Freescale Semiconductor
Application Note

Document Number:AN4760
Rev 0, 10/2013

Frame Manager Configuration Tool
Example Configuration and Policy

1 Introduction

The Frame Manager Configuration Tool (FMC) is a command
line tool used to configure Frame Manager’s Parser, KeyGen,
Controller, and Policer functions

FMC input file examples are provided in the QorIlQ SDK.
There are separate sets of example files for Linux and
USDPAA . When invoking FMC, the following input files
(written in NetPDL with Freescale extensions) are required:

 Standard protocol definition file
* Configuration file
* Policy file

A custom protocol file is optional.

The standard protocol definition file and example
configuration and policy files are included in Freescale Linux
SDK for QorlIQ Processors. There is a set of example
configuration and policy files for use with Linux and a set of
example configuration and policy files for use with User
Space DPAA (USDPAA).

For both Linux and USDPAA, this document provides a walk
through of example configuration and policy files in order to
demonstrate Frame Manager configuration. Additional
examples that utilize Frame Manager's coarse classification
and policer functions are listed and described. An example
custom protocol file is presented last as an advanced topic.

© 2013 Freescale Semiconductor, Inc.

W

W

10

Contents

Introduction...........coeeeieiieiieiciicniciicneeiee
Terminology and Resources.............ccccoeeeeneee.

Using Configuration and Policy Files..............

Configuring Frame Manager for a

USDPAA Applications..........cccceeevveeneeeneennnn.

Coarse Classification Examples............c..........

Policer Elements in the FMC Policy

Frame Manager Soft Parser.............ccoccceeeneen.
ApPPendixX Ao
AppendiX B....ooooiiiiie

Revision hiStory........ccceeveeveenieniieniiecie e,

2/

Z“freescale

rerminology and Resources

Readers should be familiar with the Frame Manager Configuration Tool User Guide and prepared to write FMC
configuration and policy files for their application or use case.

2 Terminology and Resources

Table 1. Terminology and Resources

Terminology

Refers to:

Associated resource

DPAA

Data Path Acceleration Architecture

¢ For a detailed description of DPAA, see
QorlQ Data Path Acceleration
Architecture Reference Manual.

* For a review of the conceptual usage of
the DPAA refer to the DPAA Primer in
the white paper Qor/Q DPAA Primer for
Software Architecture

Ethernet interface

Frame Manager Ethernet MAC

¢ From an SoC perspective, the set of
available interfaces is determined by
the hardware reset configuration word
(RCW). This is described in the Reset
Clocking, and Initialization section of the
SoC Reference Manual. Software plays
a role in determining the interfaces
available for use.

¢ The QorlQ SDK Ethernet User Manual
describes how to control the subset of
Ethernet interfaces that are used by
Freescale SDK software.

PCD function

Parse-classify-distribute (PCD) refers to the
Frame Manager's (FMan) ability to parse a
received frame's protocol headers, perform a
classification based on protocol header fields,
and distribute or enqueue the received frame
to a specific frame queue identifier (FQID)
based on the results of the classification.

¢ ltis the FMan's Parser, KeyGen,
Controller and Policer that are being
used for PCD. FMC is used to configure
the FMan to perform the desired PCD
function for a given application.

¢ |In the absence of configuring FMan for
PCD, FMan will enqueue received
frames to a default frame queue.

* The focus of this document is on "PCD
Frame Queues", i.e., FQIDs that the
Frame Manager uses when it enqueues
a frame to Queue Manager after
performing the parse-classify-distribute-
police function.

Packet Headers

The examples in this document refer to
various fields of standard protocol headers.

¢ For convenience, packet headers used
in the examples are shown in Appendix
A.

Frame Manager Hardware
Port

e FMan supports several types of
hardware ports: Ethernet receive (Rx)
and transmit (Tx), Offline, and Host. For
each Ethernet Interface, there is an
associated Rx and Tx port.

¢ This document focuses on Rx ports and
Offline ports as these types of ports
support FMan Parse, KeyGen,
Controller and Policer functions.

QorlQ Data Path Acceleration Architecture
Reference Manual

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc.

Using Configuration and Policy Files

3 Using Configuration and Policy Files

A set of example FMC configuration and policy files is included in Freescale Linux SDK for QorIQ Processors. The
objective of the example configuration and policy files described in this section is to maintain packet ordering per flow.

3.1 Objective: Maintaining Packet Order Per Flow

A flow can be defined using a packet’s header fields. For example, for packets with UDP and IPv4 headers, a flow can be
defined as the 5-tuple encompassing the packet’s:

e IPv4 source field

¢ IPv4 destination field
 IPv4 protocol field

» UDP source port field

» UDP destination port field

One way to maintain the order of the packets received for a particular flow is to require that all packets from a flow be
enqueued to a single frame queue and that a single core handles all of the packets received on that frame queue.

When the DPAA Ethernet driver initializes a PCD frame queue, it sets the frame queue descriptor’s destination work queue
field, DEST_WQ, to a dedicated channel. A dedicated channel is serviced exclusively by single software portal. By setting
the DEST_WQ to a dedicated channel, a single software portal services the frame queue. This is in contrast to setting the
DEST_WQ to a pool channel, where multiple software portals can service the frame queue. The DPAA Ethernet driver
guarantees affinity between a software portal and a core. Hence, a single core processes all of the frames enqueued to a
specific PCD frame queue. For further information regarding the frame queue initialization performed by the DPAA Ethernet
driver, see The Datapath Acceleration Architecture Linux Ethernet Driver Chapter 1.4.

Frame Manager performs PCD on Rx frames and computes a FQID for each received frame. When Frame Manager enqueues
a frame to Queue Manager it provides the frame descriptor (FD) and FQID. In this example, Frame Manager is configured so
that frames belonging to the same flow are enqueued to the same FQID. Since frame queues are treated by Queue Manager as
FIFO queues, and the DEST_WQ of each frame queue is a dedicated channel, packet ordering is maintained. For an overview
of this technique for maintaining flow order, refer to the QorIQ DPAA Primer for Software Architecture.

3.2 Example Usage on Target Board

Policy file /etc/fmc/config/policy hash 128fqg.xml and the configuration file /etc/fmc/config/
config 10g.xml are provided in Freescale Linux SDK. These example files were created with the objective of preserving
packet ordering per flow. Example usage on target board:

$ cd /etc/fmc/config
$ fmc -c config 10g.xml -p policy hash 128fg.xml -a

It is assumed that /etc/fmc/config/config 10g.xml has been appropriately modified for the interfaces that are enabled
on the target board. We provide some examples of configuration file modifications below.

NOTE

If you want to examine config 10g.xml and policy hash 128fg.xml on your
host, these files are included in the SDK package “eth-config”. After extracting the
source code for the “eth-config” package, the xml files reside in the directory:

QorIQ-SDK-<versions>-<date>-yocto/build <target-board> release/tmp/
work/ppce500mec-£fsl-linx/eth-config-git-r3/git/

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 3

A 4
4\ |

using Configuration and Policy Files

3.3 Walk-through Configuration File contig 10g.:xm

The contents of configuration file config_10g.xml are displayed in the code below. In this configuration file, the element
engine has name “fm0”. Valid engine names are “fm0” and “fm1” corresponding to hardware blocks FMan1 and FMan2. For
devices with only one frame manger, only “fm0” can be configured. For devices with two frame managers, “fm0” and/or
“fm1” can be configured. In this example, there is one element engine with name “fm0” therefore FMan1 is configured.

<cfgdatas>
<configs>
<engine name="fm0">
<port type="10G" number="0" policy="linux fman tester policy 6"/>
</engine>
</config>
</cfgdatas>

The child element port has attributes type , number and policy. The attribute values used in the examples are shown in the
table below.

Table 2. config 10g.xm1 Child Element Port Example

'port' Attributes Attribute Value in Example Allowed Values
type 10G 10G, 1G or OFFLINE
number 0 0,1,2,...,(n-1) where n is the number of ports of that
type .
policy linux_fman_tester_policy_6 Individual policies must be defined in the policy file

The policy “linux_fman_tester_policy_6" describes to Frame Manager how it should compute the FQID for frames received
on the 10GEC port. Frame Manager uses the computed FQID when it enqueues the Rx frame to Queue Manager.

Using config 10g.xml “asis” as input to FMC, network interfaces other than FMan 1’s 10GEC interface are configured
for PCD and any traffic received on these other interfaces is not enqueued to the port’s default FQ.

The policy “linux_fman_tester_policy_6" is defined in the policy file policy hash 128fqg.xml. This policy file is
discussed in the next section . For now let’s note that policy hash 128fqg.xml defines 16 policies (below) that are
intended to be used to configure specific ports. Also listed in the table is a Queue Base, also described in this document. Note
that it’s not required to use all of the policies that have been defined in a policy file.

Table 3. policy hash 128£q.xm1 defines 16 policies

Policy Port Queue Base
linux_ fman tester policy 0 FMani dTSEC1 0x3800
linux fman tester policy 1 FMan1 dTSEC2 0x3880
linux_fman tester policy 2 FMan1 dTSEC3 0x3900
linux fman tester policy 3 FMani dTSEC4 0x3980
linux fman tester_policy 4 FMan1 dTSEC5 0x3a00
linux fman tester policy 5 FMan1 dTSEC6 0x3a80
linux fman tester policy 6 FMan1 10GECH1 0x3c00
linux_fman tester policy 7 FMan1 10GEC2 0x3c80
linux_fman tester policy 8 FMan2 dTSECH1 0x7800
linux fman tester policy 9 FMan2 dTSEC2 0x7880

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

4 Freescale Semiconductor, Inc.

g |

Using Configuration and Policy Files

Table 3. policy hash 128£q.xm1 defines 16 policies (continued)

Policy Port Queue Base
linux fman tester policy 10 FMan2 dTSEC3 0x7900
linux fman tester policy 11 FMan2 dTSEC4 0x7980
linux fman tester policy 12 FMan2 dTSEC5 0x7a00
linux_fman_ tester policy 13 FMan2 dTSEC6 0x7a80
linux_fman tester policy 14 FMan2 10GEC1 0x7c00
linux_fman_tester policy 15 FMan2 10GEC2 0x7c80

To recap, after issuing the Linux command "fmc -p policy hash 128fg.xml -c config 10g.xml -a" FManl
10GEC port is configured for PCD according to policy “linux_fman_tester_policy_6" which is defined in the policy file
policy hash 128fqg.xml.

3.4 Walk-through Policy File sc-128:q-p.xm

From policy file policy hash 128fq.xml, the policy and distribution elements applicable to
“linux_fman_tester_policy_6" are shown in the table below.

Table 4. Example policy and distribution elements

Element Code Segment
policy: <policy name="linux fman tester policy 6">
linux_fman_tester_policy_6 <dist_order>
<distributionref name="udpethé"/>
<distributionref name="tcpethé6"/>
<distributionref name="ipv4ethé"/>
<distributionref name="garbage dist 6"/>
</dist_order>
</policy>
e distribution "udpeth6" <distribution name="udpeth6">
e applied FIRST <queue count="128" base="0x3c00"/>
<key>
<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
<fieldref name="ipv4.nextp"/>
<fieldref name="udp.sport"/>
<fieldref name="udp.dport"/>
</key>
</distributions>
¢ distribution "tcpeth6" <distribution name="tcpethé6">
 applied SECOND <queue count="128" base="0x3c00"/>
<key>
<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
<fieldref name="ipv4.nextp"/>
<fieldref name="tcp.sport"/>
<fieldref name="tcp.dport"/>
</key>
</distributions>
e distribution "ipv4eth6" <distribution name="ipv4ethé">
o applied THIRD <queue count="128" base="0x3c00"/>
<key>
<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 5

A\ 4
N
using Configuration and Policy Files

Table 4. Example policy and distribution elements (continued)

Element Code Segment
<fieldref name="ipv4.tos"/>
</key>
</distribution>
e distribution <distribution name="garbage dist_6">
"garbage_dist_6" <queue count="1" base="0x3c00"/>
« applied FOURTH </distributions>

The policy element is named “linux_fman_tester_policy_6". A policy element lists the distributions that Frame Manager will
use for ports configured to use the policy. In this example, 4 distributions are listed: “udpeth6”, “tcpeth6”, “ipv4eth6” and
“garbage_dist_6". Frame Manager will try the distributions in the order listed in the policy element. Here, FMan1 will first

try the distribution “udpeth6” for traffic received on it’s 10GEC port.

3.4.1 Distribution "udpeth6"

From the code segments in the table above, we see that distribution “udpeth6” has 5 keys:

Table 5. Distribution "udpeth6" 5 Keys

Keys Protocol Header Field
ipv4.src IPv4 Source IP Address
ipv4.dst IPv4 Destination IP Address
ipv4.nextp IPv4 Protocol
udp . sport UDP Source Port
udp .dport UDP Destination Port

The presence of a IPv4 header and a UPD header are required in order for frame manager to extract these 5 keys from a
frame. So if a Rx frame has an IPv4 header and a UDP header then Frame Manager will use the “udpeth6” distribution to

compute the frame’s FQID.

In addition to the child element key of the “udpeth6” distribution, there is also a child element queue.
Table 6. Distribution "udpeth6" Queue

Element Attribute / Value pair

"queue” count = "128"
base = "0x3c00"

The element queue attribute count specifies the number of FQIDs and attribute base is the base FQID. For “udpeth6”, the
number of FQIDs is 128 and the base FQID is 0x3c00 .

The diagram below shows the FQID calculation for distribution "udpeth6".

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013
6 Freescale Semiconductor, Inc.

Using Configuration and Policy Files

udpeth6
Build Key Hash Shift & Logical Base

) Function Bit Mask OR with Addition
Use Fields: 64-bit 7-bit OR data 7-bit (Logical
ipvé4.src Key Value Value vector Value OR) FQID
ipv4.dst > > Noshit [—> —>
ipv4.nextp Bit Mask: 0x3C00-
udp.sport not used Base: 0x3C7F
udp.dport 0x7F in this 0x3C00

example

Figure 1. Frame Manager FQID Generation for Distribution "udpeth6"

LEINT3 CEINT3 EEIT3

Frame Manager KeyGen will concatenate the frame’s “ipv4.src”, “ipv4.dst”, “ipv4.nextp”, “udp.sport”, and “udp.dport”
fields and will use the concatenated fields as input to it’s hash function. The result will be a 64-bit hash value. The 64-bit
hash value will be ANDed with 0x7F (yielding 128 possible FQIDs) and then ORed with 0x3c00. All Rx frames that have
IPv4 and UDP protocol headers will be enqueued to a FQID in the range 0x3c00 - 0x3c7£. Rx frames belonging to the
same flow (i.e., having the same “ipv4.src”, “ipv4.dst”, “ipv4.nextp”, “udp.sport”, and “udp.dport” fields) will be enqueued
to the same FQID because their 64-bit hash value will be identical. Note that it is possible for multiple flows to be enqueued

to the same frame queue.

3.4.2 Distribution “tcpeth6"

If an Rx frame does not have both an IPv4 header and a UDP header, then the next distribution listed in the policy
“linux_frman_tester_policy_6" will be tried. In this example, the next distribution to try is the distribution “tcpeth6":

<distribution name="tcpethé6">
<queue count="128" base="0x3c00"/>

<keys>
<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
<fieldref name="ipv4.nextp"/>
<fieldref name="tcp.sport"/>
<fieldref name="tcp.dport"/>

</key>

</distribution>

9% 9% ¢ LEIT3

We see that distribution “tcpeth6” has 5 keys: “ipv4.src”, “ipv4.dst”, “ipv4.nextp”,
correspond to IPv4 and TCP protocol header fields as shown in the table below.

Table 7. Distribution "udpeth6" 5 Keys

tep.sport”, and “tcp.dport”. The keys

Keys Protocol Header Field
ipv4.src IPv4 Source IP Address
ipv4.dst IPv4 Destination IP Address
ipv4 .nextp IPv4 Protocol
tcp.sport TCP Source Port
tcp.dport TCP Destination Port

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 7

using Configuration and Policy Files

The keys are IPv4 and TCP protocol header fields. If a Rx frame has an IPv4 header and a TCP header then Frame Manager
will use distribution tepeth6 to compute the frame’s FQID. For distribution “tcpeth6” the queue count is 128 and the base
FQID is 0x3c00 (same base as used for distribution “udpeth6”).

The diagram below shows the FQID calculation for distribution "tcpeth6".

tcpeth6

Build Key

Use Fields:
ipv4.src
ipv4.dst
ipv4.nextp
tcp.sport
tcp.dport

Key
—»

Hash

Function

64-bit
Value

Shift &
Bit Mask

No Shift
Bit Mask:
0x7F

7-bit
Value

Logical

OR with
OR data
vector

not used
in this
example

Base
Addition
7-bit 1 () ggical
Value OR) FQID
—> —>
0x3C00-
Base: 0x3C7F
0x3C00

Figure 2. Frame Manager FQID Generation for Distribution "tcpeth6"

Frame Manager KeyGen will concatenate the frame’s “ipv4.src”, “ipv4.dst”,

LLINNT3

ipv4.nextp”, “tcp.sport”, and “tcp.dport” fields

and generate a 64-bit hash value based on the concatenated fields. The 64-bit hash value will be ANDed with Ox7F. The
resulting 7-bit value will be ORed with 0x3c00. So all Rx Frames that have IPv4 and TCP protocol headers will be enqueued
to a FQID in the range 0x3c00 - 0x3c7f. Rx Frames belonging to the same flow (i.e., having the same “ipv4.src”,
“tcp.sport”, and “tcp.dport” fields) will be enqueued to the same frame queue.

Lt}

“ipv4.dst”, “ipv4.nextp

3.4.3 Distribution “ipv4eth6”

If an Rx frame does not have both an IPv4 header and a TCP header, then the next distribution listed in the policy
“linux_fman_tester_policy_6" will be tried. In this example, the next distribution to try is the distribution “ipv4eth6”:

<distribution name="ipv4ethé6">
<queue count="128" base="0x3c00"/>

<key>

<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
<fieldref name="ipv4.tos"/>

</key>
</distributions>

as shown below.

CEINNT3

Distribution “ipv4eth6” has 3 keys: “ipv4.src”,

ipv4.dst”, and “ipv4.tos”. The keys correspond to IPv4 protocol header fields

Table 8. Distribution "udpeth6" 5 Keys

Keys Protocol Header Field
ipv4.src IPv4d Source IP Address
ipv4.dst IPv4 Destination IP Address
ipv4.tos IPv4 Protocol

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc.

Using Configuration and Policy Files

The keys are IPv4 protocol header fields. If a Rx frame has an IPv4 header then Frame Manager will use distribution
“ipv4eth6” to compute the frame’s FQID. For distribution “ipv4eth6” the queue count is 128 and the base FQID is 0x3c00
(same base as used for “udpeth6” and “tcpeth6”).

ipv4eth6
Build Key Hash Shift & Logical Base
. Function Bit Mask OR with Addition
.Use Fields: 64-bit 7-bit | OR data |70t (Logical
ipv4.src Key Value Value vector Value OR) FQID
ipv4.dst > > Noshit [—> —>
ipva.tos Bit Mask: 0%3C00-
not used Base: 0x3C7F
0x7F in this 0x3C00
example

Figure 3. Frame Manager FQID Generation for Distribution "ipv4eth6"

Frame Manager KeyGen will concatenate the frame’s “ipv4.src”, “ipv4.dst”, and “ipv4.tos” fields and generate a 64-bit hash
value based on the concatenated fields. The 64-bit hash value will be ANDed with 0x7F. The resulting 7-bit value will be
ORed with 0x3c00. So all Rx Frames that have IPv4 protocol headers will be enqueued to a FQID in the range 0x3c00 -
0x3c7£. Rx Frames belonging to the same flow (i.e., with the same “ipv4.src”, “ipv4.dst”, and “ipv4.tos” fields) will be
enqueued to the same frame queue.

3.4.4 Distribution “garbage_dist_6"

If an Rx frame does not have an IPv4 header, then the next distribution listed in the policy “linux_fman_tester_policy_6" will
be tried. In this example, the next distribution to try is the distribution “garbage_dist_6":

<distribution name="garbage dist 6">
<queue count="1" base="0x3c00"/>
</distribution>

Distribution garbage_dist_6 does not have a child element key . In this case, there are no requirements for specific protocol
headers to be present. For distribution “garbage_dist_6" the queue count is 1 (a single frame queue) and the base FQID is
0x3c00. When frame manager uses distribution “garbage_dist_6" for a Rx frame, frame manager will enqueue the frame to
FQID 0x3co00.

NOTE
If distribution “garbage_dist_6" is listed first instead of last in the element dist_order ,
then all frames received on FManl 10GEC interface will be enqueued to FQID 0x3c00.

3.5 Modifying Configuration File contig 105.5m

Examples for two separate QorIQ SOCs are covered. The first example illustrates modifications for the P2041. The second
example illustrates modifications for the P4080. Both examples show modifications to the same configuration file
config 10g.xml.

3.5.1 QorlQ P2041

P2041 contains one Frame Manager instance with the following Ethernet MACs:

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 9

A
4

4
A

using Configuration and Policy Files

« 5x dTSEC (1G)
« 1x 10GEC (10G)

Assume that our RCW settings and software configuration are such that we can use the following interfaces:

* FManl dTSEC1 (SGMII)
FMan1 dTSEC2 (SGMII)
FMan1 dTSEC4 (RGMII)
FMan1 dTSECS (RGMII)
FManl 10GEC (XAUI)

In this example, we configure FMan 1 dTSEC1, dTSEC2, and 10GEC Rx ports for PCD. The modified configuration file is
shown below:

<cfgdatas>
<config>
<engine name="fm0">
<port type="1G" number="0" policy="linux fman tester policy 0"/>
<port type="1G" number="1" policy="linux fman tester policy 1"/>
<port type="10G" number="0" policy="linux fman tester policy 6"/>
</engine>
</config>
</cfgdatas>

Recall that for port type “1G”, numbering starts at 0, and so numbers 0 and 1 correspond in hardware to dTSEC1 and
dTSEC2. For port type 10G, the number O corresponds to the single I0GEC. Here, dTSEC1, dTSEC2, and 10GEC will be
configured to use policies “linux_fman_tester_policy_07, “linux_fman_tester_policy_1", and “linux_fman_tester_policy_6",
respectively. These policies are defined in the policy file policy hash 128fqg.xml. They are defined similarly to policy
“linux_fman_tester_policy_6"

After examining the policy definitions in policy hash 128fq.xml note that the difference between these policies amounts
to the queue base value used by the distributions:

Table 9. policy hash 128£q.xm1 policies

Policy Port Queue Base
linux_ fman tester policy 0 FMan1 dTSEC1 0x3800
linux fman tester policy 1 FMan1 dTSEC2 0x3880
linux_fman tester policy 2 FMan1 dTSEC3 0x3900
linux_fman tester policy 3 FMan1 dTSEC4 0x3980
linux_ fman tester policy 4 FMan1 dTSEC5 0x3a00
linux fman tester policy 6 FMan1 10GEC 0x3c00

For information regarding selection of the queue base value see The Datapath Acceleration Architecture Linux Ethernet
Driver Chapter 1.4.

The reason for using distinct policies (i.e., a distinct queue base) for each port is to be able to determine the frame’s Rx port
from the FQID. We could have used the same policy, e.g., policy “linux_fman_tester_policy_6" for all of the ports listed in
the configuration file.

NOTE
The DPAA Ethernet driver only initializes 128 frame queues per enabled interface. If you
are going to use any of the 16 policies defined in policy hash 128fg.xml in your
configuration file, make sure to select a policy corresponding to an enabled port. This
guarantees that the FQIDs used by the policy have been initialized by the DPAA Ethernet
driver.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

10 Freescale Semiconductor, Inc.

g |

4
Configuring Frame Manager for a USDPAA Applications

3.5.2 QorlQ P4080

P4080 contains two Frame Manager instances each with the following Ethernet MACs:

* 4 x dTSEC (1G)
* 1 x I0GEC (10G)

Assume that the RCW settings and software configuration are such that we have enabled the following interfaces:

* FManl dTSEC2 (RGMII)
* FManl 10GEC (XAUI)
FMan2 dTSEC3 (SGMII)
FMan2 dTSEC4 (SGMII)
* FMan2 10GEC (XAUI)

In this example we configure both XAUI and both SDMII interfaces for PCD. Modify the config_10g.xml file as shown in
the code below:

<cfgdatas>
<configs>
<engine name="fm0">
<port type="10G" number="0" policy="linux fman tester policy 6"/>
</engine>
<engine name="fml">
<port type="1G" number="2" policy="linux fman tester_ policy 10"/>
<port type="1G" number="3" policy="linux fman tester policy 11"/>
<port type="10G" number="0" policy="linux fman tester policy 14"/>
</engine>
</config>
</cfgdatas>

We see that the element config has two child element engines: “fm0” corresponding to hardware block FMan1 and “fm1”
corresponding to FMan2. So FMan1 10GEC Rx port is configured to use policy “linux_fman_tester_policy_6". Now moving
focus to engine “fm1”, recall that port numbering for port types starts at 0. Since we are configuring dTSEC3 and dTSEC4,
the port numbers are “2” and “3”. Thus FMan2 dTSEC3, dTSEC4, and 10GEC Rx ports are configured to use policies
“linux_fman_tester_policy_10", “linux_fman_tester_policy_11", and “linux_fman_tester_policy_14", respectively. The
policies were chosen according to the Policy/Port relationships listed below for policy hash 128fqg.xml.

Table 10. poilicy hash 128fq.xm1 defines these four policies

Policy Port Queue Base
linux fman tester policy 6 FMan1 10GEC 0x3c00
linux fman tester policy 10 FMan2 dTSEC3 0x7900
linux_ fman tester policy 11 FMan2 dTSEC4 0x7980
linux_fman_tester policy 14 FMan2 10GEC 0x7c00

4 Configuring Frame Manager for a USDPAA Applications

This section provides a walk through of FMC configuration and policy files used for USDPAA applications. There's no
requirement to be familiar with USDPAA in order to understand these examples.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 11

vumiguring Frame Manager for a USDPAA Applications

4.1 Load Spreading

Similar to SMP Linux (section 3), distributions defined in USDPAA policy files are used to configure the Frame Manager to
enqueue packets from the same flow to the same frame queue. However, the destination work queue for the PCD frame
queues is a pool channel instead of a dedicated channel.

When a USDPAA application initializes a PCD frame queue, it sets the frame queue descriptor’s destination work queue
field to one of four pool channels. The cores running an application are all eligible to receive packets from the pool channels.
In this way, Queue Manager is used to load-spread the received packets among the cores for efficient processing of the Rx
packets. Packet ordering will not be maintained as packets from the same flow may be spread across multiple cores.

4.2 Example Usage on Target Board

Before running USDPAA applications ipfwd, ipsecfwd, reflector, and hello_reflector it is a requirement to configure frame
manager for the interfaces that will receive traffic. The USDPAA applications process frames received on PCD frames
queues and drop frames received on default frame queues. Recall that there is one default frame queue per receive port. If the
receive ports are not configured for PCD, then Frame Manager will enqueue the Rx frames to default frame queues and
subsequently the USDPAA application will drop the frames. Below are example FMC commands to run on the target board
prior to starting a USDPAA application. The configuration and policy files used in these examples are provided in the
USDPAA package.

For P2041 using Serdes Protocol 0x9 and P3041/P5020 using Serdes Protocol 0x36:

$ c¢d /usr/etc/
$ fmc -c usdpaa config p2 p3 p5 14g.xml -p usdpaa policy hash ipv4.xml-a

P4080DS using Serdes Protocol Oxe:

$ cd /usr/etc/
$ fmc -c usdpaa config p4 serdes Oxe.xml -p usdpaa policy hash ipv4.xml-a

NOTE
If you want to examine USDPAA FMC Input files on your host, these files are included
in the SDK package “usdpaa”. After extracting the source code for the package “usdpaa”,
the xml files reside in the directory:

QorIQ-SDK-V1.2-20120614-yocto/build [target board] release/tmp/
work/ppce500mec-£fsl-linx/usdpaa-git-r7/git/apps/ppac/

4.3 Walk'through COnfiguration File usdpaa config p4_ serdes_Oxe.xml

The contents of configuration file usdpaa_config serdes Oxe.xml are displayed below. The name of the configuration
file contains “serdes_0Oxe” which is a reference to serdes protocol Oxe. Setting RCW[SRDS_PRTCL] equal to Oxe enables the
following interfaces: FMan1 10GEC, FMan2 dTSEC3 SDMII, FMan 2 dTSEC4 SDMII, and FMAN 2 10GEC. These are the
interfaces configured in usdpaa_config serdes Oxe.xml.

<cfgdatas>
<configs>
<engine name="fm0” >
<port type="10G"” number="0” policy="hash ipsec_src dst spi policy5”/>
</engines>
<engine name="fml” >
<port type="1G” number="2" policy="hash ipsec src_dst spi policy8”/>
<port type="1G” number="3" policy="hash ipsec src_dst spi policy9”/>
<port type=”10G” number="0” policy="hash ipsec src dst spi policyll”/>

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

12 Freescale Semiconductor, Inc.

g |

4
Configuring Frame Manager for a USDPAA Applications

</engine>
</config>
</cfgdatas>

In this example, FMan 1 10GEC, FMan2 dTSEC3, FMan 2 dTSEC4, and FMan2 10GEC are configured to use policies
“hash_ipsec_src_dst_spi_policy5”, “hash_ipsec_src_dst_spi_policy8”, “hash_ipsec_src_dst_spi_policy9”, and
“hash_ipsec_src_dst_spi_policy11”, respectively. (For a more detailed description of how configuration files are used to
configure specific ports, see examples in the previous topic). The policies used in usdpaa_config serdes Oxe.xml are
defined in the policy file usdpaa policy hash ipv4.xml.

We will examine the policy file usdpaa_policy hash ipv4.xml below. For now let’s note that this policy file defines 12
policies that are intended to be used to configure specific ports. The 12 policies along with the corresponding ports and queue
base are listed in the table below.

Table 11. Policies defined in Policy file sc-128£g-p.xm1

Policy Port Queue Base
hash ipsec src dst spi policy0 FMan 1 dTSEC 1 0x400
hash ipsec src dst_spi policyl FMan 1 dTSEC 2 0x500
hash ipsec src dst_spi policy2 FMan 1 dTSEC 3 0x600
hash ipsec src dst spi policy3 FMan 1 dTSEC 4 0x700
hash ipsec src dst_spi policy4 FMan 1 dTSEC 5 0x800
hash ipsec src dst spi policy5 FMan 1 10GEC 0x900
hash ipsec src dst_spi policyé FMan 2 dTSEC 1 0xa00
hash ipsec src dst spi policy7 FMan 2 dTSEC 2 0xb00
hash ipsec src dst spi policy8 FMan 2 dTSEC 3 0xc00
hash ipsec src dst spi policy?9 FMan 2 dTSEC 4 0xd0o
hash ipsec src dst spi policyl0 FMan 2 dTSEC 5 0xe00
hash ipsec_src dst spi policyll FMan 2 10GEC 0x£00

4.4 Walk'through POIicy File usdpaa policy hash ipv4.xml

Instead of displaying the entire contents of policy file usdpaa _policy hash ipv4.xml, only the policy and distribution
elements applicable to policy "hash_ipsec_src_dst_spi_policy5” are shown in the table below. The other 11 policies are
defined similarly. The difference is the queue base used by the distributions.

Table 12. Example Policy and Distribution Elements

Name Code Example

olicy:

ﬁas&ﬁpsec_ac_dﬁ_sproHcys <policy name="hash ipsec src dst spi policy5">

<dist orders
<distributionref name="hash ipsec_src_dst_spi_dist5"/>
<distributionref name="hash ipv4 src dst dist5"/>
<distributionref name="default dist5"/>

</dist_orders>

</policy>
* distribution <distribution name="hash ipsec_src_dst spi dist5">
"hash_ipsec_src_dst_spi_di <queue count="32" base="0x900"/>
st5" B - <key>

<fieldref name="ipv4.src"/>

e apply FIRST

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 13

3
4

4
A

|
vumiguring Frame Manager for a USDPAA Applications

Table 12. Example Policy and Distribution Elements (continued)

Name Code Example

<fieldref name="ipv4.dst"/>
<fieldref name="ipsec esp.spi"/>

</key>
</distributions>
e distribution <distribution name="hash ipv4 src_dst_dist5">
"hash_ipv4_src_dst_dist5" <queue count="32" base="0x900"/>
 apply SECOND <key>

<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>

</key>
</distributions>
¢ distribution "default_dist5" <distribution name="default dist5">
 apply THIRD <queue count="1" base="0x5b"/>
</distributions>

A policy element lists the distributions that Frame Manager will use for interfaces configured to use the policy. Frame
Manger will try the distributions in the order listed in the policy element. According to policy
“hash_ipsec_src_dst_spi_policy5", FMan 1 will first try to use distribution “hash_ipsec_src_dst_spi_dist5” for traffic
received on it’s 10GEC port.

4.5 Distribution “hash_ipsec_src_dst_spi_dist5”

We see that distribution “hash_ipsec_src_dst_spi_dist5” has 3 keys. The keys and their corresponding protocol header and
fields are shown in the table:

Table 13. IPv4 and ESP protocol header fields

Keys Protocol Header Field
ipv4.src IPv4 Source IP Address
ipv4 .dst IPv4 Destination IP Address
ipsec_esp.spi ESP Security Parameters Index

The presence of a IPv4 header and a ESP header are required in order for Frame Manager to extract these 3 keys from a
frame. So if a Rx frame has an IPv4 header and an ESP header then Frame Manager will use the distribution
“hash_ipsec_src_dst_spi_dist5” to compute the frame’s FQID.

In addition to the child element key of the “hash_ipsec_src_dst_spi_dist5” distribution, there is also a child element queue.

Table 14. Distribution "hash_ipsec_src_dst_spi_dist5" Queue

Element Attribute / Value pair

"queue” count = "32"
base = "0x900"

The queue attribute base is the base FQID and the queue attribute count specifies the number of FQIDs. For distribution
“hash_ipsec_src_dst_spi_dist5”, the base FQID is 0x900 and number of FQIDs is 32.

The diagram below shows the FQID calculation for distribution "hash_ipsec_src_dst_spi_dist5"

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

14 Freescale Semiconductor, Inc.

Configuring Frame Manager for a USDPAA Applications

hash_ipsec_src_dst_spi_dist5

Build Key Hash Shift & Logical Base
) Function Bit Mask OR with Addition
Use Fields: 64-bit 5bit | ORdata |oPit (Logical
!pv4.src Key Value Value vector Value OR) FQID
ipv4.dst > —> , —> —> —»
ipsec_esp.spi No Shift 0x900 -
Bit Mask: not used Base: 0x91F
Ox1F in this 0x900
example

Figure 4. FQID calculation for hash_ipsec_src_dst_spi_dist5

LEINT3

Frame Manager KeyGen will concatenate the frame’s “ipv4.src”, “ipv4.dst”, and “ipsec_esp.spi” fields and will use the
concatenated fields as input to its hash function. The result will be a 64-bit hash value. In this case, the 64-bit hash value will
be ANDed with 0x1F (yielding 32 possible FQIDs) and then ORed with 0x900. All Rx frames that have IPv4 and ESP
protocol headers will be enqueued to a FQID in the range 0x900 - 0x91f .Rx frames belonging to the same flow (i.e.,

having the same “ipv4.src”, “ipv4.dst”, “ipsec_esp.spi” fields) will be enqueued to the same FQID because their 64-bit hash
value will be identical. Note that it is possible for multiple flows to be enqueued to the same frame queue.

4.6 DiStI‘ibution hash ipsec src dst spi dist5

If an Rx frame does not have both an IPv4 header and a ESP header, then the next distribution listed in the policy
“hash_ipsec_src_dst_spi_policy5” will be tried. In this example, the next distribution to try is distribution
"hash_ipv4_src_dst_dist5":

<distribution name="hash ipv4 src dst dist5">
<gqueue count="32" base="0x900"/>
<keys>
<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
</key>
</distribution>

Distribution "hash_ipv4_src_dst_dist5" has 2 keys that correspond to IPv4 protocol header fields::
Table 15. IPv4 and ESP protocol header fields

Keys Protocol Header Field
ipv4d.src IPv4 Source IP Address
ipv4 .dst IPv4 Destination IP Address

The keys are IPv4 protocol header fields. If a Rx frame has an IPv4 header then Frame Manager will use the distribution
"hash_ipv4_src_dst_dist5" to compute the frame’s FQID.

For distribution "hash_ipv4_src_dst_dist5" the queue count is 32 and the base FQID is 0x900 (same base as used for
distribution “hash_ipsec_src_dst_spi_dist5").

The diagram below shows the FQID calculation for distribution "hash_ipv4_src_dst_dist5"

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 15

vumiguring Frame Manager for a USDPAA Applications

hash_ipv4_src_dst_dist5

Build Key Hash Shift & Logical Base
. Function Bit Mask OR with Addition

Use Fields: 64-bit 5-bit | OR data [5Pit | (Logical

ipv4.src Key Value Value t Value OR FQID

ipv4.dst L » IS _ __, vector |/ OR) L
No Shift
Bit Mask: 03900~

) not used Base: 0x91F
Ox1F in this 0x900
example

Figure 5. FQID calculation for hash_ipv4_src_dst_dist5

Frame Manager KeyGen will concatenate the frame’s “ipv4.src” and “ipv4.dst” fields and generate a 64-bit hash value based
on the concatenated fields. The 64-bit hash value will be ANDed with 0x1F. The resulting 5-bit value will be ORed with
0x900 . So all Rx Frames that have IPv4 protocol headers will be enqueued to a FQID in the range 0x900 - 0x91f. Rx
Frames belonging to the same flow (i.e., with the same “ipv4.src” and “ipv4.dst” fields) will be enqueued to the same frame
queue.

4.7 Distribution “default_dist5”

If an Rx frame does not have an IPv4 header, then the next distribution listed in policy “hash_ipsec_src_dst_spi_policy5”
will be tried. In this example, the next distribution to try is distribution “default_dist5”:

<distribution name="default dist5">
<queue count="1" base="0x5b"/>
</distribution>

Distribution “default_dist5” does not have a child element key. In this case, there are no requirements for specific protocol
headers to be present. For distribution “default_dist5” the queue count is 1 (a single frame queue) and the base FQID is
0x5B . When frame manager uses distribution “default_dist5” for a Rx frame, frame manager will enqueue the frame to
FQID 0x5B . As noted earlier, USDPAA applications ipfwd, ipsecfwd, reflector, and hello_reflector drop packets received
on the default frame queue.

For frames received on PCD frame queues 0x900-0x91F, USDPAA applications ipfwd, ipsecfwd, reflector, and
hello_reflector will process the frames according to the application’s purpose. For example, applications reflector and
hello_reflector will “reflect” or transmit the frame on the port in which the frame was received.

4.8 Offline port example using P4080 to illustrate

So far we have considered PCD configuration for receive paths only, i.e., for packets received on Frame Manager 1G and
10G ports. Offline Ports can also perform PCD function. An SoCs CPUs or Security Engine may enqueue frames to Queue
Manager that are destined to Offline Ports for PCD processing.

Now let’s take a look at a configuration file that is used to configure a P4080 offline port for PCD. The name of the file is
usdpaa_config p4 serdes Oxe offline host.xml. The contents of the element cfgdata are shown here.

<cfgdatas>
<config>
<engine name="fm0">
<port type="10G" number="0" policy="hash default policy5"/>
<port type="OFFLINE" number="1" policy="hash ipsec src dst spi policy2"/>

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

16 Freescale Semiconductor, Inc.

Coarse Classification Examples

</engine>

<engine name="fml">
<port type="1G" number="2" policy="hash default policy8"/>
<port type="1G" number="3" policy="hash default policy9"/>
<port type="10G" number="0" policy="hash default policyll"/>

</engine>

</config>
</cfgdatas>

Engine “fm0” has two child element ports. The first element port has attribute type “10G”. The 10GEC port is configured to

use policy “hash_default_policy5”. The second element port has attribute type “OFFLINE”, attribute number 1, and
attribute policy “hash_ipsec_src_dst_spi_policy2”. Port numbering starts with number 0. SoC P4080 has hardware Offline/
Host Command Ports 1,2,...,7. So in this example, FMan1 Offline Port 2 is configured to use policy
“hash_ipsec_src_dst_spi_policy2”. This policy is defined in the file usdpaa policy hash ipv4.xml.

The learning from the material above covered the structure and purpose of the config and policy files with examples. From
these examples we expect that you will be able to identify the pertinent policy and distribution elements and apply them to
your scenario.

5 Coarse Classification Examples

This section provides a walk through of FMC configuration and policy files used for USDPAA applications. There's no
requirement to be familiar with USDPAA in order to understand these examples.

So far we’ve seen examples of policy files that contain policy and distribution elements. These are required elements of a
policy file. A classification element is optional. A classification element is used for cases where protocol fields are to be
compared to fixed values, and based on the result of the comparison, Frame Manager will compute a FQID for the frame.

This functionality is referred to as “coarse classification” or “exact match.” The Frame Manager’s Controller block provides

this functionality.

5.1 Coarse Classification Examples

The table below shows policy, distribution, and classification elements of an example FMC policy file.

Table 16. Example Policy File Containing Classification Element

Element Code Example

Policy <policy name="example class policy">
<dist_ orders
<distributionref name="udp dist"/>
<distributionref name="non udp dist"/>
</dist_orders

</policy>
Distribution <distribution name="udp dist"s
<queue count="1" base="0x400"/>
<protocolss>

<protocolref name="udp"/>
<protocolref name="ipv4”/>
</protocols>
<action type="classification” name="udp_ classif”/>
</distributions>

Classification <classification name="udp classif">
<key>

<fieldref name="udp.dport"/>
</key>
<entry>

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc.

17

vuarse Classification Examples

Table 16. Example Policy File Containing Classification Element

(continued)
Element Code Example
<data>0x7918</datas>
<queue base="0x600"/>
</entry>
<entry>
<data>0x791A</datas>
<queue base="0x602"/>
</entry>
<entrys>
<data>0x791C</datas>
<queue base="0x604"/>
</entry>
</classification>
Distribution <distribution name="non_ udp_dist">
<queue count="1" base="0x800"/>
</distributions>

From the table above we see that the policy “example_class_policy” lists two distributions that Frame Manager will use for
ports configured to use the policy. Frame Manager will try the distributions in the order listed in the policy element. First we
examine distribution “udp_dist.” Notice that there is no element key, however, there is an element protocols. Similarly to the
element key that has child elements fieldref (e.g. “udp.sport”, “udp.dport”) the element protocols has child elements
protocolref. In this case, the element protocolref attribute names are “udp” and “ipv4”. So if a Rx frame has a UDP and an
IPv4 protocol header, then Frame Manager will use this distribution to determine the frame’s FQID. For distribution
“udp_dist,” the base FQID is 0x400 and the number of FQIDs is 1. In absence of any further action, Frame Manager would
enqueue frames with a UDP and IPv4 header to FQID 0x400. Since distribution “udp_dist” has an element action,
processing of frames that have both an UPD and IPv4 continues. Here, element action attribute type is “classification” and
attribute name is “udp_classif”. So the next action for Frame Manager is to perform classificaiton (i.e., exact match) on these
frames using classification “udp_classif”. If a frame does not have both a UDP and an IPv4 header, then Frame Manager will
try the next distribution listed in the policy “example_class_policy”.

Assume that our Rx frame has a UDP and an IPv4 header, then the next action by Frame Manager will be to perform
classification as specified by “udp_classif”. From the table above, classification “udp_classif” has child elements key and
entry. Taking a look at the element key, we see that the element fieldref attribute name is “udp.dport”. This means that
exact match will be performed using the frame’s UDP destination port field. Each element entry contains child elements
data and queue. Let’s see how the elements data and queue are used. In this example, a frame’s UDP destination field is
compared to data value 0x7918 and if equal, Frame Manager will enqueue to the frame to FQID 0x600. If UDP destination
port is equal to data value 0x71A then frame manager will enqueue the frame to FQID 0x602.If UDP destination port is
equal to data value 0x791C then frame manager will enqueue the frame to FQID 0x604. If UDP destination port is not equal
to any of these three data values, then frame manager will enqueue the frame to FQID 0x400 as determined from distribution
“udp_dist” that proceeded classification “udp_classif.”

5.2 Adding ‘action’ child element to classification element

For this section, we modified the example used above. The modifications are as follows:

* Added child element action to classification “udp_classif”
¢ Added distribution “hash_dist”

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

18 Freescale Semiconductor, Inc.

g |

4
Coarse Classification Examples

Table 17. Example Classification Element with Action Child Element

Element Code Example

Policy <policy name="classification policy">
<dist_ orders>
<distributionref name="udp dist"/>
<distributionref name="non udp dist"/>
</dist_orders

</policy>
Distribution <distribution name="udp_ dist"s>
<queue count="1" base="0x400"/>
<protocolss>

<protocolref name="udp"/>
<protocolref name="ipv4"/>

</protocols>
<action type="classification” name="udp classif”/>
</distributions>
Classification <classification name="udp classif">
<key>
<fieldref name="udp.dport"/>
</key>
<entry>
<data>0x7918</data>
<queue base="0x600"/>
</entry>
<entry>
<data>0x791A</data>
<queue base="0x602"/>
</entry>
<entry>
<data>0x791C</data>
<queue base="0x604"/>
</entry> .
<action type="distribution” condition="on-miss” < change <
name="hash_dist”/>
</classification>
Distribution <distribution name="hash dist">
<queue count="32" base="0x900"/>
<key>

<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>

</key>
</distributions>
Distribution <distribution name="non udp_dist">
<queue count="1" base="0x800"/>
</distributions>

The addition of the element action to “udp_classif” changes Frame Managers next action if the frame’s UDP destination port
does match any of three data values 0x7918, 0x791A, or 0x791C. The element action attribute condition is “on-miss.”
Inside a classification element the attribute condition “on-miss” is satisfied if the classification key does not match any of the
data values. In this case, if the UDP destination port does not equal 0x7918, 0x791A, or 0x791C then the “on-miss” condition
is satisfied. The action attribute type is “distribution” and the action attribute name is “hash_dist”. So the action for Frame
Manager in the event the “on-miss” condition is satisfied is to use the distribution “udp_hash_dist” for the received frame.

Suppose that a frame’s UDP destination port is not equal to 0x7918, 0x791A, or 0x791C. Then Frame Manager will use
distribution “hash_dist” to determine the frame’s FQID. Note that the frame has an IPv4 header, as this was one of the
protocolrefs for distribution “udp_dist.” Frame Manager KeyGen will concatenate fields “ipv4.src” and “ipv4.dst” and then
generate a 64-bit hash value. Since the queue count is “32” and the base FQID is 0x900the FQID will be in the range
0x900-0x91F.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 19

g |

vuarse Classification Examples

NOTE
The use of an element mask that allows coarse classification for a range of values is
supported.

5.3 Nested Classification Example

Frame Manager Controller supports tables stored in frame manager internal memory to perform the classification or exact
match comparisons. Frame Manager Controller supports nested look-ups. In the code example below, an example of a nested
look-up is given. Ethernet source and destination fields are compared to fixed values. Based on the result of the the first
table-lookup, if there is an exact match, a second table lookup will be performed.

Table 18. Nested Look-up

Element Code Example
Policy <distribution name="eth distribution ">
<queue count="1" base="0x600"/>
<protocolss>
<protocolref name="ethernet"/>
</protocols>
<action type="classification” name="classification 1"/>
</distributions>
Classification <classification name=" classification 1">
<key>
<fieldref name="ethernet.dst"/>
</key>
<entry>

<data>0x010101010101</data>
<queue base="0x601"/>
<action type="classification” name="classification 2"/>
</entry>
</classification>

Classification <classification name=" classification 2">
<key>
<fieldref name="ethernet.src"/>
</key>
<entry>
<data>0x020202020202</datas>
<queue base="0x602"/>
</entry>
</classification>

The distribution “eth_distribuion” has an element protocolref with attribute name “ethernet.” In addition, it has an element
action with attribute type “classification” and attribute name “classification_1.” So for frames with an Ethernet header,
Frame Manager will perform classification as specified by classification element “classification_1.”

The classification “classification_1" specifies to Frame Manger to compare the frame’s Ethernet destination field to data
value 0x010101010101. Note that the size of the data value equals the size of the Ethernet destination field. In this example,
the element entry has a child element action. The element action attribute type is “classification” and the attribute name is
“classification_2.” This means that if there is an exact match, i.e., Ethernet destination field is equal to 0x010101010101,
then Frame Manager will perform a second classification on the frame using “classification_2".

The flow chart below shows how the FQID is determined for frames with Ethernet headers:

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

20 Freescale Semiconductor, Inc.

Policer Elements in the FMC Policy Files

Destination

Address = FQID=
0x010101_ 0x600
010101 ?
Source
FQID= | "*° Address = FQID=
0x602 0x020202_ 0x601

020202 ?

Figure 6. FQID Computation for Nested Classification Example

6 Policer Elements in the FMC Policy Files

Frame Manager policer supports implementation of differentiated services at line speed on Rx or offline parsing paths.

The Frame Manager policer holds 256 traffic profiles in internal memory, each profile implementing RFC-2698, RFC-4115,
or pass-through mode. Each mode can work in either color-blind or color-aware mode and can pass or drop packets according
to their resulting color.

6.1 Understanding Policy File with Policer Elements

The USDPAA package contains a FMC policy file with two policer elements. The name of this policy file is
usdpaa_policer.xml. Similarly to the example policy files we have seen so far, usdpaa policer.xml defines 12
policies that are intended to be used to configure specific Rx ports. Let’s take a look at the definition of one of these policies:
“hash_ipsec_src_dst_spi_policy0”. The elements used in defining this policy are shown in the code shown below.

Table 19. Elements from usdpaa_policer.xml

Element Code Example

Policy <policy name="hash ipsec src dst spi policyO0">
<dist orders
<distributionref name="hash ipv4 src_dst dist0"/>
<distributionref name="default_ dist0"/>
</dist_order>

</policy>
Distribution <distribution name="hash ipv4 src_dst_dist0">
<queue count="32" base="0x400"/>
<key>

<fieldref name="ipv4.src"/>
<fieldref name="ipv4.dst"/>
</key>
<action name="policer 1g" type="policer"/>
</distributions>

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 21

runcer Elements in the FMC Policy Files

Table 19. Elements from usdpaa policer.xm1 (continued)

Element Code Example
Distribution <distribution name="default disto0"»>
<queue count="1" base="0x51"/>
</distributions>
Policer <policer name="policer 1g">

<algorithms>rfc2698</algorithms>
<color mode>color blind</color modes>
<CIR>1000000</CIR>
<EIR>1400000</EIR>
<CBS>1000000</CBS>
<EBS>1400000</EBS>
<unit>packet</unit>
</policer>

From the code example above, we see that the policy “hash_ipsec_src_dst_spi_policy0” lists two distributions that Frame
Manager will use for ports configured to use the policy. The first distribution listed is “hash_ipv4_src_dst_dist0” and the
second distribution listed is “default_dist0”.

Examining distribution “hash_ipv4_src_dst_dist0” we see that the keys are “ipv4.src” and “ipv4.dst”. The element queue
tells us that the number of frame queues is 32 and that the base FQID is 0x400. So up to this point, frames with IPv4 headers
will be assigned to FQIDs 0x400-0x41F. Since this distribution has an element action, processing of the frame will continue
after computation of the FQID. The element action attribute type is “policer” and the attribute name is “policer_1g”. After
determination of the FQID, the frame will then be sent to the Frame Manager Policer.

The element policer defines a policer profile. The element policer, shown in the code above, defines a policer profile named
“policer_1g”. The algorithm value is used to set the operation mode. Here we’re configuring the profile “policer_1g” to
operate in “rfc2698” mode. So the policing will be based on two-rate, three-color marking algorithm RFC2698. Additionally,
the color_mode value is “color_blind”. In color-blind mode the algorithm assumes that the packet stream is uncolored. The
values CIR , EIR, CBS and EBS are used to set the algorithm’s committed information rate, peak information rate,
committed burst size and peak burst size. The unit value can either be byte or packet, in this case the unit is “packet”.

There is no child element action in “policer_1g” and so after the Policer marks a frame either RED, YELLOW, or GREEN,
Frame Manager will enqueue the frame to the FQID that was determined by distribution “hash_ipv4_src_dst_dist0”.

In this example, if the received frame does not have an IPv4 header, then Frame Manager will compute a FQID for the frame
using the distribution “default_dist0” which will result in the frame being enqueued to FQID 0x51.

6.2 Modifying the Policer Element
Let’s modify the policer element as shown below.

Table 20. Modified Policer Element

Element Code Example

Policer <policer name="policer 1g">
<algorithm>rfc2698</algorithm>
<color_mode>color blind</color modex>
<CIR>1000000</CIR>
<EIR>1400000</EIR>
<CBS>1000000</CBS>
<EBS>1400000</EBS>
<unit>packet</units>
<action condition="on-red” type="drop”/>

</policers>

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

22 Freescale Semiconductor, Inc.

Frame Manager Soft Parser

In this example, “policer_1g” contains a child element action. The attribute condition is “on-red” and the attribute type is
“drop”. For this policer profile, packets that are marked RED will be dropped by the frame manager (more precisely, they
will be discarded by the Frame Manager Buffer Manager Interface). Packets that are marked GREEN and YELLOW will be
enqueued to the FQID as determined by the distribution that preceded “policer_1g”.

6.3 Example Using Color-blind Pass-through Mode

The code segment below shows an example of a policer element that specifies the use of color-blind pass-through mode for
the policer profile. The default_color value is “red” and so frames that are processed using this policer profile will be marked
RED. Because there is an element action that specifies to drop frames that are marked red, all packets that are processed by
this policer profile will be dropped.

Table 21. Color-blind pass-through mode profile

Element Code Example

Policer <policer name=“drop traffic"s
<algorithm>pass through</algorithms>
<color mode>color blind</color modex>
<default colorsred</default color>
<action condition="on-red" type=“drop"/>

</policers>

An example usage of policer profile “drop_traffic”:

Table 22. Usage of color-blind pass-through mode profile

Element Code example
Distribution <distribution name="distribution_drop">
<queue count="1" base="0x51"/>
<action type="policer” name = “drop traffic”/>
</distributions>

All frames that are processed by “distribution_drop” will be dropped.

7 Frame Manager Soft Parser

In some cases, a user may want to configure Frame Manager to perform hashing or exact match classification using fields
from custom protocols or shim headers.

This is supported by the soft parser. The soft parser enables the user to configure Frame Manager to perform hashing or exact
match classification using fields from proprietary protocols or shim headers.

7.1 Examining a Custom Protocol File

Recall that the hard parser supports known and stable protocols (see Appendix B for a list of standard protocols). In order to
configure the soft parser, a fourth file is used an input to FMC. This file is referred to as the custom protocol file or the soft
parser file. In this file, a custom protocol or shim header is defined and the actions that should be taken by the soft parser are
specified. There is an example soft parser file in the Freescale Linux SDK for QorlQ Processors. The contents of the
example soft parser file usdpaa custom coarse classify netpdl.xml are displayed in the NetPDL code below. In
this example, an ARP header is our custom protocol, as this header type is not recognized by the hard parser.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 23

A 4
4\ |

rraimie Manager Soft Parser

<netpdl name="IPv4 ARP" description="Recognize and mark IPv4 ARP frames">
<protocol name="arp" longname="ARP Protocol" prevproto="ethernet">

<formats>

<fieldss>
<field type="fixed" name="htype" longname="Hardware type" size="2"/>
<field type="fixed" name="ptype" longname="Protocol type" size="2"/>
<field type="fixed" name="hlen" longname="Hardware address length" size="1"/>
<field type="fixed" name="plen" longname="Protocol address length" size="1"/>
<field type="fixed" name="opcode" longname="Operation" sgize="2"/>
<field type="fixed" name="sha" longname="Sender hardware address" size="6"/>
<field type="fixed" name="spa" longname="Sender protocol address" size="4"/>
<field type="fixed" name="tha" longname="Target hardware address" size="6"/>
<field type="fixed" name="tpa" longname="Target protocol address" size="4"/>
</fields>

</formats>

<execute-code>
<before>

0x806">

<if expr="ethernet.type
<if-true>
<!-- Confirms Ethernet layer and exits-->
<action type="exit" confirm="yes" nextproto="return"/>
</if-true>
</if>
</before>
<after>
<assign-variable name="$shimoffset 1" value="$nxtHdrOffset"/>
<assign-variable name="$nxtHdrOffset" value="$nxtHdrOffset + S$headerSize"/>
<action type="exit" confirmcustom="shiml" nextproto="end parse"/>
</afters
</execute-code>
</protocol>
</netpdls>

Here we walk through the custom protocol shown above. The element protocol contains the elements required to define a
custom protocol. The element protocol has attributes name, longname, and prevproto:

<protocol name="arp" longname="ARP Protocol" prevproto="ethernet"s

The attribute name and prevproto are required and the attribute longname is optional. The attribute name defines the
unique name of the custom protocol or shim header. This is the name that will be used in a policy file to refer to the custom
protocol. The optional attribute longname is a user-friendly name for the protocol. The attribute prevproto lists the protocol
that immediately precedes the custom protocol. In this example, the previous protocol is “ethernet”. The previous protocol
must be a standard protocol that is supported by the Hard Parser (see Appendix B).

NOTE
It is allowed to define only one custom protocol or shim header after a standard protocol.
In other words, it is not allowed to define two custom protocols with same prevproto
value. Multiple custom protocols can be defined, but they must not follow the same
standard protocol.

The element format is the first child element of the element protocol. The format fields are used to define the custom
protocol. In this example, the format fields are used to define the ARP Header:

<formats>
<fieldss>
<field type="fixed" mname="htype" longname="Hardware type" size="2"/>
<field type="fixed" name="ptype" longname="Protocol type" size="2"/>
<field type="fixed" mname="hlen" longname="Hardware address length" size="1"/>
<field type="fixed" name="plen" longname="Protocol address length" size="1"/>
<field type="fixed" mname="opcode" longname="Operation" size="2"/>
<field type="fixed" name="sgha" longname="Sender hardware address" size="6"/>
<field type="fixed" name="spa" longname="Sender protocol address" size="4"/>
<field type="fixed" name="tha" longname="Target hardware address" size="6"/>
<field type="fixed" name="tpa" longname="Target protocol address" size="4"/>
</fields>
</format>

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

24

Freescale Semiconductor, Inc.

Frame Manager Soft Parser

The element field has attributes type, name, longname and size. The type shown here is “fixed” indicating that the field is
byte-length. Each element field represents an ARP Header field:

ojojojojojojojojojo |t)pty1)t1)11 212|122 |2|2)|2|2]|2|3]|3
o(1},2|3|4|5|6|7(89|]0|1|2|3)|4|5|6|7|8|9|0|1)2|3|4|5|6|7|8|9|0]|1

—_
—_
—_
—_
N

Hardware Type (htype) Protocol Type (ptype)
Hardware Address Protocol Address Opcode
Length (hlen) Length (plen)

Source Hardware Address (sha) : : :

Source Protocol Address (spa) : : :

Destination Hardware Address (dha) : : :

Destination Hardware Address (dpa) : : :

Data:::

Figure 7. ARP header detail

We see that the first field in an ARP header is “Hardware type” and that this field is 2 bytes. This agrees with our definition
provided in the first field element. Continuing in this manner, you can check that the fields accurately define the ARP header.
Note that the last four fields of the ARP Header are variable length. In this example, the Source hardware address, Source
protocol address, Destination hardware address, and Destination protocol address have been defined to be of size 6 bytes, 4
bytes, 6 bytes, 4 bytes, respectively. In summary, the format fields are used to define the fields of our custom protocol or
shim header. This definition is used by the soft parser.

Following the element format, there is an element execute-code:

<execute-code>

<befores>
<if expr="ethernet.type != 0x806">
<if-trues>
<!-- Confirms Ethernet layer and exits-->

<action type="exit" confirm="yes" nextproto="return"/>
</if-true>
</1if>
</before>
<after>
<assign-variable name="$shimoffset 1" value="$nxtHdrOffset"/>
<assign-variable name="$nxtHdrOffset" value="$nxtHdrOffset + SheaderSize"/>
<action type="exit" confirmcustom="shiml" nextproto="end parse"/>
</afters>
</execute-code>

The element execute-code tells the soft parser what we want it to do. There is both a child element before and a child
element after. It is not required to have both an element before and a element after, but there must be at least one of these in
the element execute-code. The element before tells the soft parser what to while the parser is examining the previous
protocol’s frame:

<before>
<if expr="ethernet.type != 0x806">
<if-trues
<!-- Confirms Ethernet layer and exits-->

<action type="exit" confirm="yes" nextproto="return"/>
</if-true>
</1if>
</before>

In this example, the previous protocol is “Ethernet,” and so the element before tells the soft parser what to do while it is
examining the Ethernet header. While the soft parser executes code in the before element, the “frame window” contains the
ethernet header:

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013
Freescale Semiconductor, Inc. 25

rraimie Manager Soft Parser

<~ Frame Window

«—— Ethernet Header »|< ARP Header

Dst. MAC | Src. MAC |Eth Type | htype | ptype | hlen | plen opcode | sha IspaI I]

Figure 8. Ethernet header followed by ARP header

Here, the element if tells the soft parser to examine the field “ethernet.type” and if the field "ethernet.type" is not equal to
o0x806 (ARP) the soft parser should perform the following actions:

1. “confirm” that the frame has an ethernet header (via the line-up confirmation vector),
2. “exit” the soft parser, and

3. “return” control to the hard parser (without advancing the frame window).

NOTE
If no further parsing of the packet headers is needed, instead of returning control to the
hard parser, the action attribute nextproto should be set to “end_parse” instead of
“return.” If the action attribute nextproto is set to “end_parse,” parsing of the frame’s
headers is finished after the ethernet header is parsed.

If the field "ethernet.type" is equal to 0x806 (ARP) then the soft parser will move the frame window to the custom protocol
and then execute the code in the element after:

Soft Parser relocates - Frame Window

Y

«——— Ethernet Header »|< ARP Header

Dst. MAC | Src. MAC |Eth Type || htype | ptype | hlen | plen opcode | sha ISpaI I]

«——— nxtHdrOffset

Figure 9. Ethernet header followed by ARP header after

<afters
<assign-variable name="$shimoffset 1" value="$nxtHdrOffset"/>
<assign-variable name="$nxtHdrOffset" value="$nxtHdrOffset + S$headerSize"/>

<action type="exit" confirmcustom="shiml" nextproto="end parse"/>
</afters>

Notice in element after there are child elements assign-variable. The custom protocol file supports the use of a set of
defined variables (see Frame Manager Configuration Tool User Guide Section A.1.6.3 Variables). The element assign-
variable assigns an expression to a variable. In custom protocol files, variables have prefix $. In this example, two variables
have assignment statements: shimoffset_1 and nxtHdrOffset. These two variables point to elements in the Frame Manager

“parse array”’. The parse array is a data structure internal to the parser. See the table below for a description of the
nxtHdrOffset and shimoffset_1.

Table 23. Parse array variables

Variable Name Parse Array Byte Description

nxtHdrOffset 47 Offset to header that has not yet been
parsed.

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

26 Freescale Semiconductor, Inc.

Frame Manager Soft Parser

Table 23. Parse array variables (continued)

Variable Name Parse Array Byte Description

shimoffset_1 32 Byte position within the frame’s header
where parsing reached the point to be
considered shim1 (i.e., custom protocol)

Prior to executing the assignment statement code, the "nxtHdrOffset" represents the offset from the start of the ethernet
header to the start of the ARP header.

The first assignment statement assigns to the variable "shimoffset_1" the value "nxtHdrOffset". The second assignment
statement assigns to the variable nxtHdrOffset the value (nxtHdrOffset + headerSize):

< Frame Window >
~—— Ethernet Header < ARP Header >
Dst."M.AC Src.. I.\/IAC Eth Type htype | ptype | hlen | plen opcode s.h.a. Ispa II]
;7 shimofset 1 nxtHdrOffset >

Figure 10. Ethernet header followed by ARP header finish

While the frame window contains the custom protocol, the variable headerSize is the custom protocol header size. So the
second assignment statement advances nxtHderOffset to the end of the custom protocol.

The element action following the assignment statements tells the soft parser to perform the following actions:

1. “shim1” confirm that the frame has a custom header (via the line-up confirmation vector),
2. “exit” the soft parser, and
3. “end_parse” parsing of the frame headers is finished after parsing the custom header.

Note that shimoffset_1 and shim1 are used when referring to the custom protocol. If we were to define a second custom
protocol, we would use shimoffset_2 and shim?2.

7.2 Example Usage of a Custom Protocol in a Policy File

Once a custom protocol is defined, it can be used in a policy file. There is an example policy file

usdpaa_policy hash ipv4 arp coarse classify.xml in Freescale Linux SDK for QorlQ Processors that
configures Frame Manager to perform coarse classification (exact match) using fields from the ARP header. One distribution
defined in usdpaa policy hash ipv4 arp coarse classify.xml is distribution “arp_dist0.” The distribution and
classification elements used to define “arp_dist0” are displayed below.

Table 24. Distribution and classification elements

Element Code Example
Distribution <distribution name="arp dist0">
<queue base="1" count="1"/>
<protocolss>
<protocolref name="arp"/>
</protocols>

Table continues on the next page...

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 27

g |

rraimie Manager Soft Parser

Table 24. Distribution and classification elements (continued)

Element Code Example
<action type="classification" name="arp htype clsf0o"/>
</distributions>
Classification <classification name="arp htype clsf0">
<key>
<fieldref name="arp.htype"/>
</key>
<entry>
<data>0xl</datas>
<action type="classification" name="arp ptype clsf0"/>
</entry>
<action type="distribution" name="fman drop dist" condition="on-miss"/>
</classification>
Classification <classification name="arp ptype clsfo">
<key>
<fieldref name="arp.ptype"/>
</key>
<entrys>
<data>0x800</data>
<action type="classification" name="arp opcode clsf0"/>
</entrys>

<action type="distribution" name="fman drop dist" condition="on-miss"/>
</classification>

Classification <classification name="arp_opcode clsf0">
<key>
<fieldref name="arp.opcode"/>
</key>
<entry>
<data>0xl</data>
<action type="classification" name="arp tpa clsfo"/>
</entry>
<action type="distribution" name="fman drop dist" condition="on-miss"/>
</classification>

Classification <classification name="arp_tpa_clsf0">
<key>
<fieldref name="arp.tpa"/>
</key>
<entry>

<data>0xc0a80al0l</data>
<action type="distribution" name="default dist0"/>
</entry>
<action type="distribution" name="fman drop dist" condition="on-miss"/>

</classification>

In the distribution “arp_dist0” there is an element protocols. Here protocolref is the custom protocol “arp.” If an Rx frame
has a “arp” header then the element action specifies to Frame Manager to perform classification using “arp_htype_clsf0.”
The soft parser will determine whether or not the packet contains an “arp” header.

The classification “arp_htype_clsf0” uses fieldref “arp.htype” and dataox1. If the ARP Hardware type field is equal to 0x1
then action will be for Frame Manager to perform a second classification “arp_ptype_clsf0”. If the ARP Hardware type is not
equal to 0x1 then there is a “miss” and the action will be for Frame Manager to proceed to distribution “fman_drop_dist”.

The classification “arp_ptype_clsf0” uses fieldref “arp.ptype” and data 0x800. If the ARP Protocol type field is equal to
0x800 then action will be for Frame Manager to perform a third classification “arp_opcode_clsf0.” If the ARP Hardware
type is not equal to 0x800 then there is a “miss” and the action will be for Frame Manager to proceed to distribution
“fman_drop_dist”.

The classification “arp_opcode_clsf0” uses fieldref “arp.opcode” and data “Ox1.” If the ARP Operation field is equal to 0x1
then action will be for Frame Manager to perform a fourth classification “arp_tpa_clsf0.” If the ARP Hardware type is not
equal to 0x800 then there is a “miss” and the action will be for Frame Manager to proceed to distribution “fman_drop_dist”.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

28 Freescale Semiconductor, Inc.

Appendix A

The classification “arp_tpa_clsf0” uses fieldref “arp.tpa” and dataoxc0ag0a01. If the ARP Target protocol address field is
equal to Oxc0a80a01 then action will be for Frame Manager to proceed to distribution “default_dist0.” If the ARP Hardware
type is not equal to 0xc0a80a01 then there is a “miss” and the action will be for Frame Manager to proceed to distribution
“fman_drop_dist”.

7.3 Example Usage on Target Board

When using a custom protocol file, the name of the custom protocol file is passed to FMC on the command line using the “-
§” argument, e.g.,

$ cd /usr/etc/

$ fmc -c usdpaa config p4 serdes Oxe.xml

-p usdpaa_ policy hash ipv4 arp coarse classify.xml
-s usdpaa_custom coarse classify netpdl.xml -a

8 Appendix A

Standard Protocol headers used in examples.

ojojojojojojojofojof 1|1 21222222233
oj1)2|3|4)5|6|7|8|9|0)1|2|3|4|5|6|7|8|9|0)1]|2]3|4(5|6|7|8]9]|0

—_
—_
—_
—_
—_
—_
—_
—_
\o}

—_

Hardware Type (htype) Protocol Type (ptype)
Hardware Address Protocol Address Opcode
Length (hlen) Length (plen)

Source Hardware Address (sha) : ::

Source Protocol Address (spa) : : :

Destination Hardware Address (dha) : : :

Destination Hardware Address (dpa) : : :

Data:::

Figure 11. ARP Header

ojojojojojojojojojo| 1ttty)p1]1 212|12|2)2|2|2|3|3
oy1)2|3|4|5|6|7|8]9|0)1)2|3)4/5|6|7|8|9||0|1|]2||3|4|5|6|7|8|9|0|1

-
N
\V]

’ Version H IHL Differentiated Services | Total Length |
Identification ’ Flags ‘ Fragment Offset
TTL Protocol | Header Checksum

| Source IP Address |

Destination IP Address

Options and Padding : : :

Figure 12. IP Header

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 29

ofojofojojojojojojoftyt 1) 1tjt1y1)1
oj1)2,3|4|5|6|7)|8|9|0|1)2|3|4)5/6|7|8|9|0|1|2(3|4|5|6|7|8|9]0]H1

-
-
-
N
\V]
N
\V]
N
\V]
N
N
\V]
N
w
w

Security Parameter Index

Sequence Number

Payload Data : : :

Padding “ Pad Length || Next Header

Authentication Data : : :

Figure 13. ESP Header

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset H rsrvd H ECN ‘ Control Bits Window

Checksum " Urgent Pointer |

|
|
| Options and Padding : : : |
|

Data::: |

Figure 14. TCP Header

ojojojojojojojojojo 11111 2122|222 2|2|3]|3
oy1)23|4|5|6|7|8]9|0)1)2|3)45|6|7|8|9||0)1|2||3|4|5|6|7|8|9|0|1

—_
-
—_
-
-
N

| Source Port Destination Port |

| Length " Checksum |

Data:::

Figure 15. UDP Header

9 Appendix B

FMC policy files and custom protocol files should use the names as specified in the standard protocol definitions file.

9.1 Standard Protocols recognized by Hard Parser

The Hard Parser recognizes standard protocol headers. See QorIQ Data Path Acceleration Architecture Reference
Manual Chapter 8.8.4.7 Hard Header Examination Sequences (HXSx) for detailed information regarding the standard
protocols recognized by the hard parser. The standard protocol definitions file hxs pdl v3.xml defines for FMC these
standard protocols and their fields. By default FMC uses the standard protocol definition file that resides in the directory /
etc/fmc/config. Itis not necessary to pass a command line argument to FMC providing the path to this file.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

30 Freescale Semiconductor, Inc.

g |

Revision history

NOTE
On your host, the standard protocol definitions file resides in the directory: QorIQ-SDK-
<version>-<date>-yocto/build <target boards> release/tmp/work/
<build targets>-fsl-linux>/fsl-image-<file system image>/rootfs/
etc/fmc/config/hxs pdl v3.xml

FMC policy files and custom protocol files should use the protocol names as specified in the standard protocol definitions
file:

e cthernet
e vlan

e llc_snap
e mpls

e ipv4

* ipv6

e tcp

e udp

o gre

* pppoe

* minencap
e sctp

e dcep

* ipsec_ah
* ipsec_esp

10 Revision history

This table summarizes revisions to this document.

Table 25. Revision history

Revision Date Description
0 10/2013 Initial public release.

Frame Manager Configuration Tool Example Configuration and Policy, Rev 0, 10/2013

Freescale Semiconductor, Inc. 31

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

BUILT ON

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions .

Freescale, the Freescale logo, and QorlQ are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, is a trademark
of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

Document Number AN4760
Revision 0, 10/2013

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Terminology and Resources
	Using Configuration and Policy Files
	Objective: Maintaining Packet Order Per Flow
	Example Usage on Target Board
	Walk-through Configuration File config_10g.xml
	Walk-through Policy File 8c-128fq-p.xml
	Modifying Configuration File config_10g.xml

	Configuring Frame Manager for a USDPAA Applications
	Load Spreading
	Example Usage on Target Board
	Walk-through Configuration File usdpaa_config_p4_serdes_0xe.xml
	Walk-through Policy File usdpaa_policy_hash_ipv4.xml
	Distribution “hash_ipsec_src_dst_spi_dist5”
	Distribution hash_ipsec_src_dst_spi_dist5
	Distribution “default_dist5”
	Offline port example using P4080 to illustrate

	Coarse Classification Examples
	Coarse Classification Examples
	Adding ‘action’ child element to classification element
	Nested Classification Example

	Policer Elements in the FMC Policy Files
	Frame Manager Soft Parser
	Appendix A
	Appendix B
	Revision history

