CONTEÚDO

XXX OLIMPIADA BRASILEIRA DE MATEMATICA Problemas e Soluções da Primeira Fase	2
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Segunda Fase	16
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Terceira Fase	33
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Primeira Fase Nível Universitário	51
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Problemas e Soluções da Segunda Fase Nível Universitário	57
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Premiados	66
AGENDA OLÍMPICA	70
COORDENADORES REGIONAIS	71

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Primeira Fase

PROBLEMAS – NÍVEL 1

01) Com segmentos de 1 cm de comprimento podemos formar triângulos. Por exemplo, com nove desses segmentos podemos formar um triângulo eqüilátero de lado 3 cm. Com qual número de segmentos a seguir é impossível formar um triângulo?

A) 4

B) 5

C) 6

D) 7

E) 8

02) Esmeralda compra cinco latas de azeite a quatro reais e setenta centavos a lata, cinco latas de leite em pó a três reais e doze centavos cada e três caixas de iogurte com seis iogurtes cada caixa ao preço de oitenta centavos por iogurte. Paga com uma nota de cinqüenta reais e quer saber quanto irá receber de troco. Qual das expressões aritméticas a seguir representa a solução para este problema?

A)
$$50-5\times(4,70+3,12)+18\times0,80$$

B)
$$5 \times 4,70 + 5 \times 3,12 + 3 \times 6 \times 0,80 - 50$$

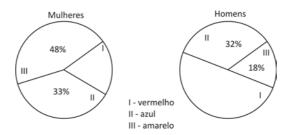
C)
$$-[5 \times (4,70+3,12) + 3 \times 6 \times 0,80] + 50$$

D)
$$50 - [5 \times (4,70 + 3,12) + 3 \times 6 + 0,80]$$

E)
$$50 - [5 \times (4,70 + 3,12) + 6 \times 0,80]$$

03) Uma pesquisa foi feita entre pessoas de ambos os sexos, em igual número, com a seguinte pergunta: *Entre as cores azul, vermelho e amarelo, qual é a cor que você prefere?*

Cada pessoa apresentou a sua preferência por uma, e só uma, dessas cores. E o resultado da pesquisa aparece nos gráficos abaixo:



Podemos concluir que, em relação ao total de pessoas pesquisadas, a ordem de preferência das cores é:

A) I, II, III

B) I, III, II

C) II, I, III

D) II, III, I

E) III, II, I

04) O quociente e o resto na divisão de 26097 por 25 são, respectivamente:

A) 1043 e 22

B) 1044 e 3

C) 143 e 22

D) 1044 e 22

E) 144 e 3

05) Numa reunião da comunidade do bairro, cada uma das 125 pessoas presentes recebeu um número diferente, a partir do número 1 até o 125. Em dado momento, foi feita uma lista das pessoas com número par e das pessoas com número múltiplo de 3, que deveriam participar de um projeto. Algumas pessoas reclamaram, dizendo que o seu nome aparecia duas vezes na lista. Quantas pessoas apareceram duas vezes na lista?

A) 2

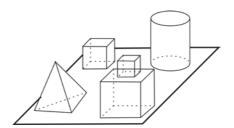
B) 6

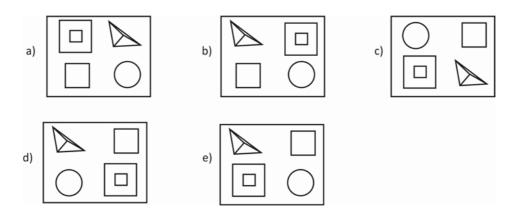
C) 20

D) 41

E) 62

06) Sobre uma mesa retangular de uma sala foram colocados quatro sólidos, mostrados no desenho. Uma câmera no teto da sala, bem acima da mesa, fotografou o conjunto. Qual dos esboços a seguir representa melhor essa fotografía?





*	lasse foram prest			s, 60% de todos os imo, quantas alunas
A) 1	B) 2	C) 4	D) 6	E) 8
partir do núme números dos c maneira?	ero 1 até o 2008 artões. Quantos i	3. Retiram-se do números ímpares	is cartões ao ac diferentes pode	número diferente, a aso e somam-se os m ser obtidos dessa
A) 1004	B) 1005	C) 2007	D) 2008	E) 4016
cm e 50 cm, co formar um qua	quatro trapézios i omo o da figura a adrado de área 25 drado no meio. O em cm ² ?	ao lado, podemo 500 cm², com un	s n	30cm 45° 50 cm
A) 200	B) 250	C) 300	D) 350	E) 400
10) Quantos ni	úmeros pares de t	três algarismos to	êm dois algarism	os ímpares?
A) 20	B) 48	C) 100	D) 125	E) 225
			· ·	de um copo. Para
encher 15 copo	os iguais a esse, c	-	deverão ser usad	as?
A) 2	B) 3	C) 4	D) 5	E) 6
12) Quantos q	juadrados têm co ado?	omo vértices os	pontos do	• • • •

B) 7

A) 6

E) 10

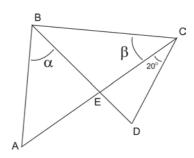
D) 9

C) 8

- 13) A primeira fase da OBM se realiza no dia 14 de junho, um sábado do ano bissexto 2008. Daqui a quantos anos o dia 14 de junho será novamente no sábado?
- **A)** 4
- **B)** 5
- **C**) 6
- **D)** 7
- E) 8
- **14)** No desenho temos AE = BE = CE = CD. Além disso, α e β são medidas de ângulos.

Qual é o valor da razão $\frac{\alpha}{\beta}$?

- **A)** $\frac{3}{5}$ **B)** $\frac{4}{5}$
- **C**) 1
- **D)** $\frac{5}{4}$ **E)** $\frac{5}{3}$



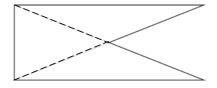
- 15) Na multiplicação ao lado, alguns algarismos, não necessariamente iguais, foram substituídos pelo sinal *. Qual é a soma dos valores desses algarismos?
- **A)** 17
- **B)** 27
- **C)** 37
- **D)** 47

E) 57

- 6157
- 16) Três amigos moram na mesma rua: um médico, um engenheiro e um professor. Seus nomes são: Arnaldo (A), Bernaldo (B) e Cernaldo (C). O médico é filho único e o mais novo dos três amigos. Cernaldo é mais velho que o engenheiro e é casado com a irmã de Arnaldo. Os nomes do médico, do engenheiro e do professor, nessa ordem, são:
- **A)** A, B, C
- **B)** C, A, B

- **C)** B, A, C **D)** B, C, A **E)** A, C, B

17) Dois cartões iguais têm a forma de um triângulo retângulo de lados 5 cm, 12 cm e 13 cm. Esmeralda juntou os dois cartões sobre uma folha de papel e, contornando as beiradas com um lápis, obteve uma figura como a ao lado, que está fora de escala. Qual é o perímetro dessa figura?



- A) 28 cm
- **B)** 35 cm
- C) 42 cm
- **D)** 43 cm
- E) 60 cm

18) Qual é o maior número de algarismos que devem ser apagados do número de 1000 algarismos 20082008...2008, de modo que a soma dos algarismos restantes seja 2008?

- **A)** 130
- **B)** 260
- **C)** 510
- **D)** 746
- E) 1020

19) Soninha tem muitos cartões, todos com o mesmo desenho em uma das faces. Ela vai usar cinco cores diferentes (verde, amarelo, azul, vermelho e laranja) para pintar cada uma das cinco partes do desenho, cada parte com uma cor diferente, de modo que não haja dois cartões pintados da mesma forma. Na figura abaixo, por exemplo, os cartões são iguais, pois um deles pode ser girado para se obter o outro. Quantos cartões diferentes Soninha conseguirá produzir?

A) 16

B) 25

C) 30

D) 60

E) 120

20) Três carros com velocidades constantes cada um, na mesma estrada, passam no mesmo momento por Brasilópolis. Ao viajar 100 quilômetros, o carro A passa por Americanópolis, 20 quilômetros à frente do carro B e 50 quilômetros à frente do carro C. Quando o carro B passar por Americanópolis, quantos quilômetros estará à frente do carro C?

A) 20

B) 25,5

C) 30

D) 35

E) 37.5

PROBLEMAS - NÍVEL 2

01) Veja o problema No. 14 do Nível 1.

B) 2

02) Quantos dos números abaixo são maiores que 10?

 $3\sqrt{11}$, $4\sqrt{7}$, $5\sqrt{5}$, $6\sqrt{3}$, $7\sqrt{2}$

A) 1

03) $\sqrt{12^{12}}$ é igual a:

A) 6^6

B) $12^{2\sqrt{3}}$

C) $2^{12}.3^6$ D) 6^{12}

E) 5

04) Uma grande empresa possui 84 funcionários e sabe-se que cada funcionário fala pelo menos uma das línguas entre Português e Inglês. Além disso, 20% dos que falam Português também falam Inglês e 80% dos que falam Inglês também falam Português. Quantos funcionários falam as duas línguas?

A) 12

B) 14

C) 15

D) 16

E) 18

05) Edmilson, Carlos e Eduardo ganharam um total de R\$150,00 lavando carros. Eles ganharam quantidades diferentes de dinheiro. Como eles são muito amigos decidiram dividir o dinheiro ganho em partes iguais. Para isto, Edmilson deu metade do que ganhou para dividir em partes iguais entre Carlos e Eduardo, porém, Carlos tinha muito dinheiro e, portanto, deu R\$ 10,00 a cada um dos outros dois. Finalmente, para que cada um tivesse a mesma quantidade de dinheiro, Eduardo deu R\$ 2,00 a Edmilson. Quanto Eduardo ganhou antes da divisão?

A) R\$ 76,00

B) R\$ 51,00

C) R\$ 23.00

D) R\$ 50,00

E) R\$ 100,00

06) Nove números são escritos em ordem crescente. O número do meio é a média aritmética dos nove números. A média aritmética dos 5 maiores é 68 e a média aritmética dos 5 menores é 44. A soma de todos os números é:

A) 560

B) 504

C) 112

D) 56

E) 70

07) Veja o problema No. 12 do Nível 1.							
08) Veja o prob	08) Veja o problema No. 13 do Nível 1.						
				garismos \overline{aa} , \overline{bc} e			
<i>cb</i> são número A) 19	os primos e <i>aa</i> - B) 17	$+ \overline{bc} + \overline{cb} = \overline{aa}^2$ C) 37	. Se $b < c$, enta D) 29	no \overline{bc} é igual a: E) 59			
10) Cinco intercondições:	ros positivos <i>a</i>	a,b,c,d,e maior	res que um satis	fazem as seguintes			
,		a(b+c+d+e) =	128				
		b(a+c+d+e) =	155				
		c(a+b+d+e) =	203				
		d(a+b+c+e) =	243				
		e(a+b+c+d) =	275				
-	oma $a+b+c+$						
A) 9	B) 16	C) 25	D) 36	E) 49			
lados AB e AO perpendicular a triângulo ABC o Observação: o	C, respectivame a AC. Achar Mi é igual a 10. triângulo órtic	ente, tais que <i>H</i> V, sabendo que o de um triâng	M é perpendicu o perímetro do ulo é aquele cu	e N pontos sobre os ular a AB e HN é triângulo órtico do jos vértices são as Pode-se demonstrar			
				é sempre igual ao			
ortocentro (ence	ontro das alturas B) 6	s) do triângulo or C) 7	riginal. D) 8	E) 9			
12) Quantos n divisores inteiro		s positivos men	ores que 500 t	êm exatamente 15			
A) 0	B) 1	C) 2	D) 3	E) 4			
, ,	<i>'</i>		res do número $P(2) + P(3) + \dots$	n. Por exemplo, $+P(100)$?			
A) 200	B) 360	C) 400	D) 900	E) 2250			

14) De quantas maneiras podemos dividir R\$ 10,00 em moedas de 10 centavos e de 25 centavos, se pelo menos uma moeda de cada valor tem que ser usada?

- **A)** 15
- **B)** 16
- **C)** 17
- **D)** 18
- **E)** 19

15) Sejam a,b,c,d números inteiros tais que a < 2b, b < 3c, c < 4d. Se d < 40, o maior valor possível de a será:

- **A)** 960
- **B)** 959
- **C)** 951
- **D)** 934
- E) 927

16) A figura abaixo é um exemplo de um quadrado mágico de ordem 4. A soma dos 4 números em cada linha, coluna e diagonal é 34. Então dizemos que a soma mágica deste quadrado mágico é 34. Suponha que exista um quadrado mágico de ordem 7, formado pelos números inteiros de 1 a 49. Determine sua soma mágica.

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

- **A)** 175
- **B)** 2450
- **C)** 1225
- **D)** 190
- **E)** 100

17) Observe que:

$$3^{2} + 4^{2} = 5^{2}$$
,
 $3^{2} + 4^{2} + 12^{2} = 13^{2}$,
 $3^{2} + 4^{2} + 12^{2} + 84^{2} = 85^{2}$.

Qual o menor valor possível da soma x + y com x, y inteiros positivos tais que

$$3^2 + 4^2 + 12^2 + 84^2 + x^2 = y^2$$
?

- **A)** 289
- **B)** 250
- C) 425
- **D)** 795
- **E)** 103

18) Um número de três algarismos é 629 vezes menor que a soma de todos os outros números de três algarismos. Este número é:

- **A)** 450
- **B)** 785
- **C)** 630
- **D)** 471
- E) 525

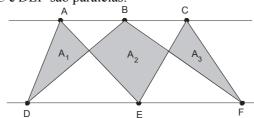
19) Veja o problema No. 19 do Nível 1.

20) Em um triângulo ABC, $\angle A = 20^{\circ}$ e $\angle B = 110^{\circ}$. Se I é o incentro (centro da circunferência inscrita) e O o circuncentro (centro da circunferência circunscrita) do triângulo ABC, qual a medida do ângulo $\angle IAO$?

- **A)** 20°
- **B)** 25°
- $C) 30^{\circ}$
- **D)** 40°
- **E)** 35°

21) Veja o problema No. 7 do Nível 1.

22) Na figura abaixo os pontos A, B, C são colineares, assim como os pontos D, E, F. As duas retas ABC e DEF são paralelas.



Sendo A_1 , A_2 e A_3 as áreas das regiões destacadas na figura, podemos afirmar que:

- **A)** $A_2 = 2A_1 = 2A_3$
- **B)** $A_2 = A_1 + A_3$ **E)** $A_2^2 = A_1 \cdot A_3$
- **C)** $A_2 > A_1 + A_3$

- \mathbf{D}) $A_2 < A_1 + A_3$

23) O grupo A da última Copa do Mundo de futebol terminou com os seguintes resultados:

Equipe	Número de Pontos
Áustria	7
Brasil	5
Camarões	4
Dinamarca	0

Sabe-se que Áustria e Camarões levaram apenas 1 gol, cada um. Além disso, Brasil e Dinamarca marcaram apenas 1 gol, cada um, enquanto que Áustria marcou 3 gols. Qual o resultado da partida Áustria × Dinamarca?

Observação: no grupo, cada seleção joga com as demais exatamente uma vez e, em cada partida, o time vencedor ganha 3 pontos, o perdedor não ganha nem perde pontos e, em caso de empate, cada time ganha 1 ponto.

- **A)** 1×0
- **B)** 2×1
- C) 2×0
- **D)** 0×0

E) Nada se pode afirmar.

24) Abaixo temos um quadrado mágico multiplicativo, onde o produto dos números em cada linha, coluna e diagonal é o mesmo e igual ao número de quatro dígitos ABCD, onde cada letra representa um dígito e cada casa contém um número inteiro. Se AC representa o número de dois dígitos no centro do quadrado, a soma A + B + C + D vale:

	4
AC	
C	24

- **A)** 17
- **B)** 18
- **C)** 19
- **D)** 20
- E) 21

25) Tenho um cubo de madeira, com três faces vermelhas e três faces azuis. O cubo é cortado em $3\times3\times3 = 27$ cubos menores. Quantos destes cubos menores têm, pelo menos, uma face vermelha e outra azul?

- **B)** 12
- **C)** 14
- **D)** 16

E) depende de quais faces do cubo são vermelhas e quais são azuis.

PROBLEMAS - NÍVEL 3

01) Veja o problema No. 14 do Nível 1.

02) Sendo $x = 10^{-2008}$, assinale a alternativa que apresenta o maior valor.

$$\mathbf{A)} \; \frac{1}{x}$$

$$\mathbf{B)} \ \frac{1}{x(x+1)}$$

B)
$$\frac{1}{x(x+1)}$$
 C) $\frac{1}{1+\frac{1}{1+\frac{1}{x}}}$ D) x E) $\frac{x}{x+\frac{1}{x}}$

$$\mathbf{E)} \ \frac{x}{x + \frac{1}{x}}$$

03) O número inteiro positivo a e o número $\frac{1}{a}$ localizam-se na reta da seguinte maneira:

Qual é a soma desses dois números?

- **E**) 9

04) Veja o problema No. 4 do Nível 2

28, 33, 48, 53, cartões que Ra escolhidos seja A) 2	, 68, e todos os	dez números ap ner de modo que? C) 4	parecem. Qual of a soma dos no D) 5	os 3, 8, 13, 18, 23 menor número de úmeros nos cartões
numerados de Penha, estando elas começam horário, enquar com Sônia pela velocidade de l	1 até <i>n</i> no sentido o inicialmente toda a caminhar pelos nto que Sônia e a primeira vez es	lo anti-horário, e das em um mess s lados do polígo Penha caminhar n um vértice e o da velocidade do	existem três pess mo vértice. Em ono. Nelly camir m no sentido con com Penha dois e Sônia e a veloc	gular de <i>n</i> vértices oas: Nelly, Sônia e um dado momento anti- ntrário. Nelly cruza vértices à frente. A cidade de Sônia é o
07) Veja o prob	olema No. 6 do N	lível 2.		
				um sábado do ano mente no sábado? E) 8
09) Veja o prob	olema No. 14 do	Nível 2.		
algarismos de n	ı é igual a:			que n. A soma dos
A) 5	B) 7	C) 9	D) 11	E) 12
11) Quantos do A) um	os números 2, 3, 3 B) dois	5, 7, 11 são divis C) três		1 ⁴ ? E) cinco
12) Veja o Prob	olema No. 25 do	Nível 2.		

13) O número de soluções reais do sistema

$$\begin{cases} a^2 = b + 2 \\ b^2 = c + 2 \\ c^2 = a + 2 \end{cases}$$

é igual a:

A) 0

B) 1

C) 2

D) 4

E) 8

14) Arnaldo, Bernaldo, Cernaldo e Dernaldo baralharam as 52 cartas de um baralho e distribuíram 13 cartas para cada um. Arnaldo ficou surpreso: "Que estranho, não tenho nenhuma carta de espadas." Qual a probabilidade de Bernardo também não ter cartas de espadas?

A) $\frac{39!}{26!52!}$

B) $\frac{26!}{13!39!}$ **C)** $\frac{39!39!}{26!52!}$ **D)** $\frac{26!26!}{13!39!}$ **E)** $\frac{39!13!}{52!}$

15) Veja o problema No. 19 do Nível 2.

16) Dado o quadrilátero ABCD tal que $\angle CAD = 25^{\circ}$, $\angle ACD = 45^{\circ}$ e $\angle BAC =$ $\angle BCA = 20^{\circ}$, qual o valor do ângulo $\angle DBC$?

A) 40°

B) 45°

 $\mathbf{C})50^{\circ}$

D) 55°

E) 60°

17) No triângulo PQR isósceles, com PQ = PR = 3 e QR = 2, a tangente à sua circunferência circunscrita no ponto Q encontra o prolongamento do lado PR em X. O valor de RX é:

A) $\frac{16}{5}$

B) $\frac{12}{5}$ C) $\frac{8}{3}$ D) $\frac{9}{2}$ E) $\frac{9}{4}$

18) Dado um triângulo ABC de lados AB = 3, BC = 4 e AC = 5. Sejam R_1 e R_2 , respectivamente, os raios da circunferência inscrita e da circunferência com centro

sobre o lado BC que passa por B e é tangente ao lado AC. A razão $\frac{R_1}{R_2}$ vale:

A) $\frac{3}{4}$

B) $\frac{2}{3}$ C) $\frac{3}{2}$ D) $\frac{8}{9}$ E) $\frac{4}{5}$

19) Qual o número de soluções reais do sistema

 $x \cdot |x| + y \cdot |y| = 1$ e |x| + |y| = 1,

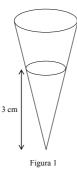
EUREKA! Nº30 2009

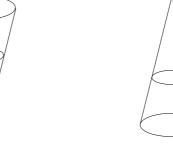
onde $\lfloor x \rfloor$ representa a parte inteira de x?

- **A)** 0
- **B**) 1
- **C**) 2
- **D)** 4
- E) infinitas
- 20) Um número de quatro dígitos é dito paladino se é múltiplo de 9 e nenhum de seus dígitos é nulo. Quantos números paladinos existem?
- **A)** 1284
- **B)** 1024
- **C)** 849
- **D)** 1109
- E) 729
- 21) Considere a função f, definida no conjunto dos números reais e satisfazendo $f(x) = \frac{cx}{2x+3}$, para todo $x \neq -3/2$. Determine o número de tais funções f para as

f(f(x)) = x, para todo x tal que f(f(x)) está bem definida.

- **A)** 0
- **B**) 1
- **C**) 2
- **D)** 4
- E) infinitas.
- 22) O brinquedo favorito de Cícero é um cone reto de vidro com 5 cm de altura. Cícero encheu o cone com areia até a altura de 3 cm, como mostrado na figura 1. Em seguida, Cícero fechou a base do cone e virou-o de cabeça para baixo, como indicado na figura 2. A que altura da base do cone, em cm, ficou a marca de areia?





- **A)** 1
- **B)** 2
- C) $5 \sqrt[3]{98}$
- **D**) $\sqrt[3]{98}$

E)
$$1 - \frac{\sqrt[3]{98}}{5}$$

- 23) Veja o problema No. 24 do Nível 2.
- 24) Considere 10 pessoas, todas de alturas diferentes, as quais devem ficar em fila de tal modo que, a partir da pessoa mais alta, as alturas devem decrescer para ambos os lados da fila (se a pessoa mais alta for a primeira ou a última da fila,

todas as pessoas a partir dela devem estar em ordem decrescente de altura). Obedecendo essas condições, de quantos modos essas pessoas podem ficar em fila?

A) 256

B) 768

C) 1260

D) 512

E) 2560

25. Veja o problema No. 10 no Nível 2.

GABARITO

NÍVEL 1 (6°. ou 7°. Anos)

1) A	6) E	11) C	16) C
2) C	7) B	12) E	17) C
3) B ou D	8) C	13) C	18) D
4) A	9) E	14) D	19) C ou D
5) C	10) D	15) C	20) E

NÍVEL 2 (8°. ou 9°. Anos)

1) D	6) B	11) A	16) A	21) B
2) C	7) E	12) D	17) A	22) B
3) C	8) C	13) C	18) B	23) B
4) D	9) C	14) E	19) C ou D	24) B
5) C	10) D	15) E	20) C	25) E

NÍVEL 3 (Ensino Médio)

1) D	6) C	11) D	16) C	21) B
2) A	7) B	12) B	17) B	22) C
3) D	8) C	13) E	18) B	23) B
4) D	9) E	14) D	19) C	24) D
5) D	10) A ou B	15) C ou D	20) E	25) D

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Segunda Fase

PROBLEMAS – NÍVEL 1 – PARTE A (Cada problema vale 5 pontos)

01. Nicanor quer completar o Sudoku ao lado, de modo que em cada linha (fileira horizontal) e cada coluna (fileira vertical) apareçam todos os números de 1 a 6. Qual é a soma de todos os números que faltam para completar o Sudoku?

2			1	
				5
4				2
	6	4		
6		3	2	

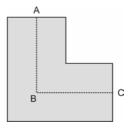
02. A partir das igualdades

$$3^{2}-1^{2}=8=8\cdot 1,$$

 $5^{2}-3^{2}=16=8\cdot 2,$
 $7^{2}-5^{2}=24=8\cdot 3,$
...
e $2009^{2}-2007^{2}=8\cdot N,$

podemos escrever $2009^2 - 1 = 4 \cdot N \cdot (N+1)$. Qual é o valor de N?

- **03.** Certo banco brasileiro obteve um lucro de R\$ 4,1082 bilhões ao final do primeiro semestre de 2008. Esse valor representa um aumento de 2,5% em relação ao resultado obtido no mesmo período do ano passado. Qual é a soma dos dígitos do número inteiro que representa, em reais, o lucro desse banco no primeiro semestre de 2007?
- **04.** A piscina do clube que Esmeralda freqüenta tem a forma de um hexágono (polígono com seis lados), com um ângulo interno de 270°, os demais ângulos de 90° e os quatro lados menores com 12 metros cada. Esmeralda costuma nadar pelo meio da piscina, a partir do ponto A, descrevendo o trajeto representado, na figura, pelo ângulo reto ABC, em que AB = BC.



Certo dia, ela nadou por esse trajeto 4 vezes, isto é, foi e voltou 2 vezes. Quantos metros ela percorreu?

05. Com o dinheiro que Carlinhos tinha, poderia ter comprado 600 gramas de queijo ou 400 gramas de presunto. Usando esse dinheiro, ele resolveu comprar quantidades iguais de presunto e queijo. Quantos gramas de cada item ele comprou?

06. Quantos números inteiros maiores que zero e menores que 100 possuem algum divisor cuja soma dos dígitos seja 5?

PROBLEMAS – NÍVEL 1 – PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

Zezinho tem 37 cartões quadrados de lado 6 cm e 21 cartões quadrados de lado 9 cm. Ele quer colar esses cartões lado a lado, sem sobrepô-los nem deixar buracos, formando quadrados maiores.

- a) Apresente, através de desenhos, duas maneiras diferentes de Zezinho construir um quadrado de lado 27 cm.
- b) Quantos cartões são necessários para construir o quadrado com a maior área possível?

PROBLEMA 2

Para construir o arranjo triangular de letras ao lado, que tem 2008 linhas, obedeceu-se a uma certa regra.

a) Quantas vezes a palavra OBM aparece completamente na maior coluna desse arranjo?

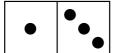
b) Quantas vezes a letra O aparece no arranjo?

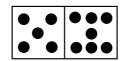
O OB OBMO OBMOB OBMOBM OBMOBMO

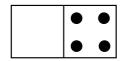
..

PROBLEMA 3

Em *Ferius*, os pontos do dominó vão de 0 a 7, ao contrário de um dominó comum, em que os pontos vão de 0 a 6. Uma peça do dominó de *Ferius* é chamada *importante* se a soma de seus pontos é par. Por exemplo, os seguintes dominós são importantes:







- a) Quantas peças diferentes possui o dominó jogado em Ferius?
- b) Quantas dessas peças são importantes?
- c) Qual é a soma dos pontos de todas as peças importantes?

PROBLEMAS – NÍVEL 2 – PARTE A (Cada problema vale 5 pontos)

01. Sejam x e y números reais positivos satisfazendo as equações $x^2 + y^2 = 1$ e $x^4 + y^4 = \frac{17}{18}$. Calcule o valor de $\frac{1}{xy}$.

02. Um viajante, que se encontrava perdido na floresta, andou 1 metro para o Leste, 2 metros para o Norte, 3 para o Oeste, 4 para o Sul, 5 para o Leste, 6 para o Norte,..., 2006 metros para o Norte, 2007 para o Oeste e 2008 para o Sul. Calcule, em metros, o valor inteiro mais próximo da distância entre as posições inicial e final do viajante.

03. Os números α e β são as raízes da equação $x^2 - x - 1 = 0$. Calcule $13 \cdot \alpha^5 + 5 \cdot \beta^7$.

04. Em um triângulo ABC, seja D um ponto sobre o lado BC tal que DB = 14, DA = 13 e DC = 4. Sabendo que o círculo circunscrito ao triângulo ADB tem raio igual ao do círculo circunscrito ao triângulo ABC, calcule a área do triângulo ABC.

05. Dado um número natural N, multiplicamos todos os seus algarismos. Repetimos o processo com o número obtido até obtermos um número com um algarismo. Este número será chamado de *primitivo* de N. Por exemplo, como $3 \cdot 2 \cdot 7 = 42$ e $4 \cdot 2 = 8$, concluímos que o primitivo de 327 é 8. Calcule a soma dos algarismos do maior número natural com todos os algarismos diferentes cujo primitivo é ímpar.

PROBLEMAS – NÍVEL 2 – PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

Encontre todos os triângulos retângulos, de lados com medidas inteiras, nos quais a área tem valor numérico igual ao do perímetro.

PROBLEMA 2

No quadro negro são escritos os números 1²,2²,3²,4²,...,2008². Pedro e Igor jogam um jogo onde eles apagam alternadamente um número por vez até sobrarem apenas dois números. Se a diferença entre estes dois números for múltiplo de 2009, Igor vence. Caso contrário, quem vence é Pedro. Sabendo que Pedro é o primeiro a jogar, diga quem possui a estratégia vencedora. Justifique sua resposta.

PROBLEMA 3

Seja ABC um triângulo acutângulo com BC = 5. Seja E o pé da altura relativa ao lado AC e F o ponto médio do lado AB. Se BE = CF = 4, calcule a área do triângulo ABC.

PROBLEMA 4

Um país tem 8 cidades, A_1 , A_2 , ..., A_6 , B, C, ligadas por rodovias de mão dupla satisfazendo as seguintes condições: B e C são ambas ligadas às cidades A_1 , A_2 , ..., A_6 , mas não são ligadas uma à outra; A_1 , A_2 , ..., A_6 são ligadas duas a duas. Calcule o número de maneiras distintas de viajar de carro de B a C, sem passar duas vezes por uma mesma cidade.

PROBLEMAS – NÍVEL 3 – PARTE A (Cada problema vale 5 pontos)

- **01.** Um trapézio isósceles ABCD, com lados paralelos AB e CD, é tal que a diagonal BD mede 100 m e o ângulo \widehat{BDC} mede 30°. Seja S a área do trapézio em m². Determine $S \cdot \sqrt{3}$.
- **02.** Se x é um número real, denotamos por $\lfloor x \rfloor$ o maior inteiro que é menor ou igual a x. Por exemplo, $\lfloor 2 \rfloor = 2$, $\lfloor \pi \rfloor = 3$ e $\lfloor -2, 1 \rfloor = -3$. Calcule o valor da soma $\left| \sqrt[4]{1} \right| + \left| \sqrt[4]{2} \right| + \left| \sqrt[4]{3} \right| + \left| \sqrt[4]{4} \right| + ... + \left| \sqrt[4]{2008} \right|$.

03. Um inteiro positivo n é chamado de *auto-replicante* se os últimos dígitos de n^2 formam o número n. Por exemplo, 25 é auto-replicante pois $25^2 = 625$. Determine

a soma de todos os números auto-replicantes com exatamente 4 dígitos (isto é, números auto-replicantes n com $1000 \le n \le 9999$).

- **04.** Quantas permutações de 1, 2, 3, ..., 9 há com a propriedade de que, para todo $1 \le i < 9$, os números que aparecem entre i e i + 1 (onde i pode aparecer tanto antes como depois de i + 1) são todos menores do que i? Por exemplo, 976412358 é uma permutação com esta propriedade.
- **05.** Suponha que $\alpha \in \mathbb{R}$ é raiz de algum polinômio não-nulo com coeficientes racionais. O *polinômio minimal* de α é o polinômio de menor grau m(x) tal que:
 - $m(\alpha) = 0$;
 - m(x) é Mônico (isto é, o seu coeficiente líder é 1) e todos os seus coeficientes são racionais.

Por exemplo, o polinômio minimal de $\sqrt{2}$ é $x^2 - 2$. Determine o produto dos coeficientes não nulos do polinômio minimal de $\sqrt[3]{-27 + 5\sqrt{33}} - \sqrt[3]{27 + 5\sqrt{33}}$.

PROBLEMAS – NÍVEL 3 – PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

Determine todos os inteiros positivos m e n tais que

$$m^2 + 161 = 3^n$$

PROBLEMA 2

Determine a quantidade de funções $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\}$ tais que f(f(x)) = f(x) para todo $x \in \{1, 2, 3, 4, 5\}$.

PROBLEMA 3

Um trapézio ABCD, com lados paralelos AB e CD, está inscrito em uma circunferência de raio 25. Sabe-se que CD é um diâmetro e a altura desse trapézio é 24. Seja E um ponto no arco menor determinado por A e B e sejam F e G os pontos de interpreta AB established.

de interseção de ED e EC com AB, respectivamente. Calcule $\frac{AF \cdot BG}{FG}$.

PROBLEMA 4

Em uma matriz 2008×2008 o elemento na linha i e coluna j é o número i + j (as

linhas e colunas são numeradas de 1 a 2008). Escolhem-se 2008 elementos desta matriz de modo que não haja dois elementos escolhidos numa mesma linha ou coluna. Os elementos são multiplicados. Qual o menor produto que se pode obter desta forma?

Soluções Nível 1 – Segunda Fase – Parte A

Problema	01	02	03	04	05	06
Resposta	91	1004	12	144	240	34

01.[91] A soma de todos os números do Sudoku completo é igual a 6 vezes a soma dos números em cada linha, ou seja, $6 \times (1+2+...+6) = 6 \times 21 = 126$. A soma dos números que já estão escritos no Sudoku é 35. Logo a soma dos números que faltam para completar o Sudoku é 126-35=91.

02. [1004] Temos:

$$2009^{2} - 1^{2} = 4 \cdot N \cdot (N+1) \Leftrightarrow (2009-1)(2009+1) = 4N(N+1) \Leftrightarrow 2008 \cdot 2010 = 4N(N+1) \Leftrightarrow \frac{2008}{2} \cdot \frac{2010}{2} = \frac{4N(N+1)}{2 \cdot 2} \Leftrightarrow 1004 \cdot 1005 = N(N+1) \Leftrightarrow N = 1004$$

Soluções alternativas:

1^a solução

Cada linha pode ser associada a um número ímpar e a um múltiplo de 8 da seguinte forma: na linha 1 temos o quadrado de $1=2\cdot 1-1$ (no lado esquerdo da igualdade) e 8 vezes 1 (no lado direito da igualdade), na linha 2 temos o quadrado de $3=2\cdot 2-1$ e 8 vezes 2, na linha 3 temos o quadrado de $5=2\cdot 3-1$ e 8 vezes 3 e assim sucessivamente, até chegarmos à linha N onde temos o quadrado de 2007=2N-1 e 8 vezes N.

Assim,
$$2N-1 = 2007 \Leftrightarrow 2N = 2008 \Leftrightarrow N = 1004$$
.

2ª solução

Cada linha pode ser associada um múltiplo de 8 da seguinte forma: na linha 1 temos 8 vezes 1 (no lado direito da igualdade), na linha 2 temos 8 vezes 2, na linha 3 temos 8 vezes 3 e assim sucessivamente, até chegarmos a última linha, onde

temos
$$2009^2 - 2007^2 = 8 \cdot N$$
, que é a linha $\frac{2009 - 1}{2} = 1004$, ou seja, $N = 1004$.

3ª solução

Temos:

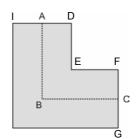
 $2009^{2} - 2007^{2} = 8 \cdot N \Leftrightarrow (2009 - 2007)(2009 + 2007) = 8 \cdot N \Leftrightarrow 2 \cdot 4016 = 8 \cdot N \Leftrightarrow N = 1004$

03. [12] Seja x o lucro desse banco no primeiro semestre de 2007, em bilhões de reais.

Logo $x + 2.5\% \cdot x = 4.1082 \Leftrightarrow x + 0.025x = 4.1082 \Leftrightarrow 1.025x = 4.1082 \Leftrightarrow x = 4.008$ bilhões de reais, ou seja, o lucro foi de R\$ 4008000000,00, cuja soma dos dígitos é 12.

04. [144] A partir das informações dadas, concluímos que na figura ID = DE = EF = FG = 12 metros e que A é o ponto médio de \overline{ID} , ou seja, AD = 6 metros e, da mesma forma, FC = 6 metros.

Logo AB = BC = 12 + 6 = 18 metros e, portanto, Esmeralda nadou $4 \cdot (18+18) = 4 \cdot 36 = 144$ metros.



05. [240] Supondo que Carlinhos tem Q reais, o preço do grama de queijo é $\frac{Q}{600}$ e

o preço do grama de presunto é $\frac{Q}{400}$. Seja m a quantidade, em gramas, de queijo e de presunto que Carlinhos comprou. Dessa forma:

$$m \cdot \frac{Q}{600} + m \cdot \frac{Q}{400} = Q \Leftrightarrow m \left(\frac{1}{600} + \frac{1}{400}\right) = 1 \Leftrightarrow m = \frac{1}{\frac{1}{600} + \frac{1}{400}} = \frac{400 \times 600}{400 + 600} = \frac{240000}{1000} = 240$$

Portanto ele comprou 240 gramas de cada item.

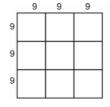
06. [34] São os múltiplos de 5, que nesse intervalo são 19; os múltiplos de 14, que são 6 (pois o 70 já foi contado); os múltiplos de 23, que são 4; os múltiplos de 32, que são 3 e, finalmente, os múltiplos de 41, que são 2. Note que o único múltiplo de 50 no intervalo, que é o próprio 50, já foi contato nos múltiplos de 5. Portanto ao todo são 19 + 6 + 4 + 3 + 2 = 34 números.

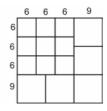
Soluções Nível 1 - Segunda Fase - Parte B

PROBLEMA 1

a) Os desenhos mostram as duas formas de construção dos quadrados. Elas são as únicas possíveis.

De fato, sendo *x* o número de quadrados de lado 6 cm e *y* o número de quadrados de lado 9 cm usados para construir um lado de 27 cm, temos:





 $6x + 9y = 27 \Leftrightarrow 2x + 3y = 9 \Leftrightarrow y = \frac{9 - 2x}{3}$ Como x = y são inteiros não negativos, podemos substituir x apenas por 0, 1, 2, 3 ou 4. As únicas soluções para essa situação são x = 0 e y = 3 ou x = 3 e y = 1, representadas nos desenhos.

b) Repetindo mais 3 vezes a segunda construção acima, obtém-se um quadrado de lado 54 cm, com a utilização de 36 cartões de lado 6 cm e 20 cartões de lado 9 cm, sobrando apenas 1 cartão de lado 6 cm e 1 cartão de lado 9 cm. Esse quadrado é o maior que se pode construir, usando-se o maior número de cartões, 56 cartões.

De fato, como os quadrados construídos com os cartões devem ter lados com medidas inteiras, concluímos que o quadrado maior do que o construído deveria ter lado de 60 cm, pelo menos, já que o cartão menor tem lado 6 cm. Como $60^2-54^2=684~\rm cm^2$ é maior do que $6^2+9^2=117~\rm cm^2$, que é a soma das áreas dos quadrados que sobraram, concluímos que realmente o quadrado de lado 54 cm é o maior que se pode construir usando o maior número de cartões.

PROBLEMA 2

- a) A maior coluna tem 2008 letras e OBM é um bloco de 3 letras. Como $2008 = 669 \cdot 3 + 1$, o número de vezes em que a palavra OBM aparece completamente na maior coluna é 669.
- b) Da esquerda para a direita, fazendo a contagem ao longo das flechas, a primeira passa por

2008 letras O. Como a segunda inicia 3 linhas abaixo, ela passa por 2008 – 3 = 2005 letras O. Nesse padrão, a próxima passará

por 2002 letras O, a seguinte, por 1999, e assim até a última flecha, que passará por 1.

Portanto o número de vezes que a letra O aparece no arranjo é

ØBMØ ØBMØB ØBMØBM ØBMØBMØ

$$2008 + 2005 + 2002 + 1999 + \dots + 1 = \frac{(2008 + 1) \cdot 670}{2} = 673015.$$

PROBLEMA 3

a) Há $\frac{8 \cdot 7}{2}$ = 28 peças com quantidades diferentes de pontos em cada lado e 8 com quantidades iguais, ou seja, o dominó de *Ferius* tem 28 + 8 = 36 peças diferentes.

Outra solução:

- O dominó comum possui 28 peças. Como existem mais 8 novas peças que possuem alguma casa marcando 7 pontos, o dominó de *Ferius* tem 28 + 8 = 36 peças diferentes.
- b) Como a soma de um par e um ímpar é ímpar e há 4 quantidades ímpares de pontos (1, 3, 5, 7) e 4 quantidades pares de pontos (0, 2, 4, 6), há $4 \cdot 4 = 16$ peças que não são importantes. Logo existem 36 16 = 20 peças importantes.
- c) Cada quantidade de pontos aparece exatamente 9 vezes. Assim a soma dos pontos de todas as peças é $9 \cdot (1+2+3+\cdots+7) = 252$. A soma dos pontos de todas as peças que não são importantes é $4 \cdot (1+2+3+\cdots+7) = 112$, pois cada quantidade de pontos aparece exatamente 4 vezes em peças que não são importantes. Assim, a soma pedida é 252-112=140.

Soluções Nível 2 - Segunda Fase - Parte A

Problema	01	02	03	04	05
Resposta	6	1420	144	108	22

01. De

$$\frac{17}{18} = x^4 + y^4 = \left(x^2 + y^2\right)^2 - 2(xy)^2 = 1 - 2(xy)^2,$$
obtemos $(xy)^2 = \frac{1}{36}$, e daí $\frac{1}{xy} = 6$.

02. O deslocamento líquido do viajante na direção Leste-Oeste foi de
$$(1-3)+(5-7)+...+(2005-2007) = \underbrace{(-2)+(-2)+...+(-2)=-1004}_{502 \text{ yezes}}$$

Analogamente, o deslocamento líquido na direção Norte-Sul foi de -1004. Portanto, pelo teorema de Pitágoras a distância entre as posições inicial e final do viajante é $1004\sqrt{2}$. Observe agora que, como $\sqrt{2} \cong 1,414$, temos $1004\sqrt{2} \cong 1419,656$. Para ter certeza se estamos usando uma aproximação boa o suficiente, basta checar se $1419,5 < 1004\sqrt{2} < 1420$, quer dizer, se $(1419,5)^2 < 1004^2 \cdot 2 < 1420^2$. Mas é fácil efetuar os cálculos e verificar que essas desigualdades realmente se verificam. Logo, a melhor aproximação pedida é 1420 metros.

03. Veja que $\alpha + \beta = 1$ e

$$\alpha^{3} = \alpha \cdot \alpha^{2} = \alpha(\alpha + 1) = \alpha^{2} + \alpha = 2\alpha + 1,$$

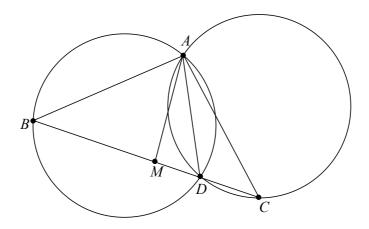
$$\alpha^{4} = \alpha \cdot \alpha^{3} = \alpha(2\alpha + 1) = 2\alpha^{2} + \alpha = 3\alpha + 2,$$

$$\alpha^{5} = \alpha \cdot \alpha^{4} = \alpha(3\alpha + 2) = 3\alpha^{2} + 2\alpha = 5\alpha + 3.$$

Analogamente,

$$\beta^7 = \beta^4 \cdot \beta^3 = (5\beta + 3)(\beta + 1) = 5\beta^2 + 8\beta + 3 = 13\beta + 8.$$
Portanto, $13\alpha^5 + 5\beta^7 = 13(5\alpha + 3) + 5(13\beta + 8) = 65(\alpha + \beta) + 79 = 65 + 79 = 144.$

04. Como os dois círculos circunscritos são iguais, segue do teorema do ângulo inscrito que $\angle ACB = \angle ABC$ e, com isso, AB = AC.



Seja AM a altura relativa ao lado BC. Como ABC é isósceles de base BC, segue que AM também é mediana, e daí MC = 9. Portanto, MD = 5 e, pelo teorema de

Pitágoras, AM = 12. Finalmente, a área do triângulo $ABC \in \frac{1}{2}(AM)(BC) = \frac{1}{2}(12)(18) = 108$.

05. Para que o primitivo de um número seja ímpar, todos os seus algarismos precisam ser ímpares, pois o produto de um número par por um número qualquer é sempre um número par. Assim, só nos restam os algarismos 1, 3, 5, 7 e 9 para construir o número pretendido. Por outro lado, como os algarismos precisam ser todos diferentes, o número terá, no máximo, 5 algarismos. Contudo, qualquer número com 5 algarismos ímpares e todos distintos tem primitivo 0. De fato, o produto dos números 1, 3, 5, 7 e 9 é 945 e seu primitivo é 0. O maior número com 4 algarismos ímpares e todos diferentes é 9753, mas esse número tem primitivo 0. O número que o antecede e tem seus 4 algarismos ímpares e distintos é 9751, e seu primitivo é 5. Portanto, a soma de seus algarismos é 9 + 7 + 5 + 1 = 22.

Soluções Nível 2 – Segunda Fase – Parte B

SOLUÇÃO DO PROBLEMA 1:

Os catetos do triângulo medem a e b, e a hipotenusa mede c. Como a área e o perímetro são iguais, temos $\frac{1}{2}ab = a + b + c$, e daí $c = \frac{1}{2}ab - a - b$. Usando o teorema de Pitágoras, segue que

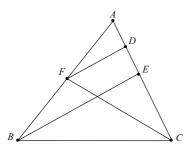
$$a^{2} + b^{2} = (\frac{1}{2}ab - a - b)^{2} = a^{2} + b^{2} + 2ab - a^{2}b - b^{2}a + \frac{1}{4}a^{2}b^{2},$$

ou ainda $8ab-4a^2b-4b^2a+a^2b^2=0$. Dividindo por ab, obtemos (a-4)(b-4)=8, de maneira que a-4 divide 8. Portanto, os possíveis valores de a são 2, 3, 5, 6, 8 e 12. Determinando os valores de b e c, encontramos os triângulos de lados 5, 12, 13 ou 6, 8, 10.

SOLUÇÃO DO PROBLEMA 2:

Note que $(2009-x)^2-x^2=2009(2009-2x)$, um múltiplo de 2009. Assim, sempre que Pedro apagar um número, x^2 digamos, basta Igor apagar o número $(2009-x)^2$. Desse modo, no final restarão dois números cuja diferença é um múltiplo de 2009.

SOLUÇÃO DO PROBLEMA 3:



Seja D o pé da perpendicular baixada de F a AC. Pelo teorema de Pitágoras, segue que $EC = \sqrt{BC^2 - BE^2} = \sqrt{5^2 - 4^2} = 3$. Por outro lado, por semelhança de triângulos temos $FD = \frac{1}{2}BE = 2$ e AE = 2DE. Portanto,

$$DC = \sqrt{CF^2 - FD^2} = \sqrt{4^2 - 2^2} = 2\sqrt{3},$$

e daí $DE = 2\sqrt{3} - 3$, de maneira que $AE = 4\sqrt{3} - 6$. Finalmente,

$$[ABC] = \frac{1}{2}(AE + EC)BE = \frac{1}{2}(4\sqrt{3} - 6 + 3) \cdot 4 = 8\sqrt{3} - 6.$$

SOLUÇÃO DO PROBLEMA 4:

Há duas escolhas envolvidas e que determinam a maneira de viajar de B a C: por quais dentre as cidades $A_1,...,A_6$ devemos passar, e em que ordem. Digamos que escolhamos passar por exatamente k dentre as cidades $A_1,...,A_6$, com $1 \le k \le 6$; o

número de modos de escolher as k cidades é $\binom{6}{k}$. Por outro lado, após

escolhermos as k cidades, devemos escolher em que ordem vamos visitá-las, o que corresponde a k! possibilidades. Logo, o número de modos de viajar de B a C é

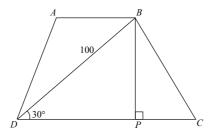
$$\sum_{k=1}^{6} {6 \choose k} k! = \sum_{k=1}^{6} \frac{6!}{(6-k)!} = \frac{6!}{5!} + \frac{6!}{4!} + \dots + \frac{6!}{0!} = 1956.$$

Soluções Nível 3 – Segunda Fase – Parte A

Problema	01	02	03	04	05
Resposta	7500	9779	9376	256	18

EUREKA! Nº30 2009

01. Seja P a projeção ortogonal de B sobre \overline{CD} .



Temos que $CP = \frac{CD - AB}{2}$ logo $PD = CP + AB = \frac{AB + CD}{2}$. Assim, a área do trapézio é:

$$S = BP \cdot \frac{AB + CD}{2} = BP \cdot PD = (100 \text{ sen} 30^\circ) \cdot (100 \text{ cos} 30^\circ) = 2500\sqrt{3} \text{ m}^2 \text{ e portanto}$$

 $S\sqrt{3} = 7500.$

02. Observe que para $i \ge 1$ temos

$$\left\lfloor \sqrt[4]{n} \right\rfloor = i \iff i \le \sqrt[4]{n} < i + 1 \iff i^4 \le n < (i + 1)^4 \text{ e assim há } (i + 1)^4 - i^4 \text{ números } n \text{ tais}$$

$$\text{que } \left| \sqrt[4]{n} \right| = i.$$

Portanto a soma pedida é:

$$1 \cdot \left(2^4 - 1^4\right) + 2 \cdot \left(3^4 - 2^4\right) + 3 \cdot \left(4^4 - 3^4\right) + 4 \cdot \left(5^4 - 4^4\right) + 5 \cdot \left(6^4 - 5^4\right) + 6 \cdot \left(2008 - 6^4 + 1\right) = 9779.$$

- **03.** Seja n um inteiro de 4 dígitos. Temos que n é auto-replicante se e somente se $n^2 n$ é divisível por 10000, isto é, $2^4 \mid n(n-1)$ e $5^4 \mid n(n-1)$. Como n e n-1 são primos entre si, temos 4 possibilidades:
 - $2^4 | n e 5^4 | n$
 - $2^4 | (n-1) e 5^4 | (n-1)$
 - $2^4 \mid n = 5^4 \mid (n-1)$
 - $2^4 | (n-1) e 5^4 | n$.

A primeira possibilidade implica que $10^4 \mid n$, o que é impossível pois $1000 \le n \le 9999$. Da mesma forma, a segunda não ocorre.

Na terceira possibilidade, de $5^4 \mid (n-1)$ temos que n = 625k + 1 para algum k inteiro e que $625k + 1 \equiv 0 \pmod{16} \Leftrightarrow k + 1 \equiv 0 \pmod{16} \Leftrightarrow k \equiv 15 \pmod{16}$

Assim, $k = 15 + 16\ell$ para algum ℓ inteiro e $n = 625(15 + 16\ell) + 1 = 9376 + 10000\ell$ E como $1000 \le n \le 9999$, a única possibilidade é n = 9376.

Finalmente, para a quarta possibilidade, temos que n = 625k, k inteiro, e que $n-1 \equiv 0 \pmod{16} \Leftrightarrow k \equiv 1 \pmod{16}$.

Assim, $k = 1 + 16\ell$, ℓ inteiro, e $n = 625(1 + 16\ell) = 625 + 10000\ell$. Como $1000 \le n \le 9999$, não há soluções neste caso.

Logo o único número auto-replicante de 4 dígitos é 9376.

04. Da propriedade, decorre que 9 só pode aparecer ou como primeiro ou como último elemento da permutação e que os elementos de 1 a 8 formam uma permutação com a mesma propriedade. Assim, o número pedido é o dobro do número de permutações de 1, 2,...,8 com a mesma propriedade. Da mesma forma, o número de permutações de 1, 2,..., 8 com a propriedade é o dobro do número de permutações de 1, 2,..., 7 com a propriedade. Repetindo o raciocínio, concluímos que o número pedido é portanto $2^8 = 256$.

05. Seja
$$\alpha = \sqrt[3]{-27 + 5\sqrt{33}} - \sqrt[3]{27 + 5\sqrt{33}}$$
. Temos $\alpha^3 = -27 + 5\sqrt{33} - \left(27 + 5\sqrt{33}\right) - 3\sqrt[3]{-27 + 5\sqrt{33}} \cdot \sqrt[3]{27 + 5\sqrt{33}} \cdot \left(\sqrt[3]{-27 + 5\sqrt{33}} - \sqrt[3]{27 + 5\sqrt{33}}\right)$ $\Rightarrow \alpha^3 = -54 - 3\sqrt[3]{96} \cdot \alpha \Rightarrow \left(\alpha^3 + 54\right)^3 = -2^5 \cdot 3^4 \alpha^3$ Agora faça $18y = \alpha^3$. Temos $\left(18y + 54\right)^3 = -2^6 \cdot 3^6 y$

Como α , e portanto y, são reais e $y^2 + 8y + 27 = 0$ não tem raízes reais, concluímos que y = -1 e portanto $\alpha = -\sqrt[3]{18}$ (pasmem!). Assim, α é raiz do polinômio $x^3 + 18 = 0$, que é o polinômio minimal de α já que $x^3 + 18 = 0$ não

 $\Leftrightarrow (v+3)^3 = -2^3 v \Leftrightarrow v^3 + 9v^2 + 35v + 27 = 0 \Leftrightarrow (v+1)(v^2 + 8v + 27) = 0$

possui raízes racionais.

Soluções Nível 3 - Segunda Fase - Parte B

SOLUÇÃO DO PROBLEMA 1:

Olhando a equação módulo 7, temos: $m^2 \equiv 3^n$, porém m^2 só poderá ser congruente a 0,1,2,4 enquanto que se n for ímpar 3^n só poderá ser congruente a 3, 5, 6, então n deverá ser par. Logo existe $n_0 \in \mathbb{Z}$ tal que $n = 2n_0$. Voltando à equação original temos:

 $m^2 + 161 = 3^{2n_0} \Leftrightarrow 3^{2n_0} - m^2 = 161 \Leftrightarrow (3^{n_0} - m)(3^{n_0} + m) = 161$. Como m e n são inteiro positivos, logo o módulo de $(3^{n_0} - m)$ é menor que $(3^{n_0} + m)$, e como $(3^{n_0} - m)$ é positivo e $161 = 7 \cdot 23$, então temos as opções:

- $3^{n_0} m = 1$ e $3^{n_0} + m = 161 \Leftrightarrow 3^{n_0} = 81$ e $m = 80 \Leftrightarrow n_0 = 4$ e $m = 80 \Leftrightarrow n = 8$ e m = 80
- $3^{n_0} m = 7$ e $3^{n_0} + m = 23 \Leftrightarrow 3^{n_0} = 15$ e m = 8. Não há solução inteira. Logo m = 80 e n = 8 é a única solução.

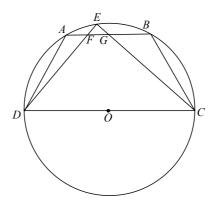
SOLUÇÃO DO PROBLEMA 2:

Para que f(f(x)) = f(x) então a imagem de f deverá só conter pontos fixos. Utilizando esse fato temos:

- Com 5 pontos fixos na imagem teremos 1 função possível.
- Com 4 pontos fixos na imagem teremos $\binom{5}{1}$ 4 = 20 funções
- Com 3 pontos fixos na imagem teremos $\binom{5}{2} \cdot 3^2 = 90$ funções
- Com 2 pontos fixos na imagem teremos $\binom{5}{3} \cdot 2^3 = 80$ funções
- Com 1 ponto fixo na imagem teremos $\binom{5}{4} \cdot 1^4 = 5$ funções

logo o total de funções f satisfazendo f(f(x)) = f(x) igual a 196.

SOLUÇÃO DO PROBLEMA 3:



Como $\widehat{ABE} \cong \widehat{ADE}$ (ambos enxergam o arco \widehat{AE}) temos que $\Delta FBE \sim \Delta FDA$ e portanto

$$\frac{FB}{FD} = \frac{BE}{DA} (1)$$

Analogamente, das semelhanças $\Delta EBG \sim \Delta ACG$, $\Delta AEG \sim \Delta CBG$ e $\Delta AEF \sim \Delta DBF$ obtemos respectivamente

$$\frac{BG}{CG} = \frac{EB}{AC} (2)$$

$$\frac{AE}{CB} = \frac{AG}{CG}$$
 (3)

$$\frac{AE}{DB} = \frac{AF}{DF}$$
 (4)

Assim, utilizando o fato que ABCD é isósceles (de modo que AD = BC e BD = AC) temos

$$\frac{AF \cdot BG}{FG} \stackrel{(2) \circ (4)}{=} \frac{1}{FG} \cdot \frac{AE \cdot DF}{DB} \cdot \frac{CG \cdot EB}{AC}$$

$$= \frac{1}{AC^2} \frac{(AE \cdot CG)(DF \cdot EB)}{FG} \stackrel{(1) \circ (3)}{=} \frac{AD^2}{AC^2} \cdot \frac{AG \cdot BF}{FG}$$

$$= \left(\frac{AD}{AC}\right)^2 \frac{(AF + FG)(BG + FG)}{FG}$$

$$= \left(\frac{AD}{AC}\right)^{2} \frac{FG(AF + FG + BG) + AF \cdot BG}{FG}$$

$$= \left(\frac{AD}{AC}\right)^{2} \cdot \left(AB + \frac{AF \cdot BG}{FG}\right)$$
Em suma, temos
$$\frac{AF \cdot BG}{FG} = \left(\frac{AD}{AC}\right)^{2} \cdot \left(AB + \frac{AF \cdot BG}{FG}\right)$$

$$\Leftrightarrow \frac{AF \cdot BG}{FG} = \frac{AD^{2} \cdot AB}{AC^{2} - AD^{2}}$$

Utilizando o fato de que ABCD é isósceles com base CD = 50 e altura 24, aplicando Pitágoras várias vezes é fácil calcular AB = 14, AD = 30, AC = 40.

Assim,
$$\frac{AF \cdot BG}{FG} = 18$$
.

SOLUÇÃO DO PROBLEMA 4:

Vamos mostrar que o menor produto é obtido quando tomamos os elementos da diagonal principal. Neste caso, o produto é dado por $(1+1)(2+2)(3+3)...(2008+2008) = 2^{2008} \cdot 2008!$

Suponha que todos os elementos (1, 1), (2, 2),..., (i - 1, i - 1) tenham sido escolhidos mas que os elementos nas i- ésimas linha e colunas sejam (i, j) e (k, i) com j e k maiores ou iguais a i + 1. Vamos mostrar que trocando estes dois elementos por (i, i) e (k, j) obtemos um produto menor. De fato, para isto devemos mostrar que

$$(i+i)(j+k) < (i+j)(i+k)$$

$$\Leftrightarrow 2i(j+k) < i^2 + (j+k)i + jk$$

$$\Leftrightarrow i^2 - (j+k)i + jk > 0$$

$$\Leftrightarrow (i-j)(i-k) > 0$$

O que é verdade, já que i - j < 0 e i - k < 0.

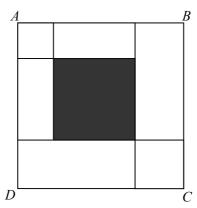
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Terceira Fase

NÍVEL 1 (6°. e 7°. Anos)

PROBLEMA 1

Um quadrado de lado 12 foi dividido em sete regiões retangulares que não se sobrepõem, conforme a figura. Uma delas é um quadrado de vértice C, cuja área é metade da área de cada um dos dois retângulos vizinhos; outra é um quadrado de vértice A, cuja área é metade da área de cada um dos dois retângulos vizinhos.



- a) Mostre que o quadrilátero destacado é um quadrado.
- b) Calcule a área do quadrado destacado.

PROBLEMA 2

Esmeralda escolhe um número inteiro positivo qualquer e realiza a seguinte operação com ele: cada um de seus algarismos é trocado pelo seu sucessor, com exceção do 9, que é trocado por 0. Em seguida, os eventuais zeros que aparecem à esquerda são eliminados. Por exemplo, ao se realizar a operação no número 990003953 obtém-se 1114064 (note que os dois zeros à esquerda gerados pelos dois primeiros algarismos 9 foram eliminados).

A operação é repetida até que se obtenha 0. Por exemplo, começando com 889, obtemos a següência de números

a) Apresente a sequência de números quando o primeiro número é 2008.

b) Mostre que, independente do número inicial, após uma quantidade finita de operações Esmeralda obtém 0.

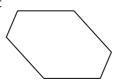
PROBLEMA 3

Jade tem n peças iguais 3×1 e quer utilizá-las para cobrir um tabuleiro $3 \times n$, sendo n um inteiro positivo. Por exemplo, para n = 4 ela pode cobrir o tabuleiro da seguinte maneira:

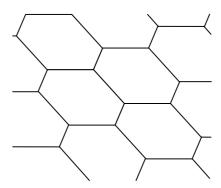
- a) Determine de quantas maneiras Jade pode fazer a cobertura para n = 1, 2, 3, 4, 5, 6, 7.
- b) De quantas maneiras Jade pode cobrir o tabuleiro para n = 15?

PROBLEMA 4

Considere o seguinte hexágono:



Com cópias desse polígono podemos cobrir todo o plano, sem sobreposições, como mostra a figura a seguir.



a) É possível cobrir o plano com cópias de um pentágono regular?

Observação: um polígono é regular quando todos os seus lados são de mesma medida e todos os seus ângulos internos são iguais.

b) Seja ABCDE um pentágono com todos os lados iguais e tal que a medida do ângulo interno nos vértices A e B são $m(\hat{A}) = 100^{\circ}$ e $m(\hat{B}) = 80^{\circ}$. Mostre como é possível cobrir todo o plano com cópias desse pentágono, sem sobreposições.

PROBLEMA 5

Vamos chamar de *garboso* o número que possui um múltiplo cujas quatro primeiras casas de sua representação decimal são 2008. Por exemplo, 7 é garboso pois 200858 é múltiplo de 7 e começa com 2008. Observe que $200858 = 28694 \times 7$.

- a) Mostre que 17 é garboso.
- b) Mostre que todos os inteiros positivos são garbosos.

TERCEIRA FASE - NÍVEL 2 (8°. e 9°. Anos)

PRIMEIRO DIA

PROBLEMA 1

Em cada casa de um tabuleiro $n \times n$, colocamos um dos números 1,2,3,4, de modo que cada casa tem exatamente uma casa vizinha com o mesmo número. É possível fazer isso quando

- a) n = 2007?
- b) n = 2008 ?

Observação. Duas casas são vizinhas se possuem um lado em comum.

PROBLEMA 2

Seja P um pentágono convexo com todos os lados iguais. Prove que se dois dos ângulos de P somam 180 graus, então é possível cobrir o plano com P, sem sobreposições.

PROBLEMA 3

Prove que existem infinitos inteiros positivos n tais que

$$\frac{5^{n-2}-1}{n}$$

é um inteiro.

TERCEIRA FASE - NÍVEL 2 (8°. e 9°. Anos)

SEGUNDO DIA PROBLEMA 4

Mostre que se p,q são inteiros positivos primos tais que $r=\frac{p^2+q^2}{p+q}$ é inteiro, então r é primo.

PROBLEMA 5

Seja ABC um triângulo acutângulo e O, H seu circuncentro e ortocentro, respectivamente. Sabendo que

$$\frac{AB}{\sqrt{2}} = BH = OB$$
,

calcule os ângulos do triângulo ABC.

PROBLEMA 6

Sendo A um conjunto de números inteiros, definimos S(A) como o conjunto formado pelas somas de dois elementos, não necessariamente distintos e D(A) como o conjunto formado pelas diferenças de dois elementos, não necessariamente distintos. Por exemplo, se $A = \{1, 2, 3, 10\}$ então $S(A) = \{2, 3, 4, 5, 6, 11, 12, 13, 20\}$ e $D(A) = \{-9, -8, -7, -2, -1, 0, 1, 2, 7, 8, 9\}$.

Mostre que existe um conjunto finito A tal que S(A) tem no máximo 10^{97} elementos e D(A) tem no mínimo 10^{100} elementos.

TERCEIRA FASE - NÍVEL 3 (Ensino Médio)

PRIMEIRO DIA PROBLEMA 1

Vamos chamar de *garboso* o número que possui um múltiplo cujas quatro primeiras casas de sua representação decimal são 2008. Por exemplo, 7 é garboso pois 200858 é múltiplo de 7 e começa com 2008. Observe que $200858 = 28694 \times 7$.

Mostre que todos os inteiros positivos são garbosos.

PROBLEMA 2

Sobre uma reta há um conjunto S de 6n pontos. Destes, 4n são escolhidos ao acaso e pintados de azul; os 2n demais são pintados de verde. Prove que existe um segmento que contém exatamente 3n pontos de S, sendo 2n pintados de azul e n pintados de verde.

PROBLEMA 3

Sejam x, y, z reais quaisquer tais que x + y + z = xy + yz + zx. Encontre o valor mínimo de

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1}$$

TERCEIRA FASE - NÍVEL 3 (Ensino Médio)

SEGUNDO DIA PROBLEMA 4

Seja ABCD um quadrilátero cíclico e r e s as retas simétricas à reta AB em relação às bissetrizes internas dos ângulos $\angle CAD$ e $\angle CBD$, respectivamente. Sendo P a interseção de r e s e O o centro do círculo circunscrito a ABCD, prove que OP é perpendicular a CD.

PROBLEMA 5

Prove que para quaisquer inteiros a > 1 e b > 1 existe uma função f dos inteiros positivos nos inteiros positivos tal que $f(a \cdot f(n)) = b \cdot n$ para todo n inteiro positivo.

PROBLEMA 6

O profeta venusiano Zabruberson enviou a seus discípulos uma palavra de 10000 letras, sendo cada uma delas A ou E: a *Palavra Zabrúbica*. Seus seguidores passaram a considerar, para $1 \le k \le 10000$, cada palavra formada por k letras consecutivas da Palavra Zabrúbica uma *palavra profética* de tamanho k. Sabe-se que há no máximo 7 palavras proféticas de tamanho 3. Determine o número máximo de palavras proféticas de tamanho 10.

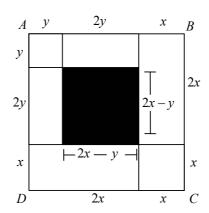
SOLUÇÕES – TERCEIRA FASE – NÍVEL 1 (6°. e 7°. Anos)

PROBLEMA 1

SOLUÇÃO DE LUCAS CAWAI JULIÃO (CAUCAIA - CE)

a) Vamos chamar o lado do quadrado de vértice C de x, e o lado do quadrado de vértice A de y.

Como os retângulos que estão vizinhos a esses quadrados têm o dobro da área deles, então eles irão ter a largura com a mesma medida dos quadrados e comprimento, igual ao dobro do lado do quadrado. Veja a figura:



Podemos ver que um lado do quadrado maior mede 3x. Para calcularmos o lado do quadrilátero central, basta retirarmos o que não pertence a ele. Logo, retiraremos x + y. Mas isso ocorrerá dos dois lados, então os dois lados do quadrilátero destacado são iguais a 2x - y. Assim temos que ele é um quadrado.

b) Como um lado do quadrado maior é 12, e já havíamos falado que também é igual a 3x. Logo x = 4. Mas também podemos perceber que a medida 2x é equivalente a 3y. Como x = 4, então $y = \frac{8}{3}$.

Agora, como o lado do quadrado destacado é 2x - y, então sua área é $(2x - y)^2$. Substituindo x e y, e resolvendo temos que a área do quadrado destacado é $\frac{256}{9}$.

PROBLEMA 2

SOLUÇÃO DE LARA VIANA DE PAULA CABRAL e RAFAEL RODRIGUES ROCHA DE MELO (FORTALEZA – CE)

a) A sequencia é 2008, 3119, 4220, 5331, 6442, 7553, 8664, 9775, 886, 997, 8, 9, 0 b) Independente do dígito que ocupa a 1ª posição do número, após uma certa quantidade de operações, ele chegará a 9 e, basta mais uma operação para ele chegar a 0, que "desaparecerá", e o número ficará assim com um dígito a menos. Em seguida, independente do dígito que agora ocupa a 2ª posição, após uma certa quantidade de operações ele também chegará a 9 e, logo depois, a 0, que também "desaparecerá", e o número terá assim outro dígito a menos.

Continuando esse processo até o número ter um único dígito, esse dígito também chegará a 9 e, depois, a 0, encerrando o processo.

PROBLEMA 3 SOLUÇÃO OFICIAL DA BANCA

Seja f_n o número de maneiras possíveis de cobrir o tabuleiro $3 \times n$. Se a primeira coluna é coberta por uma peça vertical, falta cobrir um tabuleiro $3 \times (n-1)$. Senão, começamos com três peças na horizontal, e falta cobrir um tabuleiro $3 \times (n-3)$. Assim, temos $f_n = f_{n-1} + f_{n-3}$, para todo $n \ge 4$. Como claramente temos $f_1 = 1$, $f_2 = 1$ e $f_3 = 2$, temos $f_4 = f_3 + f_1 = 3$, $f_5 = f_4 + f_2 = 4$, $f_6 = f_5 + f_3 = 6$, $f_7 = f_6 + f_4 = 9$, $f_8 = f_7 + f_5 = 13$, $f_9 = f_8 + f_6 = 19$, $f_{10} = f_9 + f_7 = 28$, $f_{11} = f_{10} + f_8 = 41$, $f_{12} = f_{11} + f_9 = 60$, $f_{13} = f_{12} + f_{10} = 88$, $f_{14} = f_{13} + f_{11} = 129$ e, finalmente, $f_{15} = f_{14} + f_{12} = 189$.

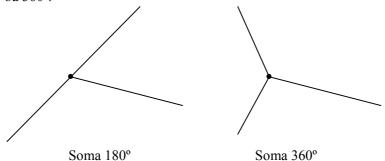
Assim, as respostas são:

- a) 1, 1, 2, 3, 4, 6, 9, respectivamente.
- b) De 189 maneiras.

PROBLEMA 4

SOLUÇÃO OFICIAL DA BANCA

a) Não é possível. Para que seja possível cobrir o plano com uma figura, em cada vértice determinado pelas figuras que a cobrem a soma dos ângulos internos deve ser 180° ou 360°:

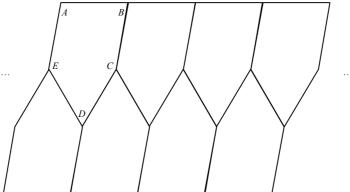


Todo pentágono pode ser cortado em três triângulos, de modo que a soma de seus ângulos internos é $3\cdot180^\circ=540^\circ$. Assim, cada ângulo interno de um pentágono regular é $\frac{540^\circ}{5}=108^\circ$. Como $108^\circ<180^\circ<2\cdot108^\circ$ e $3\cdot108^\circ<360^\circ<4\cdot108^\circ$,

não é possível cobrir o plano com cópias de um pentágono regular.

b) Note que, como $m(\hat{A}) + m(\hat{B}) = 180^{\circ}$, EA e BC são paralelos, de modo que EABC é um losango. Assim CE = DE = CD e CDE é um triângulo equilátero.

Assim é possível cobrir o plano com o pentágono ABCDE, como mostra a figura a seguir:



PROBLEMA 5 SOLUÇÃO ADAPTADA DA SOLUÇÃO DE GABRIEL YASHIMI BARRÓN TOYAMA (SÃO PAULO – SP)

- a) Observe que 200800 dividido por 17 tem resto 13. Assim, 200804 é múltiplo de 17 e, portanto, 17 é garboso. Na verdade, 17 tem infinitos múltiplos começados por 2008
- b) Seja x a quantidade de algarismos de um número inteiro positivo y qualquer. Considere o resto m da divisão de $2008 \cdot 10^x$ por y. Temos $0 \le m \le y 1$, e portanto $1 \le y m \le y$. Como y tem x algarismos, $y < 10^x$, e logo $1 \le y m \le y < 10^x$. Assim, y m tem no máximo x algarismos, e portanto $2008 \cdot 10^x + (y m)$ começa sua representação decimal por 2008. Como $2008 \cdot 10^x = y \cdot z + m$, para algum inteiro z, $2008 \cdot 10^x + (y m) = y \cdot (z + 1)$ é múltiplo de y, e portanto y é garboso.

SOLUÇÕES - TERCEIRA FASE - NÍVEL 2 (8°. e 9°. Anos)

PROBLEMA 1

SOLUÇÃO DE DANIEL DOS SANTOS BOSSLE (PORTO ALEGRE - RS)

Perceba que a distribuição dos números no tabuleiro forma dominós 2×1 , pois a cada casa está associada exatamente uma casa vizinha com o mesmo número. Logo, para que todos os dominós se encaixem, deve haver um número par de casas no tabuleiro.

Assim, é impossível cobrir um tabuleiro 2007 × 2007.

Por outro lado, é possível cobrir um 2008×2008 . Uma solução é a seguinte, bastando repetir o padrão até o fim:

1	1	2	2	3	3	4	4
2	2	3	3	4	4	1	1
3	3	4	4	1	1	2	2
4	4	1	1	2	2	3	3

Assim, as respostas são:

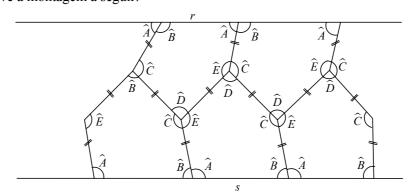
- a) Não
- b) Sim

PROBLEMA 2

SOLUÇÃO DE JOÃO LUCAS CAMELO SÁ (FORTALEZA - CE)

Suponha que os ângulos suplementares sejam adjacentes.

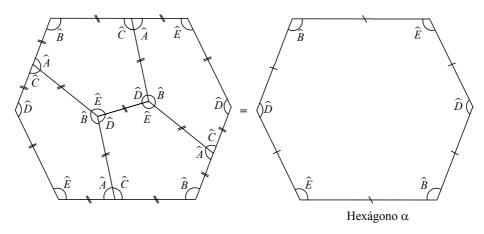
Vamos chamá-los de \hat{A} e \hat{B} e os outros de \hat{C} , \hat{D} e \hat{E} . Observe a montagem a seguir:



Como $\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} = 180^{\circ}(5-2) = 540^{\circ}$ e $\hat{A} + \hat{B} = 180^{\circ}$, temos que $\hat{C} + \hat{D} + \hat{E} = 360^{\circ}$. Logo, é possível encaixar os pentágonos desta maneira, em "faixas". Ao encaixarmos faixa sobre a outra pelas retas r e s da figura, poderemos cobrir o plano inteiro.

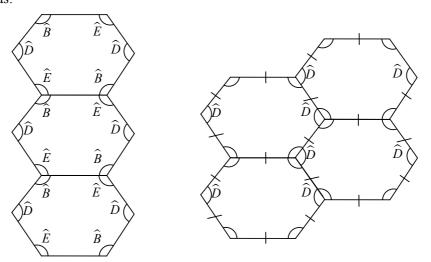
Temos agora que analisar o caso quando os suplementares (dessa vez \hat{A} e \hat{C}) não são adjacentes. Sendo \hat{B} o ângulo do vértice entre \hat{A} e \hat{C} , e \hat{D} e \hat{E} os outros ângulos, temos a seguinte configuração:

(Lembrando que $\hat{B} + \hat{D} + \hat{E} = 360^{\circ}$)



Vamos mostrar que podemos agrupar vários "hexágonos" α de modo a cobrir o plano. Basta seguir as faixas abaixo:

Faixas:



Como os ângulos de fora valem $360^{\circ} - \hat{B} - \hat{E} = \hat{D}$ e os da ponta também, é possível encaixar, cobrindo todo o plano.

PROBLEMA 3 SOLUÇÃO DE JOÃO LUCAS CAMELO SÁ (FORTALEZA – CE)

Seja
$$p$$
 um primo ≥ 3 e diferente de 5. Temos $\frac{5^{2p-2}-1}{2p} = \frac{5^{2(p-1)}-1}{2p} = \frac{(5^{(p-1)}-1)}{p} \frac{(5^{(p-1)}+1)}{2}$. Analisando módulo p , pelo pequeno Teorema de Fermat, $5^{p-1} \equiv 1 \pmod{p} \Leftrightarrow 5^{p-1}-1 \equiv 0 \pmod{p}$ e

Teorema de Fermat,
$$5^{p-1} \equiv 1 \pmod{p} \Leftrightarrow 5^{p-1} - 1 \equiv 0 \pmod{p}$$
 $5^{p-1} \equiv 1 \pmod{2} \Rightarrow 5^{p-1} + 1 \equiv 0 \pmod{2}$.

Assim,
$$\frac{5^{p-1}-1}{p}$$
 é inteiro e $\frac{5^{p-1}+1}{2}$ é inteiro $\Rightarrow \frac{5^{n-2}-1}{n}$ é inteiro quando $n=2p$.

Como existem infinitos primos p, existem infinitos n que satisfazem a condição do enunciado.

PROBLEMA 4

SOLUÇÃO DE JOÃO LUCAS CAMELO SÁ (FORTALEZA - CE)

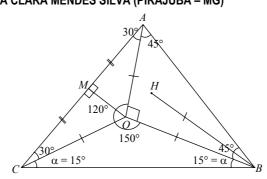
Suponha
$$p = q \Rightarrow \frac{p^2 + q^2}{p + q} = \frac{2q^2}{2q} = q \Rightarrow r = q \Rightarrow r \text{ \'e primo}.$$

Caso contrário,
$$\frac{p^2 + q^2}{p + q} = \frac{p^2 - q^2 + 2q^2}{p + q} = p - q + \frac{2q^2}{p + q} \in \mathbb{Z} \Rightarrow p + q \mid 2q^2.$$

Analogamente, $p+q\mid 2p^2$. Como $p\neq q, (p,q)=1 \Rightarrow (2p^2,2q^2)=2(p^2,q^2)=2$. Logo $p+q\mid (2p^2,2q^2)\Rightarrow p+q\mid 2\Rightarrow p+q\leq 2$. Mas $p,q\geq 2$, absurdo. Logo, p=q, e portanto r é primo.

Obs.: João Lucas utilizou a notação (a,b) = mdc(a,b).

PROBLEMA 5 SOLUÇÃO DE MARIA CLARA MENDES SILVA (PIRAJUBA – MG)



O circuncentro é equidistante dos 3 vértices.

$$BH = OC = OA = OB = \frac{AB}{\sqrt{2}}.$$

$$AB = \sqrt{2}OB$$
.

Aí $AB^2 = 2OB^2 = OB^2 + OA^2 \Leftrightarrow \Delta OAB$ é retângulo em O pela recíproca do Teorema de Pitágoras. Como OA = OB, ele também é isósceles e $O\widehat{A}B = O\widehat{B}A = 45^\circ$. Seja M o ponto médio de AC. OM é perpendicular a AC, e temos que $OM = \frac{BH}{2} = \frac{OA}{2}$. Aí AO é o dobro de OM, logo $sen(M\widehat{A}O) = 0,5$ e

como
$$M \, \widehat{A}O \in \left[0, \frac{\pi}{2}\right], \, M \, \widehat{A}O = 30^{\circ}.$$
 Logo $O \, \widehat{C}M = 30^{\circ}, \, \text{já que } \Delta COA \, \text{\'e} \, \text{is\'osceles}.$

Assim
$$\widehat{COA} = 180^{\circ} - 60^{\circ} = 120^{\circ} \ e \ \widehat{COB} = 360^{\circ} - 90^{\circ} - 120^{\circ} = 150^{\circ}$$
.

Finalmente
$$\alpha = \frac{180^{\circ} - 150^{\circ}}{2} = 15^{\circ}$$
. Os ângulos são:

$$30^{\circ} + 45^{\circ} = 75^{\circ}, 30^{\circ} + 15^{\circ} = 45^{\circ} \text{ e } 45^{\circ} + 15^{\circ} = 60^{\circ}.$$

PROBLEMA 6

SOLUÇÃO OFICIAL DA BANCA

Considere o conjunto $C = \{0,1,3\}$. Temos $S(C) = \{0,1,2,3,4,6\}$ e $D(C) = \{-3,-2,-1,0,1,2,3\}$. Assim, S(C) tem 6 elementos, enquanto D(C) tem 7. Vamos agora, para cada inteiro positivo n, considerar o conjunto A_n dos naturais com no máximo n algarismos na base 7, todos pertencentes a C, isto é,

$$A(_n) = \left\{ \sum_{j=0}^{n-1} a_j \cdot 7^j; a_j \in C, 0 \le j \le n-1 \right\}. \quad \text{Dados} \quad a = \sum_{j=0}^{n-1} a_j \cdot 7^j \text{ e } \quad b = \sum_{j=0}^{n-1} b_j \cdot 7^j \quad \text{em}$$

$$A_n$$
, com $a_j, b_j \in C$, para $0 \le j \le n-1$, temos $a+b = \sum_{j=0}^{n-1} (a_j + b_j) \cdot 7^j$ e

$$a - b = \sum_{j=0}^{n-1} (a_j - b_j) \cdot 7^j. \text{ Assim, temos } S(A_n) = \left\{ \sum_{j=0}^{n-1} u_j \cdot 7^j, u_j \in S(C), 0 \le j \le n - 1 \right\}$$

e
$$D(A_n) = \left\{ \sum_{j=0}^{n-1} v_j \cdot 7^j, v_j \in D(C), 0 \le j \le n-1 \right\}.$$

Como S(C) tem 6 elementos entre 0 e 6, e a representação em base 7 é única, $S(A_n)$ tem exatamente 6^n elementos. Por outro lado, como $\frac{7^n-1}{2} = \sum_{j=0}^{n-1} 3 \cdot 7^j$, temos

$$\begin{split} &\frac{7^n-1}{2} + D(A_n): = \left\{ \frac{7^n-1}{2} + m, m \in D(A_n) \right\} = \\ &= \left\{ \sum_{j=0}^{n-1} \left(3 + v_j \right) \cdot 7^j, v_j \in D(C), 0 \le j \le n-1 \right\} = \left\{ \sum_{j=0}^{n-1} r_j \cdot 7^j, r_j \in \{0,1,2,3,4,5,6\}, 0 \le j \le n-1 \right\} = \\ &= \left\{ 0,1,2,...,7^n-1 \right\}, \text{ pois todo inteiro entre 0 e } 7^n-1 \text{ pode ser representado na base 7,} \\ &\text{usando os algarismos 0, 1, 2, 3, 4, 5 e 6.} \end{split}$$

Assim, $D(A_n)$ tem 7^n elementos.

Como
$$6^6 < \frac{10^5}{2} < 10^5 < 7^6, 6^{120} < \frac{10^{100}}{2^{20}} < 10^{97} < 10^{100} < 7^{120},$$
 e portanto o conjunto $A = A_{120}$, que tem 3^{120} elementos, certamente satisfaz as condições do enunciado.

SOLUÇÕES - TERCEIRA FASE - NÍVEL 3 (ENSINO MÉDIO)

PROBLEMA 1

SOLUÇÃO DE CUSTÓDIO M. B. SILVA

Seja n um inteiro positivo. Como n é inteiro finito, $n < 10^k$, para algum k. Seja $p = 10^k \cdot 2008 + n - q$, onde q < n é o resto da divisão de $10^k \cdot 2008$ por n. Assim, $n - q < 10^k$ e portanto p começa com 2008 e é múltiplo de n.

PROBLEMA 2

SOLUÇÃO DE RAFAEL SUSSUMU YAMAGUTI MIADA (SÃO PAULO - SP)

Considere que os pontos são numerados de 1 a 6n. Sabe-se que, para $1 \le b \le 3n+1$, um segmento de b até 3n+b-1 contém exatamente 3n pontos e será representado como $b \to 3n+b-1$. Como os pontos devem ser consecutivos, pode-se formar 3n+1 segmentos $(1 \to 3n; 2 \to 3n+1; 3 \to 3n+2,..., 3n+1 \to 6n)$.

Vamos analisar a variação do número de pontos verdes de $b \rightarrow 3n+b-1$ até $b+1 \rightarrow 3n+b$. Considere que em $b \rightarrow 3n+b-1$ há z pontos verdes. Pode acontecer:

z pontos $\rightarrow z - 1$ pontos: Sai um ponto verde e não entra outro ponto verde no

segmento.

 $z \text{ pontos} \rightarrow z \text{ pontos}$: Sai um ponto verde e entra outro ponto verde no

segmento.

z pontos \rightarrow z pontos: Não sai um ponto verde e não entra outro ponto

verde no segmento.

z pontos $\rightarrow z + 1$ pontos: Não sai um ponto verde e entra outro ponto verde no segmento.

(quantidade de pontos verdes) (em relação ao segmento anterior)

Maior variação: 1 ponto para mais ou para menos.

Considere então os pontos de $1 \rightarrow 3n$ e $3n + 1 \rightarrow 6n$ (usando o fato de que há 2n pontos verdes e 4n pontos azuis).

Se em $1 \to 3n$ há n+k pontos verdes, em 3n+1 > 6n haverá n-k pontos verdes. Além disso, em $1 \to 3n$ haverá 2n-k pontos azuis e em $3n-1 \to 6n$ haverá 2n+k pontos azuis. Temos os seguintes casos:

- a) para k = 0: é verdadeiro na primeira e última sequência $(1 \rightarrow 3n \text{ e } 3n + 1 \rightarrow 6n)$ (verdadeiro!).
- b) para k < 0: deve aumentar o número de pontos verdes de $1 \rightarrow 3n$ a $3n + 1 \rightarrow 6n$, porém com a máxima variação entre cada sequência é 1 ponto e n + k < n < n k, conclui-se que existe $a \rightarrow a + 3n 1$ talque o número de pontos verdes é igual a n (verdadeiro!). O caso k > 0 é análogo.

Como há 3n pontos na sequência $a \to a + 3n - 1$ e os pontos são verdes ou azuis, pode-se qualificar o fato de que existe uma sequência $a \to a + 3n - 1$ tal que há n pontos verdes e 2n pontos azuis como verdadeiro.

PROBLEMA 3

SOLUÇÃO DE RÉGIS PRADO BARBOSA (FORTALEZA - CE)

Para (x, y, z) = (-1, -1, 1), temos

$$x + y + z = -1 - 1 + 1 = -1$$

 $xy + yz + zx = (-1)(-1) + (-1)1 + (-1)1 = -1$

e

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} = -\frac{1}{2} - \frac{1}{2} + \frac{1}{2} = -\frac{1}{2}.$$

Provaremos que $-\frac{1}{2}$ é o mínimo, ou seja, sendo x + y + z = xy + yz + zx

mostraremos que
$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \ge -\frac{1}{2}$$
.

A desigualdade é equivalente a

$$2\sum_{cic} x(y^{2}+1)(z^{2}+1) \ge -(x^{2}+1)(y^{2}+1)(z^{2}+1)$$

$$\Leftrightarrow 2\sum_{cic} (xy^{2}z^{2}+xy^{2}+xz^{2}+x) \ge -(x^{2}y^{2}z^{2}+x^{2}y^{2}+y^{2}z^{2}+z^{2}x^{2}+x^{2}+y^{2}+z^{2}+1)$$

$$\Leftrightarrow \sum_{cic} (x^{2}y^{2}+x^{2}+2xy^{2}z^{2}+2x) + 2\sum_{sim} x^{2}y+x^{2}y^{2}z^{2}+1 \ge 0$$

(usamos as anotações \sum_{cic} e \sum_{sim} para denotar soma cíclica e soma simétrica respectivamente).

Mas

$$\sum_{cic} xy^2 z^2 = xyz(xy + yz + zx) = xyz(x + y + z) = \sum_{cic} x^2 yz \text{ e}$$

$$\sum_{sim} x^2 y = x^2 y + xy^2 + x^2 z + x^2 z + y^2 z + yz^2 + 3xyz - 3xyz$$

$$= xy(x + y + z) + yz(x + y + z) + zx(x + y + z) - 3xyz$$

$$= (xy + yz + zx)(x + y + z) - 3xyz = (x + y + z)^2 - 3xyz$$

Assim, a desigualdade é equivalente a

$$\sum_{c|c} (x^2y^2 + x^2 + 2x^2yz) + 2x + 2(x + y + z)^2 - 6xyz + x^2y^2z^2 + 1 \ge 0$$

Agora montemos quadrados:

$$x^{2} - 2xyz + y^{2}z^{2} = (x - yz)^{2}$$

$$y^{2} - 2xyz + x^{2}z^{2} = (y - zx)^{2}$$

$$z^{2} - 2xyz + x^{2}y^{2} = (z - xy)^{2}$$

$$(x + y + z)^{2} + 2(x + y + z) + 1 = (x + y + z + 1)^{2}$$

$$(x + y + z)^{2} + 2xyz(x + y + z) + x^{2}y^{2}z^{2} = (x + y + z + xyz)^{2}$$

Observando que $\sum_{cic} x^2 yz = xyz(x+y+z)$, a desigualdade é equivalente a

$$(x - yz)^2 + (y - zx)^2 + (z - xy)^2 + (x + y + z + 1)^2 + (x + y + z + xyz)^2 \ge 0$$
, que é verdadeira pois $A^2 \ge 0$ para todo A real.

Logo o mínimo da soma dada é $-\frac{1}{2}$.

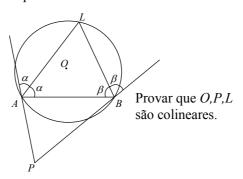
PROBLEMA 4

SOLUÇÃO DE MARCO ANTONIO LOPES PEDROSO (SANTA ISABEL - SP)

Para termos as bissetriz de \widehat{CAD} e \widehat{CBD} determinados não precisa saber as posições dos pontos C e D, basta a posição do ponto médio do arco \widehat{DC} , que

vamos chamar de L. Perceba também que a mediatriz de CD é perpendicular a CD e passa por O; desse modo o nosso problema passa a ser provar que P também está na mediatriz de CD. Mas já sabemos que L está na mediatriz de CD, então na realidade queremos provar que O, P, L são colineares (agora podemos esquecer o C e o D e pensar só no L).

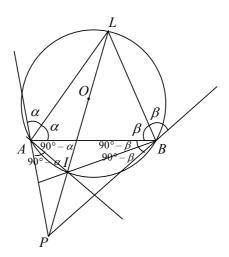
Então nosso problema passa a ser:



Perceba que LA é a bissetriz externa do ΔPAB relativa ao vértice A; e LB é a bissetriz externa do ΔPAB relativa ao vértice B.

Logo L é o ex-incentro do ΔPAB relativo a P; desse modo PL é bissetriz do ângulo \hat{APB} .

É natural pensar no incentro I do ΔPAB ; como PL é bissetriz de \hat{APB} então P, I, L são colineares.



Como bissetriz interna e externa de um ângulo são perpendiculares então $IA \perp AL$; assim como $LB \perp BI$, desse modo temos $L\widehat{A}I = 90^{\circ} = L\widehat{B}I \Rightarrow$ o quadrilátero LAIB é inscritível, e seu centro está no centro da hipotenusa do ΔLAI . Logo O está no ponto médio de LI (pois é o centro da circunferência que passa por L, A, B). Então L, O, I são colineares, e como já provamos que P, I, L são colineares então P, O, L são colineares, como queríamos demonstrar.

PROBLEMA 5

SOLUÇÃO DE GABRIEL LUIS MELLO DALALIO (S.J. DOS CAMPOS - SP)

Seja S_n a sequência crescente dos inteiros positivos não múltiplos de a e R_n a sequência crescente dos inteiros positivos não múltiplos de b.

Definindo $f: \mathbb{N}^* \to \mathbb{N}^*$:

$$f(n) = \begin{cases} \text{se } a \mid n, f(n) = R_k \text{, onde } k \text{ \'e tal que } S_k = n \\ \text{se } n = ak, \text{ com } k \in \mathbb{N}^*, b \mid k, f(n) = b \cdot S_i \text{ onde } i \text{ \'e tal que } R_i = k, \\ \text{se } n = abj, \text{ com } j \in \mathbb{N}^*, f(n) = ab \cdot f(j) \end{cases}$$

Devemos provar que a recursão acaba, mas de fato, como ao passar pelo terceiro caso precisamos do valor da função em um número j < n, já que n = abj, e portanto alguma hora a recursão cai em algum dos dois primeiros casos.

Vamos provar que f(af(n)) = bn para todo n inteiro positivo.

Temos os seguintes casos:

1)
$$a \mid n \Rightarrow f(af(n)) = f(a R_k)$$
, onde $S_k = n$, e temos $f(a R_k) = b \cdot S_k = bn$, donde $f(af(n)) = bn$ quando $a \mid n$.
2) $a \mid n$. Temos dois subcasos:
2.i) $n = ak$, $b \mid k \Rightarrow f(af(n)) = f(af(ak)) = f(ab \cdot S_i)$, onde $R_i = k$, e temos $f(ab S_i) = abf(S_i) = abR_i = bak = bn \Rightarrow f(af(n)) = bn$ quando $n = ak e b \mid k$.
2.ii) $n = abj$, $j \in \mathbb{N}^* \Rightarrow f(af(n)) = f(af(abj)) = f(ab \cdot af(j)) = ab \cdot f(af(j))$. Se $ab \mid j, f(af(j)) = bj \Rightarrow f(af(n)) = ab \cdot bj = bn$.
Se $ab \mid j, j = abi, i \in \mathbb{N}^*$, $i < j$. Podemos supor, por indução, que $f(af(j)) = bj$, donde $f(af(n)) = ab \cdot f(af(j)) = ab \cdot bj = bn$, $c.q.d$.

PROBLEMA 6

SOLUÇÃO OFICIAL DA BANCA

Seja f(n) o número de palavras proféticas de tamanho n.

Temos $f(1) \le 2$, $f(2) \le 4$ e $f(3) \le 7$. Assim, há uma palavra XYZ de três letras X,Y,Z pertencentes a $\{A,E\}$ que não é profética. Para $n \ge 1$, uma palavra proféticas de tamanho n+3 pode ser de três tipos (no máximo):

- uma palavra profética de tamanho n + 2 seguida da letra $U \in \{A, E\}$ distinta de Z,
- uma palavra profética de tamanho n+1 seguida de TZ, onde $T \in \{A,E\}$ é a letra distinta de Y ou uma palavra profética de tamanho n seguida de SYZ, onde $S \in \{A,E\}$ é a letra distinta de X.

Assim, $f(n+3) \le f(n+2) + f(n+1) + f(n)$ para todo $n \ge 1$; logo, $f(4) \le 13, f(5) \le 24, f(6) \le 44, f(7) \le 81, f(8) \le 149, f(9) \le 274$ e $f(10) \le 504$.

Vamos agora ver que é possível que haja 504 palavras proféticas de tamanho 10. Para isso observamos inicialmente que há 504 palavras de tamanho 10 que não têm três letras E consecutivas. Para $n \ge 1$, uma palavra de tamanho n+3 sem 3 E's seguidos pode ser de três tipos, todos distintos: uma palavra sem 3 E's seguidos de tamanho n+2 seguida da letra A, uma palavra sem 3 E's seguidos de tamanho n+1 seguida de AE ou uma palavra sem 3 E's seguidos de tamanho n seguida de AEE. Isso mostra que, se g(n) é o número de palavras de n letras, todas A ou E, sem 3 E's consecutivos, então g(n+3)=g(n+2)+g(n+1)+g(n) para todo $n \ge 1$. Como g(1)=2, g(2)=4 e g(3)=7, segue que g(10)=504. Agora; como $11\cdot504<10000$, basta listar todas essas palavras, colocar uma letra A no final de cada uma delas e concatená-las, completando com letras A até obtermos uma palavra de 10.000 letras para concluir.

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Primeira Fase Nível Universitário

PROBLEMA 1

Determine todos os valores inteiros de n para os quais a equação $x^3 - 13x + n = 0$ possua três raízes inteiras.

PROBLEMA 2

Considere as retas de equações paramétricas

$$(x, y, z) = (0, 0, 1) \cdot t$$

$$(x, y, z) = (1, 2, 0) + (1, 0, 0) \cdot t$$

$$(x, y, z) = (1, 1, 1) + (0, 1, 0) \cdot t$$

$$(x, y, z) = (1, 0, 0) + (1, 1, 1) \cdot t$$

Quantas retas intersectam simultaneamente as 4 retas acima?

PROBLEMA 3

Esmeralda passeia pelos pontos de coordenadas inteiras do plano. Se, num dado momento, ela está no ponto (a, b), com um passo ela pode ir para um dos seguintes pontos: (a + 1, b), (a - 1, b), (a, b + 1) ou (a, b - 1). De quantas maneiras Esmeralda pode sair do (0, 0) e andar 2008 passos terminando no (0, 0)?

PROBLEMA 4

Suponha que existem duas matrizes inversíveis $n \times n$, $A \in B$, diferentes da matriz identidade I e satisfazendo as relações

$$\begin{cases} A^7 = I \\ ABA^{-1} = B^2 \end{cases}$$

Mostre que existe um inteiro k > 0 tal que $B^k = I$ e determine o menor k com esta propriedade.

PROBLEMA 5

Dizemos que uma hipérbole cobre um ponto se este pertence a uma das duas regiões infinitas por ela determinada que contêm os focos.

Qual o menor número de hipérboles necessárias para cobrir todos os pontos do plano?

PROBLEMA 6

Seja
$$P_n = \sum_{0 \le k \le n} sen^n \left(\frac{\pi k}{n}\right)$$
.

Calcule $\lim_{n \to \infty} \frac{P_n P_{n+1}}{n}$.

SOLUÇÕES PRIMEIRA FASE - NÍVEL UNIVERSITÁRIO

PROBLEMA 1

Sejam α, β, γ as três raízes do polinômio. As relações de Girard implicam que $s = \alpha + \beta + \gamma = 0$ e $p = \alpha\beta + \beta\gamma + \gamma\alpha = -13$, logo $\alpha^2 + \beta^2 + \gamma^2 = s^2 - 2p = 26$. As únicas possibilidades para $\{\alpha, \beta, \gamma\}$: $\{+4, -3, -1\}$ ou $\{-4, +3, +1\}$. Logo $n = -\alpha\beta\gamma = \pm 12$.

PROBLEMA 2 PRIMEIRA SOLUÇÃO

Sejam A = (0,0,a), B = (1+b,2,0), C = (1,1+c,1) e D = (1+d,d,d) pontos genéricos, um sobre cada uma das 4 retas dadas. Esses pontos são colineares se, e somente se, a matriz

$$M = \begin{bmatrix} 0 & 0 & a & 1 \\ 1+b & 2 & 0 & 1 \\ 1 & 1+c & 1 & 1 \\ 1+d & d & d & 1 \end{bmatrix}$$

tem posto 2. Subtraindo a primeira linha de M das demais obtemos a matriz equivalente

$$M = \begin{bmatrix} 0 & 0 & a & 1 \\ 1+b & 2 & -a & 0 \\ 1 & 1+c & 1-a & 0 \\ 1+d & d & d-a & 0 \end{bmatrix}$$

que tem posto 2 se, e somente se

$$1+b=\frac{2}{1+c}=\frac{-a}{1-a}$$
 e $1+d=\frac{d}{1+c}=\frac{d-a}{1-a}$.

Três dessas quatro igualdades nos permitem expressar b, c e d em função de a:

 $b = \frac{1}{a-1}$, $c = \frac{a-2}{a}$, $d = \frac{1}{a}$; a quarta, então, equivale a $2a^2 - a - 2 = 0$, equação que possui duas soluções reais. Logo há duas retas que intersectam simultaneamente as 4 retas dadas.

SEGUNDA SOLUÇÃO

As coordenadas de Plücker das quatro retas são:

$$r_1 : \langle 0, 0, 1 | 0, 0, 0 \rangle$$

$$r_2 : \langle 1, 0, 0 | 0, 0, -2 \rangle$$

$$r_3 : \langle 0, 1, 0 | -1, 0, 1 \rangle$$

$$r_4 : \langle 1, 1, 1 | 0, -1, 1 \rangle$$

Qualquer solução $r:\langle d_x,d_y,d_z | p_x,p_y,p_z \rangle$ tem que ser ortogonal às quatro retas. Resolvendo o sistema linear, temos que $r:\langle 2\alpha,\beta-\alpha,0|\beta,2\alpha+\beta,\alpha \rangle$; finalmente, como $r_d\cdot r_p=0$, temos que ter

$$\beta^2 + 3\alpha\beta - 2\alpha^2 = 0 \Leftrightarrow \frac{\beta}{\alpha} = \frac{-3 \pm \sqrt{17}}{2}$$

logo existem duas retas que intersectam as quatro retas dadas.

PROBLEMA 3

Cada movimento de subida (\uparrow) deva ser compensado por um movimento de descida (\downarrow) , e cada movimento para a esquerda (\leftarrow) deve ser compensado por um movimento para a direita (\rightarrow) . Assim, se fizermos k movimentos \uparrow , temos que fazer também k movimentos \downarrow , 1004-k movimentos \leftarrow e 1004-k movimentos \rightarrow .

Para cada k, o número de caminhos é, portanto, igual ao número de anagramas com 4 letras distintas, duas aparecendo k vezes e as outras duas, 1004 - k vezes cada. Logo a resposta é

$$R = \sum_{k=0}^{1004} \frac{2008!}{k!k!(1004 - k)!(1004 - k)!}$$

Sociedade Brasileira de Matemática

$$= \sum_{k=0}^{1004} \frac{2008!}{1004!1004!} \cdot \frac{1004!1004!}{k!k!(1004-k)!(1004-k)!}$$
$$= \left(\frac{2008}{1004}\right) \sum_{k=0}^{1004} \left(\frac{1004}{k}\right)^{2}.$$

Considere agora um conjunto de n meninos e n meninas. De quantas maneiras podemos escolher um grupo de n crianças? Por um lado, a resposta é $\binom{2n}{n}$.

Por outro lado, se escolhermos k meninos $\binom{n}{k}\binom{n}{n-k} = \binom{n}{k}^2$ maneiras de formar um grupo. Logo

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

e portanto

$$R = \left(\frac{2008}{1004}\right)^2$$
.

SEGUNDA SOLUÇÃO

Esmeralda tem $\binom{2008}{1004}^2$ maneiras de escolher dois conjuntos de 1004 passos dentre os 2008 passos que andará: o conjunto X dos passos para cima ou para a direita $(\uparrow \text{ ou } \rightarrow)$ e o conjunto Y dos passos para baixo ou para a direita $(\downarrow \text{ ou } \rightarrow)$. Essas escolhas determinam unicamente todos os passos: O conjunto dos passos para a direita será $X \cap Y$, para a esquerda será $X^c \cap Y^c$, para cima $X \cap Y^c$ e para baixo $X^c \cap Y$ (onde X^c e Y^c denotam os complementares de X e Y, respectivamente). Se $|X \cap Y| = k$, teremos $|X^c \cap Y| = 1004 - k$, $|X \cap Y^c| = 1004 - k$

e
$$|X^c \cap Y^c| = k$$
. Assim, a resposta é $\binom{2008}{1004}^2$.

PROBLEMA 4

Note que $B^4 = (B^2)^2 = (ABA^{-1})^2 = AB^2A^{-1} = A(ABA^{-1})A^{-1} = A^2BA^{-2}$. De forma análoga,

$$B^8 = A^3 B A^{-3}, B^{16} = A^4 B A^{-4}, B^{32} = A^5 B A^{-5}, B^{64} = A^6 B A^{-6}, B^{128} = A^7 B A^{-7} = B,$$
 logo $B^{127} = I.$

Suponha agora que existe 0 < k < 127 tal que $B^k = I$; como 127 é primo, o m.d.c. entre 127 e k vale 1. Pelo Teorema de Bézout, existem a, b inteiros tais que 127a + kb = 1; então

$$B = B^{1} = B^{127a+kb} = (B^{127})^{a} \cdot (B^{k})^{b} = I.$$

Isso é uma contradição, pois $B \neq I$. Logo o menor valor de k é 127.

Nota: Não é necessário exibir exemplos de tais matrizes A e B, mas tais exemplos existem. Podemos fazer n = 127, enumerar uma base de \mathbb{R}^{127} como $\{e_0, e_1, ..., e_{126}\}$ e definir A e B por $Ae_i = e_{2i \pmod{127}}$ e $Be_i = e_{2i \pmod{127}}$, $0 \le j \le 126$.

PROBLEMA 5

Como toda hipérbole tem duas assíntotas não paralelas, dadas duas hipérboles, sempre existe pelo menos um ponto comum a uma assíntota de cada uma delas. Esse ponto não é coberto por qualquer uma das duas hipérboles, logo é impossível cobrir todo o plano com apenas duas hipérboles.

As seguintes três hipérboles cobrem todo o plano:

$$x^{2} - y^{2} = 1$$
$$(y-2)^{2} - x^{2} = 1$$
$$(y+2)^{2} - x^{2} = 1$$

De fato, para qualquer $(x, y) \in \mathbb{R}^2$, vale pelo menos das seguintes desigualdades: $x^2 > y^2 + 1$, $x^2 < (y-1)^2 - 1$ ou $x^2 < (y+2)^2 - 1$. Com efeito, $\max\{(y-2)^2 - 1, (y+2)^2 - 1\} = (|y| + 2)^2 - 1 = y^2 + 4|y| + 3 > y^2 + 1$.

Assim o número mínimo de hipérboles necessárias para cobrir todos os pontos do plano é 3.

PROBLEMA 6

Observe inicialmente que

$$\frac{\pi}{n}(P_n-1) < \int_0^{\pi} sen^n x dx < \frac{\pi}{n}(P_n+1).$$

Defina $I_n = \int_0^{\pi} sen^n x dx$. Integrando por partes, temos que, para n > 2,

$$I_n = \int_0^{\pi} sen^{n-1} x sen x dx =$$

Sociedade Brasileira de Matemática

$$= \left[-sen^{n-1}x\cos x \right]_0^{\pi} - \int_0^{\pi} (n-1)sen^{n-2}x\cos x(-\cos x)dx =$$

$$= (n-1)\int_0^{\pi} sen^{n-2}x(1-sen^2x)dx =$$

$$= (n-1)I_{n-2} - (n-1)I_n$$

e portanto $I_n = \frac{n-1}{n}I_{n-2}$; daí segue que $\lim_{n\to\infty}\frac{I_n}{I_{n-2}} = 1$. Como, para todo n,

$$I_{n-2} \ge I_{n-1} \ge I_n$$
, temos $\lim_{n \to \infty} \frac{I_n}{I_{n-1}} = 1$.

Como $I_1 = 2$ e $I_2 = \frac{\pi}{2}$, temos que para todo $k \ge 0$,

$$I_{2k+1} = \frac{(2k)!!}{(2k+1)!!} \cdot 2, I_{2k+2} = \frac{(2k+1)!!}{(2k+2)!!} \cdot \pi,$$

onde $n!! = \prod_{k>0} (n-2k)$. Assim, $\lim_{k\to\infty} (2k+1)I_{2k+1}I_{2k+2} = \lim_{k\to\infty} \frac{2\pi(2k+1)}{2k+2} = 2\pi$, e

$$\lim_{k \to \infty} (2k+2)I_{2k+2}I_{2k+3} = \lim_{k \to \infty} \frac{2\pi(2k+2)}{2k+3} = 2\pi, \text{ ou seja, } \lim_{k \to \infty} nI_nI_{n+1} = 2\pi, \text{ donde}$$

$$\lim_{k \to \infty} \frac{P_nP_{n+1}}{n} = \lim_{k \to \infty} \frac{nI_nI_{n+1}}{\pi^2} = \frac{2}{\pi}.$$

Obs.: Alternativamente, pela aproximação de Stirling,

$$\frac{(2k-1)!!}{(2k)!!} = \frac{(2k)!}{(2k)!!^2} =$$

$$= \frac{(2k)!}{\left[2^k k!\right]^2} \sim$$

$$\sim \frac{(2k)^{2k} e^{-2k} \sqrt{4\pi k} (1 + O(k^{-1}))}{4^k k^{2k} e^{-2k} 2\pi k (1 + O(k^{-1}))} \sim$$

$$\sim \frac{1}{\sqrt{\pi k}} + O\left(k^{-\frac{3}{2}}\right)$$

e portanto $I_n \sim \sqrt{\frac{2\pi}{n}} + O\left(n^{-\frac{3}{2}}\right)$. Mas isso implica $\sim \sqrt{\frac{2n}{\pi}} + O(1)$ e portanto $\lim_{n \to \infty} \frac{P_n P_{n+1}}{n} = \frac{2}{\pi}.$

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Problemas e Soluções da Segunda Fase Nível Universitário

PRIMEIRO DIA

PROBLEMA 1

Seja $f_n: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \frac{x^{2008}}{2008} + x^2 - nx$, para cada $n \in \mathbb{N}$, e seja m_n o valor mínimo assumido por f_n . Determine $\alpha \in \mathbb{R}$ tal que o limite $\lim_{n \to \infty} \frac{m_n}{n^{\alpha}}$ existe e é não-nulo, e calcule esse limite (para esse valor de α).

PROBLEMA 2

No \mathbb{R}^3 , considere a elipse \mathcal{E}_1 definida pelas equações x=0 e $41y^2+41z^2-80yz+36y+36z-81=0$, e a elipse \mathcal{E}_2 definida pelas equações y=0 e $71x^2+41z^2-40xz+18x+36z-81=0$. Prove que existe uma única superfície cônica de revolução no \mathbb{R}^3 que intersecta o plano x=0 em \mathcal{E}_1 e o plano y=0 em \mathcal{E}_2 , e determine a interseção dessa superfície com o plano z=0.

PROBLEMA 3

Mostre que existem $a_1, a_2, ..., \in \mathbb{R}$ tais que a série $\sum_{n=1}^{\infty} a_n x^n$ converge para todo $x \in \mathbb{R}$ e, definindo $f(x) = \sum_{n=1}^{\infty} a_n x^n$, temos:

- i) f é uma bijeção de \mathbb{R} em \mathbb{R} que satisfaz $f'(x) > 0, \forall x \in \mathbb{R}$.
- ii) $f(\mathbb{Q}) = \mathbb{A}$, onde $\mathbb{A} = \{\alpha \in \mathbb{R} \mid \exists p(x) \text{ polinômio com coeficientes inteiros}$ tal que $p(\alpha) = 0\}$ é o conjunto dos algébricos reais.

SEGUNDO DIA

PROBLEMA 4

Seja $Q = [0,1] \times [0,1] \subset \mathbb{R}^2$ um quadrado de lado 1 e $f: Q \to \mathbb{R}$ uma função contínua e positiva. Prove que é possível dividir Q em duas regiões R_1 e R_2 de

Sociedade Brasileira de Matemática

mesma área, separadas por um segmento de reta, tais que $\int_{R_1} f(x,y) dx dy = \int_{R_2} f(x,y) dx dy.$

PROBLEMA 5

Prove que não existe uma matriz 7×7 , $A = (a_{ij})_{1 \le i,j \le 7}$, com $a_{ij} \ge 0, 1 \le i,j \le 7$ cujos autovalores (contados com multiplicidade) são: 6, -5, -5, 1, 1, 1, 1.

PROBLEMA 6

Prove que
$$\sum_{n=1}^{\infty} \frac{\lambda}{(\lambda + n^2)^2} < \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{\lambda + n^2}, \forall \lambda \ge 0.$$

SOLUÇÕES SEGUNDA FASE - NÍVEL UNIVERSITÁRIO

PRIMEIRO DIA

PROBLEMA 1

SOLUÇÃO DE EDUARDO POÇO (SÃO PAULO - SP)

Seja $x_n = \sqrt[2007]{n}$. Como m_n é o mínimo de f_n , então:

$$m_n \le f(x_n) = \left(\frac{1}{2008} - 1\right) n^{2007} \sqrt{n} + \sqrt[2007]{n^2}, \forall n \in \mathbb{N}.$$

Seja agora
$$g_n(x) = \frac{x^{2008}}{2008} - nx$$
.

Temos $f_n(x) \ge g_n(x)$, $\forall x \in \mathbb{R}$, e sendo k_n o valor mínimo de g_n :

$$f_n(x) \ge g_n(x) \ge k_n, \forall x \in \mathbb{R} \implies m_n \ge k_n, \forall n \in \mathbb{N}$$

Calculando k_n : $g_n(x)$ mínimo $\Rightarrow g'_n(x) = 0 \Rightarrow$

$$\Rightarrow x^{2007} - n = 0 \Rightarrow x = \sqrt[2007]{n} \Rightarrow k_n = \left(\frac{1}{2008} - 1\right) n^{2007} \sqrt{n}$$

Assim

$$\left(\frac{1}{2008} - 1\right)n^{1 + \frac{1}{2007}} \le m_n \le \left(\frac{1}{2008} - 1\right)n^{1 + \frac{1}{2007}} + n^{\frac{2}{2007}}$$

Como
$$\frac{2}{2007} < 1 + \frac{1}{2007}$$
, devemos ter $\alpha = 1 + \frac{1}{2007} = \frac{2008}{2007}$, e o limite é

$$\frac{1}{2008} - 1 = -\frac{2007}{2008}.$$

PROBLEMA 2 SOLUÇÃO OFICIAL DA BANCA

Sejam (x_0, y_0, z_0) o vértice do cone e (a,b,c) um vetor não nulo na direção do eixo do cone. Se (x,y,z) é um ponto do cone, existe um ângulo θ tal que o ângulo entre os vetores $(x-x_0, y-y_0, z-z_0)$ e (a,b,c) é sempre θ ou $\pi-\theta$, e em particular o módulo de seu cosseno é igual a $|\cos \theta|$. $\frac{a(x-x_0)+b(y-y_0)+c(z-z_0)}{\sqrt{a^2+b^2+c^2}\cdot\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}} = \frac{(a,b,c)\cdot(x-x_0,y-y_0,z-z_0)}{\left|(a,b,c)\right|\cdot\left|(x-x_0,y-y_0,z-z_0)\right|} = \left|\cos\theta\right|,$ escrever podemos equação como $(a(x-x_0)+b(y-y_0)+c(z-z_0))^2-d^2((x-x_0)^2+(y-y_0)^2+(z-z_0)^2)=0,$ onde $d = |\cos\theta| \cdot \sqrt{a^2 + b^2 + c^2}$ a qual pode forma $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$. Como, fazendo x = 0, obtemos uma equação da elipse \mathcal{E}_1 , podemos supor (ajustando o módulo de (a, b, c), e trocando os sinais, se necessário) que B = 41, C = 41, F = -80, H = 36, I = 36 e J = -81, e como, fazendo y = 0, obtemos uma equação da elipse \mathcal{E}_2 , teremos A =71, E = -40 e G = 18 (note que os coeficientes de z^2 , z e o coeficiente constante são os mesmos nas equações dadas de \mathcal{E}_1 e \mathcal{E}_2).

Assim, basta determinar D.

Comparando as equações, devemos ter $a^2-d^2=71$, $b^2-d^2=c^2-d^2=41$, 2ac=-40 e 2bc=-80 ou $a^2-d^2=-71$, $b^2-d^2=c^2-d^2=-41$, 2ac=40 e 2bc=80. Nos dois casos, b=2a, donde $b^2-d^2 \ge a^2-d^2$, o que não acontece no primeiro caso. Assim, ocorre o segundo caso, e portanto $D=-2ab=-b^2$. Como $b^2-d^2=c^2-d^2$, |b|=|c|, e portanto

$$D = -b^2 = -|b|^2 = -|bc| = -\frac{|2bc|}{2} = -\frac{80}{2} = -40$$
. Em particular, a interseção do cone com o plano $z = 0$ é dada pela equação $71x^2 + 41y^2 - 40xy + 18x + 36y - 81 = 0$, e logo é uma

plano z = 0 e dada pela equação $/1x^2 + 41y^2 - 40xy + 18x + 36y - 81 = 0$, e logo e uma elipse.

Obs.: Fazendo $(x_0, y_0, z_0) = (1,2,2), (a,b,c) = (\sqrt{10}, 2\sqrt{10}, 2\sqrt{10})$ e d = 9 obtemos a equação desejada (após trocar os sinais).

PROBLEMA 3

SOLUÇÃO OFICIAL DA BANCA

Construiremos uma função que satisfaz as condições do enunciado da forma $f(x) = x + \sum_{n=1}^{\infty} c_n \cdot g_n(x)$, onde as funções g_n têm derivada limitada na reta real e as constantes c_n convergem a 0 muito rápido, de tal forma que $|g'_n| \le \sup\{|g'_n(x)|, x \in \mathbb{R}\} < \frac{1}{2^{n+1}}, \forall n \ge 1$, o que garantirá que $\frac{1}{2} < f'(x) < \frac{3}{2}, \forall x \in \mathbb{R}$, e portanto f será uma bijeção crescente de \mathbb{R} em \mathbb{R} .

Os conjuntos \mathbb{Q} e \mathbb{A} são subconjuntos enumeráveis densos de \mathbb{R} . Podemos enumerá-los como $\mathbb{Q} = \{x_n, n \in \mathbb{N}\}$ e $\mathbb{A} = \{y_n, n \in \mathbb{N}\}$. Para cada $n \ge 1$ construiremos um conjunto $B_n \subset \mathbb{Q}$ com n elementos, com $B_n \subset B_{n+1}, \forall n \ge 1$ e tomaremos $g_n(x) = \prod_{b \in B_n} sen(x-b)$, que é limitada e tem derivada limitada em \mathbb{R} . Tomamos $B_1 = \{0\}$ e $c_1 = 0$.

Como sen u · cos $v = \frac{1}{2} sen(u+v) + \frac{1}{2} sen(u-v)$, sen u · sen $v = \frac{1}{2} cos(u-v) - \frac{1}{2} cos(u+v)$, sen $(x+a) = cos\ a$ · sen $x + sen\ a$ · cos x, $cos(x+a) = cos\ a cos\ x - sen\ a$ sen x, sen $(-u) = -sen\ u$ e cos $(-u) = cos\ u$, podemos escrever $g_n(x)$ como $\sum_{k=0}^n \left(r_k^{(n)} sen(kx) + s_k^{(n)} cos(kx)\right).$ Como, para todo $x \in \mathbb{R}$, $sen\ x = \sum_{k=0}^\infty \frac{(-1)^k x^{2k+1}}{(2k+1)!}$ e cos $x = \sum_{k=0}^\infty \frac{(-1)^k x^{2k}}{(2k)!}$, temos que $g_n(x) = \sum_{m=0}^\infty a_m^{(n)} x^m$, onde os $a_m^{(n)}$ são tais que existe uma constante $k_n > 0$ tal que $\left|a_m^{(n)}\right| \le k_n n^m/m!$, $\forall m \ge 0$.

Como, para todo
$$m \ge 1$$
, $m! \ge \prod_{k > \frac{m}{3}} k > \left(\frac{m}{3}\right)^{\frac{2m}{3}}$, temos que $\left|a_m^{(n)}\right| \cdot m^{m/2} \le k_n \cdot n^m \cdot m^{m/2} / m! < k_n \cdot n^m \cdot m^{m/2} / \left(\frac{m}{3}\right)^{2m/3} = k_n \cdot \left(\frac{n \cdot 3^{2/3}}{m^{1/6}}\right)^m$, donde $\lim_{m \to \infty} \left|a_m^{(n)}\right| \cdot m^{m/2} = 0$. Em particular, existe $j_n \ge 1$ tal que $\left|a_m^{(n)}\right| < 1 / m^{m/2}$, $\forall m \ge j_n$.

Definimos
$$t_n = \max_{0 \le m < j_n} \left| a_m^{(n)} \right| + 1$$
 e $w_n = min \left\{ \frac{1}{2^{n+1} \cdot sup \left\{ \left| g'_n(x) \right|, x \in \mathbb{R} \right\}}, \frac{1}{2^n \cdot t_n \cdot j_n^{j_n/2}} \right\}$

Temos então $\left|w_n\cdot a_m^{(n)}\right|<\frac{1}{2^n\cdot m^{m/2}}, \forall m\geq 1, n\geq 0$. Escolheremos as constantes c_n satisfazendo sempre $\left|c_n\right|< w_n$ (sempre escolhemos c_n depois de já ter escolhido o conjunto B_n , e logo já tendo determinado a função g_n). Teremos então $f\left(x\right)=x+\sum_{n=0}^{\infty}c_n\cdot g_n\left(x\right)=\sum_{n=0}^{\infty}a_n\cdot x^n$, onde $a_1=1+\sum_{n=0}^{\infty}c_na_1^{(n)}$ satisfaz

$$|a_1| < 1 + \sum_{n=1}^{\infty} |w_n \cdot a_1^{(n)}| < 1 + \sum_{n=1}^{\infty} \frac{1}{2^n} = 2 e$$

$$\left|a_{m}\right| \leq \sum_{n=1}^{\infty} \left|c_{n} \cdot a_{m}^{(n)}\right| < \sum_{n=1}^{\infty} \left|w_{n} \cdot a_{m}^{(n)}\right| < \sum_{n=1}^{\infty} \frac{1}{2^{n} \cdot m^{m/2}} = \frac{1}{m^{m/2}}, \forall m \geq 2. \text{ Em particular } \sum_{m=1}^{\infty} a_{m} \cdot x^{m} \text{ convergirá para todo } x \in \mathbb{R}.$$

Escolheremos agora os conjuntos B_n e as constantes c_{n-1} , $n \ge 2$, recursivamente.

Para n par, tomamos o menor k tal que $x_k \notin B_{n-1}$, e definimos $B_n = B_{n-1} \cup \{x_k\}$. Como π é irracional, $g_{n-1}(x_k) \neq 0$. Assim, como \mathbb{A} é denso em \mathbb{R} , podemos escolher $c_{n-1} \in (-w_{n-1}, w_{n-1})$ tal que $x_k + \sum_{1 \leq m < n-1} c_m \cdot g_m(x_k) + c_{n-1} \cdot g_{n-1}(x_k) \in \mathbb{A}$, e tal que, se $y = a + 2k\pi$, com $a \in \mathbb{Q}$, $k \in \mathbb{Z} \setminus \{0\}$, então $y + \sum_{1 \leq m \leq n-1} c_m \cdot g_m(y) \notin \mathbb{A}$ (de fato o conjunto dos $c_{n-1} \in \mathbb{R}$ tais que a última condição falha é enumerável — usamos aqui o fato de π ser transcendente).

Seja agora $n \ge 3$ ímpar. Seja $f_{n-2}(x) = x + \sum_{m=1}^{n-2} c_m \cdot g_m(x)$. Temos que $1/2 < f'_{n-1}(x) < 3/2$, $\forall x \in \mathbb{R}$, e logo f_{n-2} é uma bijeção crescente de \mathbb{R} em \mathbb{R} . Considere agora o menor $r \in \mathbb{N}$ tal que $y_r \notin \{f_{n-2}(b), b \in B_{n-1}\}$. Temos, por construção, que $f_{n-2}^{-1}(y_r)$ não é da forma $a + 2k\pi$, com $a \in B_{n-1}, k \in \mathbb{Z}$. Assim, $g_{n-1}(f_{n-2}^{-1}(y_r)) \ne 0$, e portanto podemos escolher $c_{n-1} \in (-w_{n-1}, w_{n-1})$ tal que, se $f_{n-1}(x) = x + \sum_{m=1}^{n-1} c_m \cdot g_m(x)$, $f_{n-1}^{-1}(y_r) \in \mathbb{Q}$, e tal que, se $y = a + 2k\pi$, com $a \in \mathbb{Q}, k \in \mathbb{Z} \setminus \{0\}$, então $f_{n-1}(y) = y + \sum_{1 \le m \le n-1} c_m \cdot g_m(y) \notin \mathbb{A}$. Tomamos então

 $B_n = B_{n-1} \cup \{f_{n-1}^{-1}(y_r)\}$. Ao final dessa construção é claro que $f(x) \in \mathbb{A}$ para todo $x \in \mathbb{Q}$ e $f^{-1}(y) \in \mathbb{Q}$ para todo $y \in \mathbb{A}$.

Obs.: Se não quisermos usar o fato de π ser transcendente podemos trocar as funções sen(x-c) por $sen(\pi\alpha(x-c))$, com α transcendente.

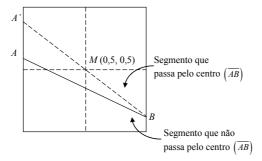
SEGUNDO DIA

PROBLEMA 4

SOLUÇÃO DE RENATO REBOUÇAS DE MEDEIROS (S.J. DOS CAMPOS - SP)

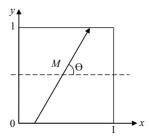
Lema: Se um segmento de reta divide o retângulo em duas regiões R_1 e R_2 da mesma área, então o segmento passa pelo centro do retângulo, que é (0,5,0,5), no caso.

Prova: De fato, se o segmento dividisse igualmente a área do retângulo e não passasse pelo seu centro, aconteceria:



Nessa situação cada metade limitada por \overline{AB} teria área $\frac{1}{2}$, enquanto cada metade

limitada por $\overline{A'B}$ também teria essa mesma área (por semelhança de triângulos, $\overline{A'B}$ divide igualmente) e o triângulo AA'B teria área nula, absurdo. Assim, tais segmentos passam pelo centro do retângulo.



Girando um segmento (de comprimento variável) em torno do centro do retângulo (M), graças ao lema, obtêm-se todas as possibilidades de dividir a área em duas regiões de mesma área.

Orientando esse segmento, é possível denominar por A_1 a integral sobre a região à direita da seta (R_1) e por A_2 a integral sobre a região à esquerda da seta, que será R_2 . Além disso, $A_1 = A_1(\theta)$ e $A_2 = A_2(\theta)$, sendo θ o ângulo no sentido antihorário entre o segmento e um eixo horizontal por M.

Resumindo,
$$A_1(\theta) = \int_{R_1} f(x, y) dx dy$$
 e $A_1(\theta) = \int_{R_2} f(x, y) dx dy$.

Outra constatação é que $A_1(\pi) = A_2(0)$ e $A_2(\pi) = A_1(0)$, pois as regiões R_1 e R_2 de $\theta = 0$ são trocadas para $\theta = \pi$. Ainda, tem-se que $A_1(\theta) + A_2(\theta) = \int_O f(x,y) dx dy$.

Como $f: Q \to \mathbb{R}_+^*$ é contínua, há indícios de que $A_1(\theta)$ e, conseqüentemente, $A_2(\theta)$ são funções contínuas em θ em todo o intervalo $[0,\pi]$ em que as funções A_1 e A_2 merecem análise. Provaremos este fato no final da solução.

Como as funções $A_1(\theta)$ e $A_2(\theta)$ têm soma constante e trocam de valor entre $\theta=0$ e $\theta=\pi$, além de serem contínuas, então as duas assumem o mesmo valor para algum θ , com $0 \le \theta < \pi$.

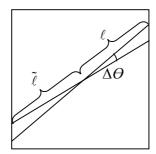
De fato, basta ver que, se $A_1(0) \neq A_2(0)$, então a função $G(\theta) = A_1(\theta) - A_2(\theta)$ no mesmo domínio de A_1 e A_2 tem um sinal em $\theta = 0$ e o sinal contrário em $\theta = \pi$, pois $G(0) = A_1(0) - A_2(0)$ e $G(\pi) = A_1(\pi) - A_2(\pi) = -[A_1(0) - A_2(0)] = -G(0)$. Então G tem uma raiz entre $0 \in \pi$, por ser contínua e pelo Teorema do Valor Intermediário. Nessa raiz, digamos θ' , têm-se as condições desejadas. Se $A_1(0) = A_2(0)$, as condições já são satisfeitas para o segmento inicial.

Resta provar que $A_1(\theta)$ é contínuo em θ .

Para isso, basta ver que, por f ser contínua em $[0,1] \times [0,1]$, e ainda positiva, assume um valor máximo M e um valor mínimo m. Sendo assim,

$$\left|A_{l}(\theta + \Delta\theta) - A_{l}(\theta)\right| \leq (M - m) \cdot \left(\frac{\sqrt{2}}{2}\right)^{2} \cdot \theta \quad \text{(pois } \ell \text{ e } \tilde{\ell} \text{ na figura são } \leq \frac{\sqrt{2}}{2} \text{)}.$$

Sociedade Brasileira de Matemática



Assim, $\forall \varepsilon > 0$, para $\delta = \frac{2 \cdot \varepsilon}{M - m + 1} > 0$. Temos $|\theta - \theta_0| < \delta \Rightarrow |A_1(\theta) - A_1(\theta_0)| < \varepsilon$ e assim A_1 é contínua, permitindo aplicar o Teorema do Valor Intermediário para G como feito acima.

PROBLEMA 5

SOLUÇÃO DE FABIO DIAS MOREIRA (RIO DE JANEIRO - RJ)

Se os autovalores de A são (6, -5, -5, 1, 1, 1, 1), os autovalores de $B = A^3$ são (216, -125, -125, 1, 1, 1, 1). Por outro lado, se $X = (x_{ij})$ e $Y = (y_{ij})$ são matrizes com $x_{ij} \ge 0$, $y_{ij} \ge 0$, então a mesma propriedade vale para Z = XY: de fato,

$$z_{ij} = \sum_{k=1}^{7} x_{ij} y_{kj} \ge 0. \ \text{Logo} \ b_{ij} \ge 0 \ \forall \ 1 \le i,j \le 7 \ \text{e daí Tr} \ B = b_{11} + \ldots + b_{77} \ge 0.$$

Mas Tr B = 216 - 125 - 125 + 1 + 1 + 1 + 1 = -30, contradição.

Portanto não existe nenhuma matriz A com a propriedade pedida.

PROBLEMA 6

SOLUÇÃO OFICIAL DA BANCA

Começamos com a expressão de *senx* como produto infinito: $senx = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right).$

Sabendo que essa igualdade vale para todo $x \in \mathbb{R}$, como os dois lados definem funções analíticas em \mathbb{C} (lembramos que $senx = \frac{e^{ix} - e^{-ix}}{2i}$), a igualdade vale para

todo $x \in \mathbb{C}$.

Fazendo $x = -\pi i y$ obtemos

$$\frac{senh(\pi y)}{i} = \frac{e^{\pi y} - e^{-\pi y}}{2i} = senx = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2}\right) = \pi i y \prod_{n=1}^{\infty} \left(1 + \frac{y}{n}\right)$$
 donde

 $senh(\pi y) = \pi y \prod_{n=1}^{\infty} \left(1 + \frac{y^2}{n^2}\right)$, para todo $y \in \mathbb{C}$, e, em particular, para todo y > 0.

Aplicando logaritmos, obtemos $\log senh(\pi y) = \log \pi + \log y + \sum_{n=1}^{\infty} \log \left(1 + \frac{y^2}{n^2}\right), \forall y > 0.$

Derivando, temos

$$(*) \pi \frac{\cos h(\pi y)}{senh(\pi y)} = \frac{1}{y} + \sum_{n=1}^{\infty} \frac{2y}{y^2 + n^2}, \forall y > 0.$$

Derivando novamente, obtemos, para todo y > 0,

$$-\frac{\pi^{2}}{\left(senh(\pi y)\right)^{2}} = \frac{\pi^{2}\left(\left(senh(\pi y)\right)\right)^{2} - \left(\left(cosh(\pi y)\right)^{2}\right)}{\left(senh(\pi y)\right)^{2}} = -\frac{1}{y^{2}} + \sum_{n=1}^{\infty} \left(\frac{2}{y^{2} + n^{2}} - \frac{4y^{2}}{\left(y^{2} + n^{2}\right)^{2}}\right)$$

Portanto,
$$2\left(\sum_{n=1}^{\infty} \frac{1}{y^2 + n^2} - 2\sum_{n=1}^{\infty} \frac{y^2}{\left(y^2 + n^2\right)^2}\right) = \frac{1}{y^2} - \frac{\pi^2}{\left(senh(\pi y)\right)^2}, \forall y > 0.$$

O lado direito dessa igualdade é positivo para todo y > 0, de fato, isso equivale a $senh(\pi y) > \pi y, \forall y > 0$; os dois lados dessa última desigualdade coincidem para

$$y = 0$$
, e a derivada do lado esquerdo, que é $\pi \cosh(\pi y) = \pi \left(\frac{e^{\pi y} + e^{-\pi y}}{2}\right)$ é maior

que π , que é a derivada do lado direito, para todo y > 0.

Portanto temos, para todo
$$y > 0$$
, $\sum_{n=1}^{\infty} \frac{1}{y^2 + n^2} > 2 \sum_{n=1}^{\infty} \frac{y^2}{\left(y^2 + n^2\right)^2}$.

Essa desigualdade obviamente também vale para y=0. Finalmente, tomando $y=\sqrt{\lambda}$, concluímos que a desigualdade do enunciado vale para todo $\lambda \ge 0$.

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Resultado – Nível 1 (6°. e 7°. Anos)

NOME	CIDADE - ESTADO	PRÊMIO
Guilherme Renato Martins Unzer	São Paulo – SP	Ouro
Francisco Markan Nobre de Souza Filho	Fortaleza – CE	Ouro
Rafael Rodrigues Rocha de Melo	Fortaleza – CE	Ouro
Liara Guinsberg	São Paulo – SP	Ouro
Pedro Augusto de Paula Barbosa	Belo Horizonte – MG	Ouro
Matheus Silva Lima	Bragança Paulista – SP	Ouro
Vinícius Canto Costa	Salvador – BA	Prata
Michel Rozenberg Zelazny	São Paulo – SP	Prata
Vinicius Luiz Ferreira	Belo Horizonte – MG	Prata
Lucas Cawai Julião Pereira	Caucaia – CE	Prata
Mário de Mello Figueiredo Neto	Petrópolis – RJ	Prata
Henrique Vieira G. Vaz	São Paulo – SP	Prata
Elias Brito Oliveira	Brasília – DF	Prata
Igor Albuquerque Araujo	Belo Horizonte – MG	Prata
Luis Fernando Veronese Trivelatto	Cascavel – PR	Prata
Daniel Lima Santanelli	Rio de Janeiro – RJ	Prata
Glauber Lima da Cunha Júnior	Fortaleza – CE	Bronze
Tiago Sueda Limone	Jundiaí – SP	Bronze
Leyberson Pereira Assunção	Fortaleza – CE	Bronze
João Marcos Carnieleto Nicolodi	Florianópolis – SC	Bronze
Fellipe Sebastiam da Silva P. Pereira	Recife – PE	Bronze
Lucas Cardoso Zuccolo	São Paulo – SP	Bronze
Maria Clara Cardoso	São Paulo – SP	Bronze
Daniel Vincent Cacsire Garibay	São Carlos – SP	Bronze
Rafael Tedeschi Eugênio Pontes Barone	Araçatuba – SP	Bronze
Gabriel Nogueira Coelho de Togni de Souza	Rio de Janeiro – RJ	Bronze
Thomas Akio Ikeda Valvassori	Mogi das Cruzes – SP	Bronze
William Cechin Guarienti	Porto Alegre – RS	Bronze
Gabriel Yoshimi Barrón Toyama	Brasília – DF	Bronze
Daniel Behrens Cardoso	Salvador – BA	Bronze
Ricardo Vidal Mota Peixoto	Vassouras – RJ	Menção Honrosa
Jardel da Silva Pires	Santos Dumont – MG	Menção Horrosa
Felipe Mendes de Holanda Lins	Recife – PE	Menção Honrosa
Daniel Shinji Hoshi	São Paulo – SP	Menção Honrosa
Júlio César de Barros	Santo André – SP	Menção Honrosa
Gabriel Queiroz Moura	Teresina – PI	Menção Horrosa
Lucas Carvalho Daher	Anápolis – GO	Menção Honrosa
Daiana Luna	Rio de Janeiro – RJ	Menção Honrosa
Filipe Santana do Vale	Salvador – BA	Menção Horrosa
Rosane Thiemi Toma Gundim	Campo Grande – MS	Menção Honrosa
Guilherme de Oliveira Rodrigues	Fortaleza – CE	Menção Honrosa
Breno Soares da Costa Vieira	Jaboatão dos Guararapes – PE	Menção Honrosa
Lara Viana de Paula Cabral	Fortaleza – CE	Menção Honrosa
Nicolas Chiu Ogassavara	São Paulo – SP	Menção Honrosa
Juliana Amoedo Amoedo Plácido	Salvador – BA	Menção Horrosa
Bruno Cordeiro de Macedo	São Paulo – SP	Menção Horrosa
Arthur Schott Lopes	Curitiba – PR	Menção Honrosa
Bruno Costa Silva	Rio de Janeiro – RJ	Menção Horrosa
Alessandro Augusto Pinto de Oliveira Pacanowski	Rio de Janeiro – RJ	Menção Horrosa
Vitória Carolina Rondon Pereira	Jacareí – SP	Menção Honrosa
Jorge Luiz Soares Pereira	Rio de Janeiro – RJ	Menção Horrosa
Pedro Carvalho da Fonseca Guimarães	Cachoeira Paulista – SP	Menção Horrosa
Guilherme Ryu Odaguiri Kobori	São Paulo – SP	Menção Honrosa
Lorena Marroni Carvalho	Amparo – SP	Menção Horrosa
Luiz Akyhito Miyazaki	Serra Negra – SP	Menção Horrosa
Marcos Felipe Nunes Lino Ribeiro	São Paulo – SP	Menção Honrosa
Gustavo Souto Henriques Campelo	João Pessoa – PB	Menção Honrosa
João Vitor Fernandes Paiva	Rio de Janeiro – RJ	Menção Horrosa
Fábio Kenji Arai	São Paulo – SP	Menção Honrosa
Roberto Tadeu Abrantes de Araújo	Rio de Janeiro – RJ	Menção Honrosa
Lucas Butschkau Vida	Pinhais – PR	Menção Honrosa
João Ribeiro Pacheco	Salvador – BA	Menção Honrosa
JOGO INDOITO F BUTICOU	Sarvduul – DA	IVICIIÇAU FIUIIIUSA

Nível 2 (8°. e 9°. Anos)

Nome	Cidade - Estado	Prêmio
João Lucas Camelo Sá	Fortaleza – CE	Ouro
Gustavo Haddad F. e Sampaio Braga	S. J. dos Campos – SP	Ouro
Gabriel Militão Vinhas Lopes	Fortaleza – CE	Ouro
Rubens Cainan Sabóia Monteiro	Fortaleza – CE	Ouro
Maria Clara Mendes Silva	Pirajuba – MG	Ouro
Marla Rochana Braga Monteiro	Fortaleza – CE	Ouro
Otávio Araújo de Aquiar	Fortaleza – CE	Prata
Caígue Porto Lira	Fortaleza – CE	Prata
Tuane Viana Pinheiro	Rio de Janeiro – RJ	Prata
Carlos Henrique de Andrade Silva	Fortaleza – CE	Prata
Otávio Augusto de Oliveira Mendes	Pilar do Sul – SP	Prata
Rafael Kazuhiro Miyazaki	São Paulo – SP	Prata
Vinicius Cipriano Klein	Venda do Imigrante – ES	Prata
Daniel dos Santos Bossle	Porto Alegre – RS	Prata
	Teresina – PI	
Mateus Braga de Carvalho		Prata
Luiz Henrique Vieira Leão	Rio de Janeiro – RJ	Prata
Kayo de França Gurgel	Fortaleza – CE	Prata
Davi Coelho Amorim	Fortaleza – CE	Bronze
Rodolfo Rodrigues da Costa	Fortaleza – CE	Bronze
Rafael Henrique dos Santos	Santa Cruz do Rio Pardo – SP	Bronze
Ivan Tadeu Ferreira Antunes Filho	Lins – SP	Bronze
Lucas Cordeiro Herculano	Fortaleza – CE	Bronze
Breno Leví Corrêa	Campo Belo – MG	Bronze
Tábata Cláudia Amaral de Pontes	São Paulo – SP	Bronze
Marina Pessoa Mota	Fortaleza – CE	Bronze
Marcos Massayuki Kawakami	São Paulo – SP	Bronze
Bruno Ferri de Moraes	São Paulo – SP	Bronze
Tiago Leandro Estevam Dias	Rio de Janeiro – RJ	Bronze
Gabriel Pacianotto Gouveia	São Paulo – SP	Bronze
Filipe José Oliveira Sabóia	Fortaleza – CE	Bronze
Daniel Prince Carneiro	São Lourenço – MG	Bronze
Bruno Moraes Moreno	Porto Nacional – TO	Bronze
Renan Fernandes Moreira	Taubaté – SP	Menção Honrosa
Murilo Dória Guimarães	São Paulo – SP	Menção Honrosa
Lucas Nishida	Pedreira – SP	Menção Honrosa
Leonardo Ferreira Patrício	Rio de Janeiro – RJ	Menção Honrosa
Victor Kioshi Higa	São Paulo – SP	Menção Honrosa
Marina de Moura Faleão	Recife – PE	Menção Honrosa
Lucas Almeida Pereira de Lima	Recife – PE	Menção Honrosa
Arthur Ribeiro Notaro	Recife – PE	Menção Honrosa
Pedro Mendonça de Lima	Goiânia – GO	Menção Honrosa
Rafael Ferreira Antonioli	S.B. do Campo – SP	Menção Honrosa
Lucas Okumura Ono	São Paulo – SP	Menção Honrosa
Vinicius Affonso de Carvalho	São Paulo – SP	Menção Honrosa
Julio Barros de Paula	Taubaté – SP	Menção Honrosa
João Francisco Goes Braga Takayanagi	São Paulo – SP	Menção Honrosa
Débora Barreto Ornellas	Salvador – BA	Menção Horrosa
Luis Henrique Kobayashi Higa	Campo Grande – MS	Menção Horrosa
Vítor Gabriel Barra Souza	Juiz de Fora – MG	Menção Honrosa
Pedro Ivo Coêlho de Araújo	Juiz de Fora – MG Caucaia – CE	Menção Honrosa Menção Honrosa
Guilherme Cherman Perdigão de Oliveira	Rio de Janeiro – RJ	Menção Honrosa
Cesar Nobuo Moniwa Ishiuchi	Campinas – SP	Menção Honrosa
Letícia Dias Mattos	Contagem – MG	Menção Honrosa
Raul Aragão Rocha	Recife – PE	Menção Honrosa
Tiago de Ávila Palhares	Brasília – DF	Menção Honrosa
Gabriel Leal Teixeira de Souza	Rio de Janeiro – RJ	Menção Honrosa

Nível 3 (Ensino Médio)

Nome	Cidade - Estado	Prêmio
Henrique Pondé de Oliveira Pinto	São Paulo – SP	Ouro
Régis Prado Barbosa	Fortaleza – CE	Ouro
Marcelo Tadeu de Sá Oliveira Sales	Salvador – BA	Ouro
Guilherme Philippe Figueiredo	São Paulo – SP	Ouro
Marcelo Matheus Gauy	S.J. do Rio Preto – SP	Ouro
Gabriel Luís Mello Dalalio	S.J. dos Campos – SP	Ouro
Renan Henrique Finder	São Paulo – SP	Prata
Alfredo Roque de Oliveira Freire Filho	Salvador – BA	Prata
Rafael Tupynambá Dutra	Belo Horizonte – MG	Prata
Marco Antonio Lopes Pedroso	Santa Isabel – SP	Prata
Thiago da Silva Pinheiro	São Paulo – SP	Prata
Eduardo Queiroz Peres	Jundiaí – SP	Prata
Davi Lopes Alves de Medeiros	Fortaleza – CE	Prata
Ricardo Turolla Bortolotti	Rio de Janeiro – RJ	Prata
Alex Atsushi Takeda	Londrina – PR	Prata
Deborah Barbosa Alves	São Paulo – SP	Prata
Marlen Lincoln da Silva	Fortaleza – CE	Bronze
Hugo Fonseca Araúio	Rio de Janeiro – RJ	Bronze
Rafael Parpinel Cavina	São Paulo – SP	Bronze
Thiago Ribeiro Ramos	Varginha – MG	Bronze
Rafael Horimoto de Freitas	São Paulo – SP	Bronze
Rafael Alves da Ponte	Fortaleza – CE	Bronze
Robério Soares Nunes	Ribeirão Preto – SP	Bronze
Gustavo Lisbôa Empinotti	Florianópolis – SC	Bronze
Henrique Hiroshi Motoyama Watanabe	São Paulo – SP	Bronze
Ivan Guilwon Mitoso Rocha	Fortaleza – CE	Bronze
José Airton Coêlho Lima Filho	Fortaleza – CE	Bronze
Hudson do Nascimento Lima	Fortaleza – CE Fortaleza – CE	Bronze
Hanon Guy Lima Rossi	São Paulo – SP	Bronze
Ricardo Bioni Liberalquino	Maceió – AL	Bronze
Luiz Filipe Martins Ramos	Rio de Janeiro – RJ	Bronze
	São Paulo – SP	
Illan Feiman Halpern Matheus Secco Torres da Silva	Rio de Janeiro – RJ	Bronze Bronze
Matheus Araújo Marins Paulo Cesar Neves da Costa	Rio de Janeiro – RJ Brasília – DF	Menção Honrosa Menção Honrosa
	São Paulo – SP	,
Leonardo Pereira Stedile		Menção Honrosa
Jonas Rocha Lima Amaro	Fortaleza – CE Taubaté – SP	Menção Honrosa
Matheus Barros de Paula		Menção Honrosa
Rafael Sussumu Yamaguti Miada	Valinhos – SP	Menção Honrosa
Rafael Alves da Silva	Teresina – PI	Menção Honrosa
James Jun Hong	São Paulo – SP	Menção Honrosa
Joas Elias dos Santos Rocha	Muribeca – SE	Menção Honrosa
Gelly Whesley Silva Neves	Fortaleza – CE	Menção Honrosa
João Mendes Vasconcelos	Fortaleza – CE	Menção Honrosa
Marilia Valeska Costa Medeiros	Fortaleza – CE	Menção Honrosa
Júlio Cézar Batista de Souza	Salvador – BA	Menção Honrosa
José Cabadas Duran Neto	Salvador – BA	Menção Honrosa
Thiago Saksanian Hallak	São Paulo – SP	Menção Honrosa
Luiz Eduardo Schiller	Rio de Janeiro – RJ	Menção Honrosa
Esdras Muniz Mota	Fortaleza – CE	Menção Honrosa
Fábio Luís de Mello	São Paulo – SP	Menção Honrosa
Ana Beatriz Prudêncio de Almeida Rebouças	Fortaleza – CE	Menção Honrosa
Victorio Takahashi Chu	São Paulo – SP	Menção Honrosa
Isabella Amorim Gonçalez	Maceió – AL	Menção Honrosa
Grazielly Muniz da Cunha	Fortaleza – CE	Menção Honrosa
José Leandro Pinheiro	Deputado Irapuan Pinheiro – CE	Menção Honrosa
Antônio Deromir Neves Silva Júnior	Fortaleza – CE	Menção Honrosa

Sociedade Brasileira de Matemática

Nível Universitário

Nome	Cidade - Estado	Prêmio
Fábio Dias Moreira	Rio de Janeiro – RJ	Ouro
Rafael Daigo Hirama	S.J. dos Campos – SP	Ouro
Guilherme Rodrigues Nogueira de Souza	São Paulo – SP	Ouro
Eduardo Poço	São Paulo – SP	Ouro
Ramón Moreira Nunes	Fortaleza – CE	Ouro
Renato Reboucas de Medeiros	S.J. dos Campos – SP	Prata
Thiago Costa Leite Santos	São Paulo – SP	Prata
Raphael Constant da Costa	Rio de Janeiro – RJ	Prata
André Linhares Rodrigues	Campinas – SP	Prata
Edson Augusto Bezerra Lopes	Fortaleza – CE	Prata
Marcelo de Araújo Barbosa	S.J. dos Campos – SP	Prata
Levi Máximo Viana	Rio de Janeiro – RJ	Prata
Thomás Yoiti Sasaki Hoshina	Rio de Janeiro – RJ	Prata
Felipe Gonçalves Assis	Campina Grande – PB	Prata
Fernando Nascimetno Coelho	S.J. dos Campos – SP	Prata
Marcos Victor Pereira Vieira	S.J. dos Campos – SP	Prata
Reinan Ribeiro Souza Santos	Aracajú – SE	Bronze
Mateus Oliveira de Figueiredo	S.J. dos Campos – SP	Bronze
Caio Ishizaka Costa	S.J. dos Campos – SP	Bronze
Paulo Sérgio de Castro Moreira	S.J. dos Campos – SP	Bronze
Pedro henrique Milet Pinheiro Pereira	Rio de Janeiro – RJ	Bronze
Willy George do Amaral Petrenko	Rio de Janeiro – RJ	Bronze
Jorge Henrique Craveiro de Andrade	Rio de Janeiro – RJ	Bronze
• .	Fortaleza – CE	Bronze
Leandro Farias Maia Alvsson Espíndola de Sá Silveira	S.J. dos Campos – SP	
Leonardo Ribeiro de Castro Carvalho	São Paulo – SP	Bronze Bronze
Rafael Montezuma Pinheiro Cabral	Sao Paulo – SP Fortaleza – CE	Bronze
	Fortaleza – CE Fortaleza – CE	Bronze
Rafael Sampaio de Rezende		
Luty Rodrigues Ribeiro	S.J. dos Campos – SP	Bronze Bronze
Leandro Augusto Lichtenfelz	Florianópolis – SC	
Sidney Cerqueira Bispo dos Santos Filho	S.J. dos Campos – SP	Bronze
André Jorge Carvalho	São Paulo – SP	Menção Honrosa
Jordan Freitas Piva	Rio de Janeiro – RJ	Menção Honrosa
Juan Raphael Diaz Simões	São Paulo – SP	Menção Honrosa
Eduardo Fischer	Encantado – RS	Menção Honrosa
Adenilson Arcanjo de Moura Júnior	Fortaleza – CE	Menção Honrosa
Kellem Correa Santos	Rio de Janeiro – RJ	Menção Honrosa
Roberto Akiba de Oliveira	São Paulo – SP	Menção Honrosa
José Armando Barbosa Filho	S.J. dos Campos – SP	Menção Honrosa
Daniel Lopes Alves de Medeiros	S.J. dos Campos – SP	Menção Honrosa
Vitor Humia Fontoura	Rio de Janeiro – RJ	Menção Honrosa
Bruno da Silva Santos	Belford Roxo – RJ	Menção Honrosa
Luca Mattos Möller	S.J. dos Campos – SP	Menção Honrosa
Marcelo Salhab Brogliato	Rio de Janeiro – RJ	Menção Honrosa
José Marcos Andrade Ferraro	São Paulo – SP	Menção Honrosa
Evandro Makiyama	São Paulo – SP	Menção Honrosa
Antonia Taline de Souza Mendonça	Rio de Janeiro – RJ	Menção Honrosa
Diego Andrés de Barros Lima Barbosa	Rio de Janeiro – RJ	Menção Honrosa
Gabriel Ponce	São Carlos – SP	Menção Honrosa
Luiz Paulo Freire Moreira	Fortaleza – CE	Menção Honrosa
Felipe Rodrigues Nogueira de Souza	São Paulo – SP	Menção Honrosa
Igor Magalhães Oliveira	Maceió – AL	Menção Honrosa
Rafael Ghussn Cano	Campinas – SP	Menção Honrosa

AGENDA OLÍMPICA

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA

NÍVEIS 1, 2 e 3

Primeira Fase – Sábado, 06 de junho de 2009 Segunda Fase – Sábado, 12 de setembro de 2009 Terceira Fase – Sábado, 17 de outubro de 2009 (níveis 1, 2 e 3) Domingo, 18 de outubro de 2009 (níveis 2 e 3 - segundo dia de prova).

NÍVEL UNIVERSITÁRIO

Primeira Fase – Sábado, 12 de setembro de 2009 Segunda Fase – Sábado, 17 e Domingo, 18 de outubro de 2008

XV OLIMPÍADA DE MAIO

09 de maio de 2009

XX OLIMPÍADA DE MATEMÁTICA DO CONE SUL

14 a 20 de abril de 2009 Mar del Plata – Argentina

L OLIMPÍADA INTERNACIONAL DE MATEMÁTICA

10 a 22 de julho de 2009 Bremen – Alemanha

XVI OLIMPÍADA INTERNACIONAL DE MATEMÁTICA UNIVERSITÁRIA

25 a 30 de julho de 2009 Budapeste, Hungria

XXIV OLIMPÍADA IBEROAMERICANA DE MATEMÁTICA

17 a 27 de setembro de 2009 Querétaro, México

XII OLIMPÍADA IBEROAMERICANA DE MATEMÁTICA UNIVERSITÁRIA

COORDENADORES REGIONAIS

Alberto Hassen Raad Américo López Gálvez Amarísio da Silva Araújo Andreia Goldani Antonio Carlos Nogueira Benedito Tadeu Vasconcelos Freire Carlos Alexandre Ribeiro Martins Carmen Vieira Mathias Claus Haetinger

Cleonor Crescêncio das Neves Cláudio de Lima Vidal Denice Fontana Nisxota Menegais

Denice Fontana Nisxota Menegais Edson Roberto Abe

Edson Roberto Abe Eduardo Tengan Élio Mega

Eudes Ántonio da Costa Fábio Brochero Martínez Florêncio Ferreira Guimarães Filho

Francinildo Nobre Ferreira
Genildo Alves Marinho

Ivanilde Fernandes Saad Jacqueline Rojas Arancibia Janice T. Reichert

João Benício de Melo Neto João Francisco Melo Libonati Jose de Arimatéia Fernandes José Luiz Rosas Pinho

José Vieira Alves José William Costa Krerley Oliveira Licio Hernandes Bezerra

Luciano G. Monteiro de Castro Luzinalva Miranda de Amorim

Mário Rocha Retamoso Marcelo Rufino de Oliveira Marcelo Mendes

Newman Simões Nivaldo Costa Muniz Osnel Broche Cristo Osvaldo Germano do Rocio Raul Cintra de Negreiros Ribeiro

Ronaldo Alves Garcia
Rogério da Silva Ignácio
Positivaldo do Limo Positiva

Reginaldo de Lima Pereira Reinaldo Gen Ichiro Arakaki Ricardo Amorim

Sérgio Cláudio Ramos

Seme Gebara Neto Tadeu Ferreira Gomes Tomás Menéndez Rodrigues Valdenberg Araújo da Silva Vânia Cristina Silva Rodrigues

Wagner Pereira Lopes

(UFJF) (USP) (UFV) FACOS (UFU) (UFRN)

(Univ. Tec. Fed. de Paraná)

(UNIFRA) (UNIVATES) (EDETEC) (UNESP) (UNIPAMPA)

(Colégio Objetivo de Campinas)

(USP)
(Grupo Educacional Etapa)
(Univ. Federal do Tocantins)

(UFMG) (UFES) (UFSJ)

(Centro Educacional Leonardo Da Vinci)

(UC. Dom Bosco) (UFPB)) (UNOCHAPECÓ) (UFPI)

(Grupo Educacional Ideal) (UFPB)

(UFPB) (UFSC) (UFPB)

(Instituto Pueri Domus) (UFAL)

(UFSC)

(Sistema Elite de Ensino)

(UFBA) (UFRG)

(Grupo Educacional Ideal) (Colégio Farias Brito, Pré-vestibular) (Cursinho CLQ Objetivo)

(UFMA) (UFLA)

(U. Estadual de Maringá) (Colégio Anglo) (UFGO)

(Col. Aplic. da UFPE)

(Escola Técnica Federal de Roraima)

(UNIFESP)

(Centro Educacional Logos)

(IM-UFRGS) (UFMG) (UEBA)

(U. Federal de Rondônia) (U. Federal de Sergipe) (U. Metodista de SP) (CEFET – GO) Juiz de Fora – MG Ribeirão Preto – SP Viçosa – MG Osório – RS

Osório – RS
Uberlândia – MG
Natal – RN
Pato Branco – PR
Santa María – RS
Laieado – RS

Manaus – AM S.J. do Rio Preto – SP Bagé – RS

Campinas – SP São Carlos – SP São Paulo – SP Arraias – TO Belo Horizonte – MG Vitória – ES

São João del Rei – MG Taguatingua – DF Campo Grande – MS João Pessoa – PB Chapecó – SC Teresina – PI Belém – PA Campina Grande – PB

Florianópolis – SC
Campina Grande – PB
Santo André – SP
Maceió – AL
Florianópolis – SC
Rio de Janeiro – RJ
Salvador – BA
Rio Grande – RS
Belém – PA
Fortaleza – CE
Piracicaba – SP
São Luis – MA

Lavras – MG Maringá – PR Atibaia – SP Goiânia – GO Recife – PE Boa Vista – RR SJ dos Campos – SP Nova Iguaçu – RJ Porto Alegre – RS Belo Horizonte – MG

Juazeiro – BA
Porto Velho – RO
São Cristovão – SE
S.B. do Campo – SP

Jataí - GO