa Isabel – SP	Menção Honrosa
Wellington Biing Jung Lee	São Paulo – SP	Menção Honrosa
Bruno César da Silva Guedes	Recife – PE	Menção Honrosa
Luiz Filipe Martins Ramos	Niterói – RJ	Menção Honrosa
Jéssica Kazumi Okuma	São Paulo – SP	Menção Honrosa
Pedro Vieira Rodrigues Serradas	Rio de Janeiro – RJ	Menção Honrosa
Leonardo Henrique Caldeira Pires Ferrari	Rio de Janeiro – RJ	Menção Honrosa
Carlos Henrique de Andrade Silva	Fortaleza – CE	Menção Honrosa
Gregory Cosac Daher	Rio de Janeiro – RJ	Menção Honrosa
C. Ogo. j Cocao Danoi	, to do danono 1to	Wichiquo Fiorii osa

Nível 3 (Ensino Médio)

Nome	Cidade – Estado	Prêmio
Rafael Tupynambá Dutra	Belo Horizonte – MG	Ouro
Régis Prado Barbosa	Fortaleza – CE	Ouro
Ramon Moreira Nunes	Fortaleza – CE	Ouro
Henrique Pondé de Oliveira Pinto	Salvador – BA	Ouro
Henrique Hiroshi Motoyama Watanabe	São Paulo – SP	Ouro
Adenilson Arcanjo de Moura Junior	Fortaleza – CE	Prata
Renan Henrique Finder	São Paulo – SP	Prata
Guilherme Philippe Figueiredo	São Paulo – SP	Prata
0		
Marco Antonio Lopes Pedroso	Santa Isabel – SP	Prata
Rafael Sampaio de Rezende	Fortaleza – CE	Prata
Giuliano Pezzolo Giacaglia	Santo André – SP	Prata
Jorge Henrique Craveiro de Andrade	Rio de Janeiro – RJ	Prata
Marcelo Matheus Gauy	S.J. do Rio Preto – SP	Prata
Mateus Oliveira de Figueiredo	Fortaleza – CE	Prata
Paulo Sérgio de Castro Moreira	Fortaleza – CE	Prata
Robério Soares Nunes	Ribeirão Preto – SP	Prata
Marlen Lincoln da Silva	Fortaleza – CE	Bronze
Esdras Muniz Mota	Fortaleza – CE	Bronze
Grazielly Muniz da Cunha	Fortaleza – CE	Bronze
Davi Lopes Alves de Medeiros	Fortaleza – CE	Bronze
Gabriel Luís Mello Dalalio	S. J. dos Campos – SP	Bronze
José Airton Coêlho Lima Filho	Fortaleza – CE	Bronze
Leandro Farias Maia	Fortaleza – CE	Bronze
Marcos Victor Pereira Vieira	Fortaleza – CE	Bronze
Alfredo Roque de Oliveira Freire Filho	S. J. dos Campos – SP	Bronze
Francisco Osman Pontes Neto	Fortaleza – CE	Bronze
Leonel Lopes Lima Neto	Maceió – AL	Bronze
Renan Braz Parente	Fortaleza – CE	Bronze
Alex Atsushi Takeda	Londrina – PR	Bronze
Marcelo Tadeu de Sá Oliveira Sales	Salvador – BA	Bronze
Thiago Ribeiro Ramos	Varginha – MG	Bronze
Luiz Paulo Freire Moreira	Fortaleza – CE	Menção Honrosa
Antônio Felipe Cavalcante Carvalho	Fortaleza – CE	Menção Honrosa
Luca Mattos Möller	Niterói – RJ	Menção Honrosa
Hugo Fonseca Araújo	Juiz de Fora – MG	Menção Honrosa
Fernando Nascimento Coelho	Fortaleza – CE	Menção Honrosa
Filipe de Almeida Araujo Vital	Rio de Janeiro – RJ	Menção Honrosa
Illan Feiman Halpern	Itatiaia – RJ	Menção Honrosa
Alexandre Nobuo Kunieda	São Paulo – SP	Menção Honrosa
Alysson Espíndola de Sá Silveira	Fortaleza – CE	Menção Honrosa
Thiago S. Pinheiro	São Paulo – SP	Menção Honrosa
Orlando Alencar Lustosa Neto	Fortaleza – CE	Menção Honrosa
Ricardo Turolla Bortolotti	Rio Claro – SP	Menção Honrosa
Gustavo Pacianotto Gouveia	São Paulo – SP	Menção Honrosa
Felipe Holanda Moreira	Fortaleza – CE	Menção Honrosa
Artur de Almeida Losnak	São Paulo – SP	Menção Honrosa
Rafael Parpinel Cavina	São Paulo – SP	Menção Honrosa
Filipe Alves Tomé	Fortaleza – CE	Menção Honrosa
Custodio Moreira Brasileiro Silva	Caém – BA	Menção Honrosa
Marília Valeska Costa Medeiros	Fortaleza – CE	,
Pollyanna Stéfani Borges Freitas	Fortaleza – CE Fortaleza – CE	Menção Honrosa Menção Honrosa
·		_
Gustavo Sampaio Sousa	Fortaleza – CE	Menção Honrosa
Joas Elias dos Santos Rocha	Muribeca – SE	Menção Honrosa
Raphael Luiz França Greco	Rio de Janeiro – RJ	Menção Honrosa
Rafael Morioka Oda	São Paulo – SP	Menção Honrosa

Nível Universitário

Nome	Cidade – Estado	Prêmio
Fábio Dias Moreira	Rio de Janeiro – RJ	Ouro
Rafael Marini Silva	Vila Velha – ES	Ouro
Guilherme Rodrigues Nogueira de Souza	São Paulo – SP	Ouro
José Marcos Andrade Ferraro	São Paulo – SP	Ouro
Rafael Daigo Hirama	Campinas – SP	Ouro
Eduardo de Moraes Rodrigues Poço	São Paulo – SP	Prata
Felipe Rodrigues Noqueira de Souza	São Paulo – SP	Prata
Murilo Vasconcelos Andrade	Maceió – AL	Prata
Leonardo Ribeiro de Castro Carvalho	São Paulo – SP	Prata
Luty Rodrigues Ribeiro	S.J. dos Campos – SP	Prata
André Linhares Rodriques	Campinas – SP	Prata
Maurício de Lemos Rodrigues Collares Neto	Aracaju – SE	Prata
Henry Wei Cheng Hsu	São Paulo – SP	Prata
Kellem Correa Santos	Rio de Janeiro – RJ	Prata
Levi Maximo Viana	Rio de Janeiro – RJ	Bronze
Ronaldo Rodrigues Pelá	São Carlos – SP	Bronze
Luís Daniel Barbosa Coelho	Rio de Janeiro – RJ	Bronze
Thiago Costa Leite Santos	São Paulo – SP	Bronze
Helder Toshiro Suzuki	São Paulo – SP	Bronze
Raphael Constant da Costa	Rio de Janeiro – RJ	Bronze
Rafael Sabino Lima	Rio de Janeiro – RJ	
		Bronze
Erick Costa e Silva Talarico	Rio de Janeiro – RJ	Bronze
Rodrigo Aguiar Pinheiro	S.J. dos Campos – SP	Bronze
Renato Rebouças de Medeiros	S.J. dos Campos – SP	Bronze
José Armando Barbosa Filho	S.J. dos Campos – SP	Bronze
Evandro Makiyama de Melo	São Paulo – SP	Bronze
Tiago Barbin Batalhão	São Carlos – SP	Bronze
Gabriel Ponce	São Carlos – SP	Bronze
Vitor Gabriel Kleine	S.J. dos Campos – SP	Bronze
Alexandre Hideki Deguchi Martani	São Paulo – SP	Bronze
Vitor Humia Fontoura	Rio de Janeiro – RJ	Bronze
Ana Maria Menezes de Jesus	Itabaiana – SE	Bronze
Eduardo Fischer	Encantado – RS	Bronze
Anderson Hoshiko Aiziro	São Paulo – SP	Bronze
Daniel Lopes Alves de Medeiros	S.J. dos Campos – SP	M. Honrosa
Paulo André Carvalho de Melo	Rio de Janeiro – RJ	M. Honrosa
Pedro Meira de Vasconcellos Bezerra	Recife – PE	M. Honrosa
Willy George do Amaral Petrenko	Rio de Janeiro – RJ	M. Honrosa
Gustavo Antônio da Silva Amaro	São Carlos – SP	M. Honrosa
Ricardo Monteiro da Silva Lanna	Belo Horizonte – MG	M. Honrosa
Felipe Gonçalves Assis	Campina Grande – PB	M. Honrosa
Elder Rodrigo Barbosa Campos	Rio de Janeiro – RJ	M. Honrosa
Matheus Pimentel Rodrigues	Rio de Janeiro – RJ	M. Honrosa
Rafael Montezuma Pinheiro Cabral	Fortaleza – CE	M. Honrosa
Nivan Roberto Ferreira Júnior	Olinda – PE	M. Honrosa
Elton Gomes Coriolano	Campinas – SP	M. Honrosa
Thomás Yoiti Sasaki Hoshina	Rio de Janeiro – RJ	M. Honrosa
Samir Rodrigues Vieira	Fortaleza – CE	M. Honrosa
Frederico de Souza Frydman	S.J. dos Campos – SP	M. Honrosa
Jordan Freitas Piva	Rio de Janeiro – RJ	M. Honrosa
Rodrigo Viana Soares	Fortaleza – CE	M. Honrosa
Bruno Euzébio dos Santos	Malhados – SE	M. Honrosa

AGENDA OLÍMPICA

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

NÍVEIS 1, 2 e 3

Primeira Fase – Sábado, 14 de junho de 2008 Segunda Fase – Sábado, 13 de setembro de 2008 Terceira Fase – Sábado, 25 de outubro de 2007 (níveis 1, 2 e 3) Domingo, 26 de outubro de 2008 (níveis 2 e 3 - segundo dia de prova).

NÍVEL UNIVERSITÁRIO

Primeira Fase – Sábado, 13 de setembro de 2008 Segunda Fase – Sábado, 25 e Domingo, 26 de outubro de 2008

XIV OLIMPÍADA DE MAIO

10 de maio de 2008

XIX OLIMPÍADA DE MATEMÁTICA DO CONE SUL

Temuco – Chile 18 a 23 de junho de 2008

XLIX OLIMPÍADA INTERNACIONAL DE MATEMÁTICA

10 a 22 de julho de 2008 Madri – Espanha

XIV OLIMPÍADA INTERNACIONAL DE MATEMÁTICA UNIVERSITÁRIA

25 a 31 de julho de 2008 Blagoevgrad, Bulgária

XXIII OLIMPÍADA IBEROAMERICANA DE MATEMÁTICA

18 a 28 de setembro de 2008 Salvador, Bahia – Brasil

XI OLIMPÍADA IBEROAMERICANA DE MATEMÁTICA UNIVERSITÁRIA

COORDENADORES REGIONAIS

Alberto Hassen Raad (UFJF) Juiz de Fora - MG Américo López Gálvez (USP) Ribeirão Preto - SP Amarísio da Silva Araújo (UFV) Viçosa - MG Andreia Goldani **FACOS** Osório - RS Antonio Carlos Nogueira (UFU) Uberlândia - MG Ali Tahzibi (USP) São Carlos - SP Benedito Tadeu Vasconcelos Freire (UFRN) Natal - RN (Univ. Tec. Fed. de Paraná) Carlos Alexandre Ribeiro Martins Pato Branco - PR Santa María – RS **Carmen Vieira Mathias** (UNIFRA) Claus Haetinger (UNIVATES) Lajeado - RS Cleonor Crescêncio das Neves (Inst. de Tec. e Educ. Galileo da Amazônia) Manaus - AM Cláudio de Lima Vidal S.J. do Rio Preto - SP (UNESP) (UNIPAMPA) Bagé - RS Denice Fontana Nisxota Menegais (Colégio Objetivo de Campinas) Campinas - SP **Edson Roberto Abe** (Faculdade Etapa) São Paulo - SP Élio Mega Eudes Antonio da Costa (Univ. Federal do Tocantins) Arraias - TO Fábio Brochero Martínez (UFMG) Belo Horizonte - MG Florêncio Ferreira Guimarães Filho Vitória – ES (UFES) Francinildo Nobre Ferreira (UFSJ) São João del Rei - MG Genildo Alves Marinho (Centro Educacional Leonardo Da Vinci) Taguatingua - DF Ivanilde Fernandes Saad (UC. Dom Bosco) Campo Grande - MS Jacqueline Rojas Arancibia (UFPB)) João Pessoa - PB (ÙNOCHAPECÓ) Chapecó – SC Janice T. Reichert Teresina – PI João Benício de Melo Neto (UFPI) João Francisco Melo Libonati (Grupo Educacional Ideal) Belém - PA Jose de Arimatéia Fernandes (UFPB) Campina Grande - PB (UFSC) Insé Luiz Rosas Pinho Florianópolis – SC José Vieira Alves (UFPB) Campina Grande - PB Santo André – SP José William Costa (Instituto Pueri Domus) Krerley Oliveira (UFAL) Maceió - AL Licio Hernandes Bezerra (UFSC) Florianópolis – SC (Sistema Elite de Ensino) Luciano G. Monteiro de Castro Rio de Janeiro - RJ Luzinalva Miranda de Amorim (UFBA) Salvador - BA Mário Rocha Retamoso (UFRG) Rio Grande - RS (Grupo Educacional Ideal) Marcelo Rufino de Oliveira Belém - PA Marcelo Mendes (Colégio Farias Brito, Pré-vestibular) Fortaleza - CE Newman Simões (Cursinho CLQ Objetivo) Piracicaba - SP Nivaldo Costa Muniz (UFMA) São Luis - MA Osnel Broche Cristo (UFLA) Lavras - MG Osvaldo Germano do Rocio (U. Estadual de Maringá) Maringá – PR (Colégio Anglo) Atibaia – SP Raul Cintra de Negreiros Ribeiro Ronaldo Alves Garcia (UFGO) Goiânia - GO (Col. Aplic. da UFPE) Rogério da Silva Ignácio Recife - PE Reginaldo de Lima Pereira (Escola Técnica Federal de Roraima) Boa Vista - RR Reinaldo Gen Ichiro Arakaki (UNIFESP) SJ dos Campos - SP Ricardo Amorim (Centro Educacional Logos) Nova Iguaçu - RJ Sérgio Cláudio Ramos (IM-UFRGS) Porto Alegre - RS

Wagner Pereira Lopes

Seme Gebara Neto

Tadeu Ferreira Gomes

Tomás Menéndez Rodrigues Valdenberg Araújo da Silva

Vânia Cristina Silva Rodrigues

(U. Federal de Rondônia)

(U. Federal de Sergipe)

(U. Metodista de SP)

(CEFET - GO)

Belo Horizonte - MG

Juazeiro - BA

Jataí - GO

Porto Velho - RO

São Cristovão - SE

S.B. do Campo - SP

(UFMG)

(UEBA)