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Abstract 
In this document, we present a general theory of safety at the obstacle avoidance level. The 
theory leads to a computational mechanism for mapping world perception into constraints on 
control that, if obeyed, prevents all collisions. Actors that do not obey the constraints can also 
be detected clearly. The intended corresponding practical implementation is to have a safety 
enforcement layer at the base of the autonomous vehicle control system that guarantees the 
safety requirements are met, provided the perception system performs as intended.    

The theory defines a safety force field that is present between actors depending on their current 
state. The safety force field puts constraints on how one actor may act in the presence of another 
actor. The safety force field can be computed and is defined in such a way that if actors obey the 
constraints, they avoid unsafe states in a way that prevents collisions. An actor that ignores the 
safety force field can cause an unsafe condition, but this can be unambiguously detected. 

The safety force field provides a computational mechanism at a basic level of obstacle 
avoidance. This component naturally combines with other software for planning and control, 
acting like a ‘survival brain’ that prevents unsafe behavior at the obstacle avoidance level. 
Additional components can be naturally stacked on top, including learning-based driving 
behaviors, map dependent constraints, wait conditions, yield and right-of-way requirements, 
and long tail traffic rules and regulations that may vary by country, location, time of day, or 
conditions.  

We believe that a basic collision avoidance level should, as much as possible, function 
independently of the full complexity of software required to obey all traffic rules and drive 
courteously. This is similar to the way that an emergency braking system preferably does not 
depend on that full complexity. This allows a more practical safety decomposition and validation. 

We outline a theoretical basis for a software component that is superior to previous proposals 
in several ways. It is constructive in the sense that it proposes how to perform computations to 
determine which actions are acceptable. The acceptable actions can be used as a safeguard at 
the motion planning layer of any other driving software. In this sense, it provides a general 
computational mechanism that serves as a platform. It allows doing better than a default safety 
procedure, when possible. This in turn allows it, in practice, to depend less on complex external 
structures such as, for example, a map, perceived road shape, or a complex world model beyond 
the representation of moving and static obstacles. This allows drawing upon the redundancy of 
obstacle perception, where the basis is strong, and depends less on the full complexity of a 
world model where the ability to achieve redundancy is less clear. 
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Introduction 
The task of designing a system to drive a vehicle autonomously without human supervision at a 
level of safety required for practical acceptance is tremendously difficult. An attentive human 
driver draws upon a perception and action system that has an incredible ability to react to 
moving and static obstacles in a complex environment. In addition to the basic obstacle 
avoidance task, there are many rules of the road that are at a higher level than obvious obstacles 
in one’s path, starting with traffic lights, directional dividing lines or arrows, one-ways, expected 
stop, yield and right-of-way behaviors, and going into a long tail of requirements such as school 
buses, ferry entrances, police, construction workers or emergency personnel directing traffic, 
commuter lanes that switch direction, rules to not block an area or intersection, or stop at an 
airport terminal, pay toll-booths, and signs with ‘no U-turn on Thursdays 4-6 PM’.  

In short, there are many ways to disobey formal traffic laws without causing an obvious obstacle 
avoidance hazard. We believe that while a system that can obey every traffic rule in every 
location, country, situation or condition is desirable, the foundation of safety should first be built 
in a way that does not depend on that long tail of rules. The basics of obstacle avoidance are the 
same in Redmond, Washington, Detroit, Munich, Tokyo, California, Calcutta, or Shanghai, 
although the rules and color coding on the road (if any) may not be. 

We propose a software component that handles the basic fundamentals required to cooperate 
with other actors to avoid physical collisions. The control constraints implied on braking and 
steering guarantee no collisions under the assumptions of the obstacle avoidance world model 
they are derived from. It is important to recognize that any model is just that—a simplification 
of reality. Once the control constraints are part of a complete system that includes perception 
and actual physical action, the discrepancies between the world representation and the actual 
world, including but not limited to discrepancies in assumptions about control and actuation, 
will inevitably force careful validation and assessment of actual practical performance. This is 
unavoidable, and any claim to the contrary is irresponsible. We believe that the central challenge 
in designing safe autonomous vehicles is and will remain in accurate perception and modeling 
of a complex world and required driving behaviors. But the precision of the mathematical model 
facilitates the construction and verification of the system with a controlled understanding of 
what can go wrong and what needs to be validated at the basic level. 

Redundancy, while it has limitations, is a way to combat the difficulty of modeling the world 
reliably. The constraints we calculate can be produced per sensor or sub-system, and the best 
control can be applied that satisfies, for example, at least two out of three sub-systems. This 
way, a false positive will require two sub-systems to produce false input constraints to block a 
control value and a false negative will require two sub-systems to miss constraints blocking a 
control value. This provides a very late form of fusion, where constraints are fused rather than 
world objects. Fusion can also be applied earlier before the constraints are produced. Our 
methodology provides computational tools and is flexible in how the world is modeled, and what 
planning and control is placed on top. In that sense, it is best viewed as computational tools for 
constructing a component of a modular system. 
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Our methodology preserves the strengths of previous proposals while removing important 
weaknesses. Previous proposals require a safety procedure to be used before an unsafe 
condition occurs, except in a number of cases that are specified by additional rules and 
moderated by input information such as the shape of the lane structure, or worse, the complete 
path structure in the environment drawn from a map, for which the redundancy story is weak, 
or where none of our mental models capture the real complexity of the world. Another potential 
problem is that the safety procedure is required even in cases where it does not help. For 
example, if another vehicle is tailgating us, this causes an unsafe condition, but if we apply our 
safety procedure and brake as hard as we possibly can, it would hurt rather than help. In 
previous proposals, this is handled by exemption rules. In our methodology, we instead use a 
direct calculation of whether our safety procedure will help and place our safety procedure as a 
baseline upon which we are allowed to do better. The key computational mechanism is to use 
the chain rule to calculate how much our safety procedure and other alternatives alleviate or 
contribute to the problem. This not only allows us to avoid applying difficult to design rules, but 
also means that our safety procedure does not have to be the perfect action for the situation, 
because we are enabled to improve upon it in a way tailored to the situation. The most important 
effect of this is that it lowers the dependency on input from complex rules, conventions, or maps. 
We achieve this while preserving the guarantee that safety is maintained if all actors follow the 
methodology.  

The essence of the safety theory is simple. We first present the core concept in a nutshell, 
preserving its simplicity, making it easily accessible. We then make it more precise and 
generalize it to handle latency, time discretization, and visibility. We start with the nutshell level, 
which is neither complete nor mathematically precise, but gets the core idea across. 
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Core Concept in a Nutshell 
Assume that the world is populated by dynamic actors and static obstacles. Assume that all 
dynamic actors have a safety procedure, typically to quickly slow down their lateral motion and 
slow down to a stop as fast as possible, subject to reasonable limits. The ‘safety procedure’ of 
static obstacles is simply to stay static. We think of the safety procedure as forming a family of 
trajectories that can be viewed as a point-set in space-time. The essence of the theory and what 
is required by an actor is this: 

All actors are required to perform their safety procedure (or better) before and 
whenever the trajectory resulting from their safety procedure intersects with that of 

another actor. 

Actors must begin their safety procedures before they intersect. If they do, their safety 
procedures play out and do not expand. Hence: 

If all actors do what they are required, no collisions can occur.  

Collisions are avoided if all actors do what is required. It can be detected unambiguously if they 
do not. By before, we intend that the actor is required to begin their safety procedure before an 
intersection occurs, and to continue the safety procedure whenever the intersection persists. 
We will define ‘better’ in the above statement more precisely later. This caveat is there to allow 
an actor to not engage in their safety procedure if it does not help, such as to not break when 
tailgated, or to do better than their safety procedure when possible, such as swerving to avoid a 
side swipe even when already going straight, provided it does not cause an unsafe condition to 
the other actors.  
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Core Concept Mathematics 
We now proceed to specify the core concept at a more precise mathematical level.  

State and Control 
We want to work with parameterizations of the pose (such as position and orientation) of actors. 
To that end, we make: 

Definition 1: The state of actor 𝐴 is a vector 𝑥#(𝑡) ∈ ℝ) as a function of time that 
encodes the properties of actor 𝐴 at time 𝑡. When viewed as a function of time, we 

refer to it as the state trajectory of actor 𝐴. 

Thus, the state of an actor is parameterized by an 𝑚-dimensional state vector. For example, this 
could be a five-dimensional vector 𝑥# = [𝑦.	𝑑.	𝑣]. holding the position 𝑦 of the actor in two-
dimensional space, a unit direction vector 𝑑, and a scalar velocity 𝑣. We will find it useful to 
consider sets of other actors.  

Definition 2: The set 𝛺 is the collection of the state spaces of all actors we 
consider, including static obstacles.  

In other words, for each actor 𝐴, we can view its state as a function of time into the set 𝛺. We 
typically also need a control model for the state. 

Definition 3: A control model 𝑓(𝑥#, 𝑡, 𝑐) for actor 𝐴 is a function 𝑓 of the state 𝑥# 
of the actor, time 𝑡, and control parameters 𝑐 into ℝ). 
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We use a control model function to specify that the derivative of the actor state with respect to 
time is governed by this function. That is, we set  789

7:
= 𝑓(𝑥#, 𝑡, 𝑐). In this way, control is 

formulated locally as an explicit differential equation with some parameters 𝑐 that model user 
input, such as steering and braking. For example, building on the above, it could be 789

7:
=

[𝑣𝑑.	𝑣𝑏𝑑<.	𝑎]., where 𝑎 is a scalar acceleration amount, 𝑏 is a scalar steering parameter, and 
𝑑< stands for the perpendicular to 𝑑 generated by swapping its coordinates and negating the 
first coordinate. In this case, the control parameters are 𝑐 = [𝑎	𝑏].. To do this properly, we have 
to close the loop by specifying the control parameters as a function 𝑐(𝑥>, 𝑡) of the world state 
𝑥> (or in practice of perception of the world state) and time. When we do that, we get a control 
policy: 

Definition 4: A control policy 789
7:

= 𝑓(𝑥>, 𝑡) for actor 𝐴 is a function	𝑓 of the joint 
state 𝑥> of the world (all actors and static obstacles) and time 𝑡 into ℝ) that is 

smooth and bounded, and that governs the derivative of the actor state with respect 
to time. 

Safety Procedure 
Central to the safety theory is that each actor has a safety procedure. 

Definition 5: The safety procedure 𝑆# of actor 𝐴 is a family of control policies that 
depend only on the actor starting state 𝑥# and properties of the world that can be 
considered fixed, each of which brings the actor to a stop within a finite time. The 
safety procedure has a family of associated trajectories derived from any starting 
state 𝑥#. We also require that the safety procedure results in a set of trajectories, 

each of which changes smoothly with its starting state 𝑥#.  

While we allow the safety procedure to depend on fixed properties of the world such as, for 
example, the road shape or a map, it seems advantageous to avoid it if possible. A simple 
example building on the above: the safety procedure freezes the direction vector to straight 
ahead (𝑏 = 0) and begins slowing down by a range of acceleration values [𝑎)AB, 𝑎′] where 𝑎)AB 
denotes the minimum acceleration amount (negative of maximum braking amount) to a 
complete stop and 𝑎)AB < 𝑎E < 0, namely,  

𝑆# = F
𝑑𝑥#
𝑑𝑡

= [𝑣𝑑.	0		𝑎].: 𝑎 ∈ [𝑎)AB, 𝑎′]H . 

We assume that actors start from rest at some point in time so that safety is guaranteed at 
some starting point. 
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Pose, Occupied Sets, Occupied Trajectories 
and Claimed Sets 
We also want to consider the volume of space occupied by an actor given its pose. We assume 
that actors move around in and occupy points in 𝑛-dimensional real space ℝB. For practical 
simplicity, we will typically apply the theory with two-dimensional space modeling a top-down 
view of the real world, but the theory works equally well for three-dimensional space (or any 
other dimension). We also allow an optional safety margin. 

Definition 6: The occupied set 𝑜#(𝑥#) ⊆ ℝB of actor 𝐴 is the set of points in space 
that the actor occupies as a function of its state 𝑥#. This includes points physically 

occupied, as well as points needed to maintain a safety margin. 

If a point is in the occupied set of an actor, we say that the actor occupies the point. To again 
give a simple example, the occupied set could be a circle around the position of the actor. We 
extend this notion to a trajectory over time. 𝑇 denotes the set of possible times for all actors we 
consider. 

Definition 7: The occupied trajectory 𝑂#(𝑋) = 	 {(𝑦, 𝑡):	𝑦 ∈ 𝑜#(𝑥#(𝑡)), 𝑡	 ∈ 𝑇} ⊆
ℝB × 𝑇 of actor 𝐴 is the set of points in space-time that the actor will occupy over 

time as a function of its trajectory 𝑋. 

We are particularly interested in the occupied trajectory that results from applying a control 
policy from the safety procedure. This is because when we casually refer to intersection of safety 
procedures, what we really mean is intersection of the occupied trajectories of actors when they 
apply their safety procedure. We will refer to the union of occupied trajectories of an actor when 
applying its safety procedure as the claimed set. The motivation for this name is that when points 
are in this set, the actor needs those points to maintain the integrity of its safety procedure. 

Definition 8: The claimed set 𝐶#(𝑥#) ⊆ ℝB × 𝑇 of actor 𝐴 from state 𝑥# is the 
union of occupied trajectories that results if the actor applies its safety procedure 

𝑆# starting from state 𝑥#. 

Building on our string of examples, the claimed set would be the union of trajectories generated 
for each 𝑎 ∈ [𝑎)AB, 𝑎′] by moving a circle from the center of the actor in the direction of the 
velocity vector by the distance profile 𝑣𝑡 + 𝑎𝑡U/2. This comes to a stop at distance −𝑣U/(2𝑎) at 
time −𝑣/𝑎 and corresponds to the velocity profile 𝑣 + 𝑎𝑡.  
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A key requirement on the safety procedure is that when following any trajectory of the safety 
procedure, the claimed set at each subsequent time must be contained in the original claimed 
set. For example, defining a safety procedure with a fixed compact and convex subset of control 
parameters, all with negative acceleration, would satisfy all requirements. 

Unsafe Set and Safety Potential 
We now consider the combined state space 	Ω# × ΩZ of two actors 	𝐴 and 𝐵. We first name the 
indicator set in the combined state space signaling when the safety procedures intersect. 

Definition 9: The unsafe set 𝑈#Z ⊆ 𝛺# × 𝛺Z of the actor pair 𝐴, 𝐵 is the set of 
points (𝑥#, 𝑥Z) in the combined state space for which the claimed sets intersect, 

namely, 𝐶#(𝑥#) ∩ 𝐶Z(𝑥Z) ≠ ∅. Its complement (𝛺# × 𝛺Z) ∖ 𝑈𝐴𝐵 is called the safe 
set. 

Then we define a potential function on the combined state space. 

Definition 10: A safety potential 𝜌#Z:	𝛺# × 𝛺Z → ℝ of the actor pair 𝐴, 𝐵 is a real-
valued function on the combined state space that is strictly positive on the unsafe 
set and non-negative elsewhere, and non-increasing when both actors apply any 

trajectories in their safety procedures. 

The safety potentials we intend to work with are exactly zero, some small distance away from 
the unsafe set. They serve as a smooth indicator function for the safe set. As specified in the 
definition, the key property is that the joint safety procedures of the actors prevent the safety 
potential from climbing. We want to consider the contribution of each actor to the change in the 
safety potential. The key observation using the chain rule is: 

Lemma 1: The change of a safety potential with respect to time decomposes into 
7c9d
7:

= ec9d
e89

789
7:
+ ec9d

e8d

78d
7:

, provided that 𝜌#Z is differentiable at	(𝑥#, 𝑥Z). 
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It will be natural as we construct safety potentials to assume the stricter requirement that the 
contribution of each of the individual safety procedures to the change in the safety potential is 
smaller or equal to zero. For that reason, it is useful to note that: 

Lemma 2: A real-valued differentiable function 𝜌#Z:	𝛺# × 𝛺Z → ℝ on the 
combined state space that is strictly positive on the unsafe set and non-negative 

elsewhere, and for which ec9d
e89

𝑠# ≤ 0 and ec9d
e8d

𝑠Z ≤ 0 (for any 𝑠𝐴 ∈ 𝑆#, 𝑠Z ∈ 𝑆Z ) 

is a safety potential. 

Proof: This follows from the previous Lemma and the definition of a safety potential. ■ 

From now on, we assume that the safety potential must be differentiable on the pair of states 
we consider. In a coming section, we will show that an everywhere differentiable and meaningful 
safety potential can always be constructed. 

The Safety Force Field and Safe Control 
Policies 
As we saw above, the local change in the safety potential decomposes into a contribution from 
each of the two actors. Moreover, the local contribution from each actor is the dot product 
between the control policy and the gradient of the safety potential (with respect to the state of 
that actor). This suggests a control policy that is the negative gradient of the safety potential, 
subject to limits, i.e., for the actor to move down the gradient of the safety potential. This 
motivates the following definition: 

Definition 11: The negative gradient 𝐹#Z = −7c9d
789

 of the safety potential 𝜌#Z is 

called the safety force field on actor 𝐴 from actor 𝐵. 

Moving along the gradient of the safety potential whenever it is non-zero would be appropriate 
if there were only two actors, us and one more. This would result in us repelling from the other 
actor whenever our safety procedures are about to overlap. We can think of this as other actors 
inducing a safety force field on us via our safety procedures. Note that the safety force field is 
zero when our safety procedures are not close to overlapping. However, when there are two or 
more other actors, there are two or more gradients and they are in general different. We do not 
want to combine the safety force fields from multiple other actors in a linear or other ad-hoc 
manner, because doing so would give us no guarantees and would not arbitrate in a principled 
way between conflicting constraints. For example, if another vehicle is approaching us from the 
side while we are going straight or along the road, it is appropriate to move over before our 
claimed sets start overlapping. However, if there is also a vehicle on the other side that is also 



 

 
The Safety Force Field 11 

traveling appropriately, we do not want to keep moving over when our claimed set is also about 
to start overlapping with the ‘innocent’ vehicle’s. This is important in order to guarantee that 
problems do not propagate in an uncontrolled way. This is where the safety procedure comes 
in. We have set things up so that our safety procedure is good enough in the sense that if all 
actors apply their safety procedures before they start overlapping, no collisions can occur. We 
want to behave in a way that is at least as good as our safety procedure with respect to each 
other actor. This is accomplished, while also allowing to do even better when possible, by:  

Definition 12: A safe control policy 789
7:

 for actor 𝐴	with respect to a set 𝛩 ⊆ 𝛺 of 

actors is one for which 𝐹#Z
789
7:

≥ 𝑚𝑖𝑛
l9∈m9

𝐹#Z𝑠#  for each other actor 𝐵 ∈ 𝛩. 

Intuitively, the quantity min
qr∈sr

Fuvsu represents the worst local performance of any trajectory in 

the safety procedure. The inequality says that a safe control policy is one that performs at least 
as well as the worst trajectory in the safety procedure. From now on we make some reasonable 
assumptions on the safety procedure set so that the minimum in Definition 12 is always attained, 
say, the set is compact. Notice that the inequality in Definition 12 is equivalent to 
max
l9∈m9

𝐹#Z z
789
7:
− 𝑠#{ ≥ 0. In other words, we want our control policy (when mapped into the full 

state derivative) to have a dot product against the safety force field from each other actor that is 
at least as large as some member of our safety procedure. We can also see our control policy 
as additive relative to our safety procedure. Seen this way, we want the addition to have a dot 
product that is at least zero against the safety force field from each other actor. This means that 
each other actor either produces a zero safety force field and no restriction, or puts a restriction 
that is exactly that our additive control policy is in the half-volume defined by a plane through 
the origin with the safety force field as normal vector, in the direction of the safety force field. 
Thus, the safe control policies form a convex polyhedron containing the safety procedure (and 
limited by limits such as jerk limits, which the safety procedure likely sits up against). To 
comment on the practical implication, this means that we can use the constraints as a safety 
layer applied to any desired control policy. We take our desired control at any moment and check 
it against the polyhedron. If it is in the polyhedron, we can just apply it as is. If it is not, we have 
to find some control parameters that map to a point in the polyhedron. For example, the closest 
realizable point in the polyhedron to the desired control. The polyhedron can never be empty 
because it contains the safety procedure. Note that the polyhedron in the full state derivative 
space must be mapped back to constraints on the control parameters. 

Lemma 3: A safe control policy exists. 
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Proof: All we have to do is note that any member in the safety procedure is a safe control policy. 
■ 

Theorem 1: Two actors with safe control policies with respect to each other do not 
collide with each other. 

Proof: As the two actors move along their combined trajectory with respect to time, the local 
change in the safety potential can be split into the two contributions from the two actors. With 
safe control policies, those contributions are no larger than by some members of the safety 
procedures of both actors applied at that point. This in turn we have constructed to be no larger 
than zero. Expressing the same in algebra, assume 𝑠#∗ ∈ 𝑆# and 𝑠Z∗ ∈ 𝑆Z are the trajectories that 
attain the minima: 𝐹#Z𝑠#∗ = min

l9∈m9
𝐹#Z 𝑠# and 𝐹Z#𝑠Z∗ = min

ld∈md
𝐹Z# 𝑠Z. Then one has 

𝑑𝜌uv
𝑑𝑡

=
𝜕𝜌#Z
𝜕𝑥#

𝑑𝑥#
𝑑𝑡

+
𝜕𝜌#Z
𝜕𝑥Z

𝑑𝑥Z
𝑑𝑡

≤
𝜕𝜌#Z
𝜕𝑥#

𝑠#∗ +
𝜕𝜌#Z
𝜕𝑥Z

𝑠Z∗ ≤ 0. 

Here, the first equality relies on the chain rule, then the first inequality relies on the definition 
of a safe control policy, and the final inequality relies on the definition of a safety potential (that 
the safety potential is non-increasing when both actors apply any trajectories in their safety 
procedures). Since the safety potential is non-negative and the change in the safety potential is 
smaller or equal to zero everywhere along the combined trajectory, it can never leave zero, 
which means that the combined trajectory can never enter the unsafe set, which means the 
actors do not collide.  ■ 

Bump Functions and Mollifiers 
We now touch upon some theory enabling us to construct useful safety potential functions. In 
particular, we want to be able to cover sets with a smooth function and to smooth a function that 
is not infinitely differentiable. This section draws upon well-known material from the theory of 
bump functions and mollifiers [1,2,3], through which one can generate such covering functions 
with bump functions that are infinitely differentiable with compact support and smooth a 
function by convolving it with such a bump function, which is then called a mollifier. 

Lemma 4: For any 𝜖 > 0 and any ball in ℝ�for any 𝑁 there is an infinitely 
differentiable scalar function that is strictly positive inside the ball, zero on the 

boundary of the ball, and zero outside the ball.  

Proof: 

ℎ(𝑥) = �𝑒
� �
��|(8��)/�	|�, |(𝑥 − 𝑝)/𝜖| < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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is such a function for a ball centered at 𝑝. It is just a shifting and scaling of the function 

ℎ(𝑥) = �𝑒
� �
��|8|�, |𝑥| < 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

which is a well-known bump function. We may shift and scale the function to center on any point 
in space and have any radius. ■ 

We refer to such a function as a bump function. This allows us to guarantee the existence of and 
construct the type of covering function we want. 

Lemma 5: For any 𝜖 > 0 and any set in ℝ�for any 𝑁 there is an infinitely 
differentiable scalar function that covers the set and evaluates to zero for any point 

further than 𝜖 from all points in the set.  

Proof: For a bounded set, it is easy to construct such a function by using bump functions of a 
diameter smaller than epsilon. First pick a bounding sphere for the set, then a finite cover of 
that bounding sphere by bump functions of a fixed diameter smaller than epsilon. Then make 
the function the addition of each bump function that includes at least one point in the set. This 
function is clearly covering the set, and it is infinitely differentiable since it is a finite sum of 
infinitely differentiable functions, and it is clearly zero since otherwise a ball function includes 
both a point in the set and a point epsilon or further from the set, which would be a contradiction. 
For an unbounded set, we can extend the definition of the function by an expanding sequence of 
spheres where new bump functions are added to cover the additional set between one bounding 
sphere and the next. This carries with it a sequence of bump functions, and we define the 
function as the (now infinite sequence) sum of bump functions. The function is still well defined 
and infinitely differentiable at any point since for an epsilon-neighborhood of a point there is 
only a finite set of bump functions from the sequence that affect it. The function also clearly 
covers any point in the set and evaluates to zero epsilon away from the set since the analysis for 
any point falls back to the finite case. ■ 

Construction of Safety Potentials 
Our construction of safety potentials relies on variants of non-negative measures of the 
intersection between the safety procedures of the two actors. Note that as both the safety 
procedures are applied, the trajectories of the two actors just ‘play out’, which means that an 
intersection measure works on the same claimed sets, shrunk versions of them, or whatever is 
left of them as the actors progress through them. As what is left decreases, typical intersection 
measures do not increase. This is at the heart of our constructions as this allows us to satisfy 
the non-climbing property of a safety potential. Hence, if we can get smooth measures of the 
intersection, we get a safety potential. 

One variant is to use the sum of the time intervals between the first time that there is an 
intersection between just slightly dilated occupied sets (in time-slices of the claimed set) and 
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the time that each actor is fully stopped, zero if there is no intersection. This function is bounded, 
non-negative, and strictly positive on the unsafe set. It also stays constantly zero if there is no 
intersection, stays constant until the intersection if there is one, and decreases after the 
intersection if there is one. It also does not increase if the claimed sets do not expand. Hence, 
its smoothness is the only thing left to ensure, which is typically already the case when there is 
an intersection and when there is not. In the transition just when the intersection appears, we 
can handle this by using a monotonic function of the time interval that flattens space near zero 
like a bump function does at its boundaries. One advantage of this variant is that it is efficient to 
compute in practice. 

Another variant is what we can think of as the dot product between two smooth functions 
covering the claimed sets of the actors. If the initial covering functions are near constant on the 
claimed sets, this results in a smoothed version of volume of overlap between the covering 
functions. Construct smooth covering schemes ℎ#(𝐶#(𝑥#)), ℎZ(𝐶Z(𝑥Z)) for each of the claimed 
sets, that are non-increasing when the claimed sets shrink. Our output is then 

𝜌#Z(𝑥#, 𝑥Z) = � ℎ#(𝐶#(𝑥#))ℎZ(𝐶Z(𝑥Z))
�9×�d×�	

𝑑𝑥#𝑑𝑥Z𝑑𝑡 

where we assume that the integration takes place from the current time to the first time that 
both actors are fully stopped. The resulting function is smooth, bounded, non-negative, strictly 
positive on the unsafe set, and non-increasing when the claimed sets shrink.  

Visibility 
Visibility deserves special mention. Thus far we have considered the world as known. In practice 
this takes place through perception (or maps, vehicle-to-vehicle, or vehicle-to-infrastructure). 
The key is that the limitations to perception are understood. If perception was limited but in 
completely unpredictable ways, then the only safe way to act is not to move. Thus, we have to 
make sure that limitations, such as visibility, range, and uncertainty are understood. A way to 
handle uncertainty is to assume that all actors (actor states) that are possible under perception 
uncertainty are possible. For example, a vehicle an uncertain distance away would be modeled 
by the set of its possible positions. Note that the modeling cannot be fundamentally probabilistic 
and at the same time provide absolute guarantees. To handle visibility and range, we assume 
that perception can confirm that some actors are present, and deny some actor states (i.e., 
confirm that no actor is present in a particular state) and leave some actor states as unknown, 
or ‘invisible’. We encode this via: 

Definition 13: The visible set 𝑉 ⊆ 𝛺 is the collection of actors confirmed by 
perception. An invisible actor is an actor who could be present, but can neither be 
confirmed nor denied by world perception. The invisible set 𝛬 ⊆ 𝛺 is the collection 

of states of all invisible actors.  
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In other words, 𝑉 ∪ Λ ⊆ Ω is the collection of actors who could be present. Then, we can handle 
visibility limitations by assuming the worst. Before we do, we want a mechanism for excluding 
extreme states of actors that may be physically possible but would force us to behave too 
conservatively for practical use if we have to take them into account. Such actors will be 
declared as not satisfying the requirements solely based on their state. An example would be 
an actor who is traveling at 150 mph and is about to cross our route, but not yet visible to us. We 
could handle such actors by saying that they could not be present, but we prefer to acknowledge 
that they could be present but call them unreasonable, so that we can include them in our 
analysis. 

Definition 14: We divide the set 𝛺 of actor states into reasonable and 
unreasonable, where unreasonable states are states we consider so extreme we do 

not want to take them into account unless they are visible. The set 𝛹 ⊆ 𝛺 is the 
collection of all reasonable actors (and its complement 𝛹� = 𝛺 ∖ 𝛹 is the collection 

of all unreasonable actors). 

While we in principle allow the set of unreasonable states to be some complex set of states, 
such as depending on a map, we intend the use of a simple definition, such as all states above 
a certain speed. We typically also want to assume that we never ourselves enter an 
unreasonable state. One way to achieve that is to always monitor our safety procedure and make 
sure that it never comes close to an unreasonable state (if it does, we have to apply it). Of course, 
we probably want to do this with a much smoother braking profile to allow smooth transitions 
between speed zones, for example. The simplest case is if we can use a single upper limit for 
reasonable speed (likely significantly above speed limit) for a particular application. The same 
way that we assume that actors start in safe states at some point in time, we assume that the 
actors start in reasonable states at some point in time. 

With this definition, we can think of the set 𝑉 ∪ (𝛬 ∩ Ψ) as the collection of all actors who can 
reasonably be present. Now we are ready to define a visibility-aware control policy. 

Definition 15: A visibility-aware control policy for an actor is a control policy that 
is safe with respect to all other visible and reasonable invisible actors. In other 

words, a visibility-aware control policy  789
7:

 for actor 𝐴	is one for which 𝐹#Z
789
7:

≥
𝑚𝑖𝑛
l9∈m9

𝐹#Z𝑠# for all 𝐵 ∈ 𝑉 ∪ (𝛬 ∩ 𝛹). 

Note that the safety procedure is a visibility-aware control policy, so it is clear that a visibility-
aware control policy exists. We also immediately get: 

Lemma 6: A visibility-aware control policy is safe with respect to all visible and 
reasonable invisible actors (despite the visibility limitations).  
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Proof: This is a direct consequence of the worst-case assumption and the definition of a safe 
control policy. Since we assume that all constraints (from visible and invisible actors) that could 
be present are present, we must be obeying all relevant constraints. ■ 

Extensions to Handle Latency and 
Discretization 
Latency, discretization, and reaction time are other important practical limitations of real 
systems and actors that we want to model. We want to ensure that we will act safely even with 
those limitations. We take a similar approach to this as we did for visibility. Again, we are dealing 
with a limitation in perception, or more precisely perception and action, in the sense that when 
an actor takes action, it is inevitably based on perception that is not completely current. Whether 
the latency is in perception or action is immaterial—the end effect is that when the actor takes 
action, it is based on perception of the world at some earlier (while hopefully very recent) point 
in time. Assume that the amount of latency is Δ𝑡. To handle that, we need a form of worst-case 
forward prediction: 

Definition 16: The forwarded set 𝛷#(𝑥#, 𝛥𝑡)	 of actor 𝐴 by a time interval 𝛥𝑡 is the 
set of all states that actor 𝐴 could possibly get to at the time interval 𝛥𝑡 after being 

in state 𝑥#. The forwarded set 𝛷(𝛩, 𝛥𝑡) = ⋃ 𝛷#(𝑥#, 𝛥𝑡)#∈� 	 of a collection 𝛩 of 
actors by a time interval 𝛥𝑡 is the union of the forwarded sets of all actors in 𝛩.  

Note that an actor typically has a better ability to predict its own state than that of other actors. 
In particular, in the control system of an autonomous vehicle, the actual command sequence 
that was previously sent is known, providing an ability to predict where the actor itself will be 
when the actuation command that is deliberated now is actually issued. For practical purposes 
this can allow the forwarded set to include only one point, effectively being ‘deterministic 
forwarding’, resulting in a single actor state, while in general the forwarding mechanism is ‘non-
deterministic forwarding’, resulting in a set of states. While in principle, we could use non-
deterministic forwarding of the actor itself and require that the control policy is safe for all the 
possible states the actor could be in, we can keep things simple by assuming deterministic 
forwarding of the actor itself. We refer to this simply as a control policy for the forwarded actor, 
assuming implicitly that the state parameterization we work with is updated with a prediction 
based on all the actuation commands in queue up to the one deliberated now. Note that with 
these assumptions, the control command will apply to the actor state considered, and the only 
thing delayed is the information regarding the other actors. 

Definition 17: A forwarded control policy with respect to a perceived collection 𝛩 
of actors by a time interval 𝛥𝑡 is one that is safe with respect to the forwarded set 

𝛷(𝛩, 𝛥𝑡) of 𝛩. 
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It is straightforward to see that: 

Lemma 7: A forwarded control policy is safe at the current time with respect to 
wherever the perceived collection of actors moved, despite the latency limitations 

between perception and action.  

Proof: This is again a direct consequence of the worst-case assumption and the definition of a 
safe control policy. Since we assume that all constraints (from wherever other actors can get to 
when our control applies) that could be present are present, we must be obeying all relevant 
constraints. ■ 

We now combine latency awareness with visibility awareness and add that we should not enter 
unreasonable states. We call the combination a sound control policy. We carefully elect to 
consider the set 		Φ(V, Δt) ∪ (Φ(Λ, Δt) ∩ Ψ). First, visibility is taken into account to provide a 
‘complete’ collection representing all the actors (visible and invisible) in the world that we want 
to consider at one point in time. Then latency is taken into account on that complete world 
representation by forwarding both sets. Finally, we exclude unreasonable actors from the 
forwarded set of invisible actors. We prefer not to exclude unreasonable visible actors since it 
would be odd to ignore actors that are actually perceived. We could have excluded unreasonable 
actors before forwarding, but that is less preferable because of unreasonable actors who make 
it into reasonable states during forwarding. 

Definition 18: A sound control policy  789
7:

 for an actor 𝐴	is one for which 

𝐹#Z
789
7:

≥ 𝑚𝑖𝑛
l9∈m9

𝐹#Z𝑠# for all		𝐵 ∈ 𝛷(𝑉, 𝛥𝑡) ∪ (𝛷(𝛬, 𝛥𝑡) ∩ 𝛹) and that never 

enters an unreasonable state. 

The important result is: 

Lemma 8: Actors with sound control policies do not collide with each other 
(despite the limitations of perception and action).  

Proof: Actors with sound control policies do not enter unreasonable states. Their control policies 
are also safe with respect to all other actors in reasonable states. Hence, they have control 
policies that are safe with respect to each other. Hence, they do not collide with each other. ■ 

For typical computer controlled autonomous actors, there is also a discretization at some level 
of the control system, so that action sequences are determined in discrete time intervals and 
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then actuated by some lower level control mechanism. The world and the actuation itself are of 
course continuous—the world does not stop turning while the actor is thinking—but this means 
that strictly speaking, we have to guarantee that every point in the entire control sequence that 
will play out in the next actual interval are part of a sound control policy. This entails checking 
that entire sequence against forwarded actor sets, either forwarded to each time in the actuation 
interval, or more conservatively, forwarded to the end of the actuation interval. 

Out of Policy Detection 
Based on the safety force field, we are now able to quantify precisely at any moment whether 
and how much actors contribute to raising or lowering the safety potential with respect to each 
other actor. Based on this strength, it is straightforward to clearly detect when an actor is not 
satisfying the requirements. We first need a few basic definitions. 

Definition 19: An actor 𝐴 for which 𝐹#Z
789
7:

< 𝑚𝑖𝑛
l9∈m9

𝐹#Z𝑠# is said to behave out of 

policy with respect to the actor 𝐵. In words, an actor is behaving out of policy when 
they contribute to raising the safety potential with respect to another actor. 

Note that for two actors to collide, the safety potential between them must have been raised 
from zero. This is clear because their occupied sets intersect at the collision time, implying that 
they are in the unsafe set, implying that the safety potential is strictly positive. 

Definition 20: The uninterrupted time interval before a collision between actors 𝐴 
and 𝐵 when the safety potential 𝜌#Z is strictly positive is called the out of policy 

interval. 

This allows us to clearly detect out of policy behavior as it relates to a particular collision: 

Definition 21: An actor 𝐴 is out of policy with respect to a collision if it was in an 
unreasonable state	(𝑥# ∈ 𝛹�) at any time in the out of policy interval. An actor 𝐴 is 

also out of policy with respect to a collision if they behaved out of policy with 
respect to actor 𝐵 at any time in the out of policy interval when 𝐵 was in a 

reasonable state. 
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An important result is: 

Lemma 9: At least one actor is out of policy with respect to a collision.  

Proof: At least one actor must have contributed to raising the safety potential during the out of 
policy interval. That actor either is out of policy with respect to the collision, or the other actor 
was in an unreasonable state in the out of policy interval and therefore is out of policy with 
respect to the collision. ■ 

Lemma 10: An actor with a sound control policy is never out of policy with respect 
to a collision.  

Proof: An actor with a sound control policy is not in an unreasonable state. It also does not 
contribute to raising the safety potential with respect to any other actors other than those who 
are in an unreasonable state. ■ 

Note that the contra-positive of this statement (which is therefore also true) is that an actor who 
is out of policy with respect to a collision does not have a sound control policy.  

Right of Way and Wait Conditions 
There is a long tail of cases, such as traffic lights corresponding to different paths, yield-
patterns at multi-way stops, stop or yield lines in roundabouts, construction workers or police 
directing traffic, ferry entrances, school buses, and these rules vary by country. The common 
theme of these cases is that there are rules that require us to stop or yield above and beyond 
what is obvious from an obstacle avoidance perspective. We collectively refer to these cases as 
wait conditions. Because of the variety of such cases, a complete formalization that fully 
describes how an autonomous vehicle must behave is out of scope of this document. We just 
note that there is a higher level function that gives some actors right-of-way over others. 

One question is whether right-of-way, however it is derived, should allow the actor who has it to 
behave more aggressively than the safety force field normally allows, or require the actor who 
should give it to behave less aggressively. Regarding the former, it is at least the case that if 
another actor is visible and in such a state that a safety force is applied to us, then we should 
obey that force as usual. To not do it would be almost to observe that mutual help from both 
parties is required to not collide, and then not provide help. This is not strictly true since the 
actors can do better than the safety procedure, but serves to make the point that ignoring the 
safety force field based on right-of-way is ill-advised. Perhaps the only case where this might 
be warranted is in very low visibility situations, such as a completely blind corner controlled by 
a traffic light. In this extreme case, the traffic light could be viewed as a substitute for perceiving 
the fact that no other vehicles should reasonably be coming at high speeds across our route. It 
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is as if we perceive that guarantee via the traffic light, like perceiving via a mirror assisting to 
view around a blind corner. Such exceptions should be used with care, however. If the traffic 
light was green to both actors, then blame could only be placed on the traffic lights. So, in 
summary, the safety force field should be obeyed regardless of right-of-way. On the other hand, 
if we are expected to yield, additional requirements are on us beyond the safety force field. The 
recurring theme is that we should strive to behave in such a way that we do not cause a safety 
force field on the actor to whom we should yield. If we do, the other actor should still yield, but 
we have failed to meet the expectation. It is interesting to note that an actor can ‘bully’ other 
actors with their safety force field, and we believe this is actually a good model of what happens 
in highly congested traffic, with actors strong-arming their way into a lane or similar. So the 
essence of giving right-of-way is to avoid constraining the other actor by making sufficient 
concessions. This is perhaps harder to make mathematically precise because once you have 
merged into the path of another actor who had right of way, at some point you may constrain 
them due to traffic in front or a congested intersection. 

Attentiveness 
The safety force field is designed based on the assumption that both actors in a pair perceive 
each other whenever necessary and understand the safety procedure of the other actor, or take 
the necessary precautions based on their own perception limitations. We believe this is 
necessary to model actual driving behavior in, for example, highway driving. However, it is useful 
to be able to handle actors that fail to meet these requirements. We may have noticed that a 
pedestrian is looking at their phone instead of at us as they cross a street, or we may have 
reason to believe that a merging vehicle has not even seen us yet. In those cases, when can we 
assume that the other actor will see us, if at all? Different answers to this question lead to 
alternative constraints. One quite conservative answer is to assume that other actors see us 
only once we are literally in the path that they will end up taking, and that they after that time 
will need sufficient time to slow down. This is one example of several, all of which can be 
designed and combined with the safety force field. 

Model Summary 
We have presented a computational mechanism that provides a safety layer for collision 
avoidance purposes. The essence of the model is to take perception to a set of constraints on 
control. At this point it is useful to summarize the content of the model. The model consists of: 
a collection of actor state spaces and a definition of a reasonable set of actors, a perception 
mechanism defining visible and invisible actor sets, a control model and family of specific 
control policies called the safety procedure for each actor, an occupied set function for each 
actor, and a safety potential between actors.  
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Implementation Example 
Let us now get back to our running example and work out the details of a safety potential. For 
simplicity of this illustration, we will take a safety procedure that contains just a single control 
policy, hence a single trajectory. 

We use 
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where 𝑥# is a five-dimensional vector holding the position 𝑦 of the actor in two-dimensional 
space, a unit direction vector 𝑑, and a scalar velocity 𝑣. For the control, 𝑎 is a scalar acceleration 
amount, 𝑎)AB its minimum, 𝑏 is a scalar steering parameter, and 𝑑< stands for the 
perpendicular to 𝑑 generated by flipping its coordinates and negating the first coordinate. In this 
case, the control parameters are 𝑐 = [𝑎	𝑏].. We have also included the trajectory resulting from 
the safety procedure represented as a pose transformation from vehicle coordinates to world 
coordinates. The pose transformation is stated in terms of a reference point 𝑦(𝑡) of the vehicle 
in the world and a rotation 𝑅(𝑡) from vehicle to world, assisted by a distance traveled 𝑠(𝑡). 

An alternative if we want to get closer to a physically plausible model of a vehicle is to include 𝑏 
in the state, and introduce a steering rate 𝛽 that is part of the control instead. In this case, we 
have 

𝑥# = °

𝑦
𝑑
𝑣
𝑏

±  ¤89
¤:

= ²

𝑣𝑑
𝑣𝑏𝑑<
𝑎
𝛽

³   𝑆# = ²

𝑣𝑑
𝑣𝑏𝑑<
𝑎)AB
0

³   𝑠(𝑡) = 𝑣𝑡 + §¨©ª:�

U
   

𝑡l:«� = − ¬
§¨©ª

  

𝑦(𝑡) = 𝑦­ +
�
´
(sin	(𝑠(𝑡)𝑏)𝑑 + (1 − cos(𝑠(𝑡)𝑏))𝑑<)   

𝑅(𝑡) = [𝑑	𝑑<] ·
cos	(𝑠(𝑡)𝑏) −sin	(𝑠(𝑡)𝑏)
sin	(𝑠(𝑡)𝑏) cos	(𝑠(𝑡)𝑏) ¸ where 𝑥# is instead six-dimensional. 

The occupied set can, for example, be a circle, or a bounding box (more generally a polygon). If 
we want to use a safety potential where the earliest intersection is involved, we have to find that 
time and its derivatives with respect to 𝑥#. As a practical calculation, this is best done by first 
performing collision detection (in space-time ℝ¹ × 𝑇). For example, by searching through time 
for the earliest intersection point 𝑝 ∈ ℝB × 𝑇 between circles or bounding boxes, and then 
performing differential analysis on the intersection point 𝑝 once we have found it. Our safety 
potential is 

𝜌#Z = ºz𝑡#l:«� − 𝑝:, 𝑡Zl:«� − 𝑝:{º»
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where 𝑝: is the time coordinate of 𝑝. Notice that the 𝑘-norm in this definition of safety potential 
can be replaced by any norm where 𝑘 ≥ 1, including max-norm. We now want to compute the 
derivative e�

e89
 since that is the hard part of the expression to differentiate. 

There are a few cases. The earliest intersection can either be an intersection between two 
smooth surfaces, or the intersection between a vertex of 𝐴 and a smooth surface of 𝐵, or 
between a smooth surface of 𝐴 and a vertex of 𝐵.  

Movement of Safety Procedure Surface with 
Respect to Actor State 
The safety procedure is viewed as a trajectory of the pose represented by 𝑦(𝑡),	𝑅(𝑡) applying to 
points on the occupied set definition of the actor. Let us say that we have a point 𝑧 in the actor 
coordinate system. It then moves to point  

𝑤(𝑡) = ¾𝑦(𝑡) + 𝑅(𝑡)𝑧
𝑡

¿ 

as a function of time as the safety procedure plays out. If we perform differential analysis of 
those world points with respect to change in 𝑥#, that gives us an understanding of how the object 
surface moves in space-time due to change in 𝑥#. To first order, the shape of the surface in 
space-time does not change (since that depends on second derivatives). Thus, if we know the 
local shape of the space-time surface of the safety procedure for an actor (either a surface 
normal or a vertex curve tangent), plus the derivative eÀ

e89		
, that gives us all we need to perform 

differential analysis of how the surface behaves. If we have that for both actors, we can combine 
the result to determine the change in the intersection point. We have 

𝜕𝑤
𝜕𝑥#		

=
𝜕𝑦
𝜕𝑥#

+
𝜕𝑅
𝜕𝑥#

𝑧 

For our first example, this can be concretized to 

𝜕𝑤
𝜕𝑥#		

= ¾𝐼 𝑠(𝑡)𝐼 + [𝑧 𝑧<] 𝑡𝑑
0 0 0

¿ 

Smooth vs. Smooth 
In the case where the earliest intersection point happens between two smooth surfaces, such 
as those swept out by two circles moving over time, the local surfaces at that intersection point 
can both be approximated to first order by a plane (in space time). The plane can be found by 
computing 7À

7:
 at the intersection point and taking the cross product with a direction vector for a 

tangent vector to the smooth or polygonal shape at the same point (which for a polygon can be 
found by transforming its end points by 𝑦(𝑡),	𝑅(𝑡) and subtracting them). Assume that we have 
such normal vectors to the local plane of both surfaces, related to both actors. Assume also 
that those vectors have been normalized to unit magnitude—call the result 𝐴<, 𝐵<. Then we 
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observe that local motion of the 𝐴-surface is measured by eÀ
e89		

. The correction along the  𝐴-

surface to ‘get back to’ the 𝐵-surface is then some multiple 𝑞 of (𝐼 − 𝐴<𝐴<.)𝐵<. The sum of those 
two is the vector 

𝜕𝑝
𝜕𝑥#

= (𝐼 − 𝐴<𝐴<.)𝐵<𝑞 +
𝜕𝑤
𝜕𝑥#		

 

we are looking for. We also have the constraint that 𝐵<.
e�
e89

= 0, which allows us to solve for  

𝑞 = −
𝐵<.

𝜕𝑤
𝜕𝑥#		

1 − (𝐴<.𝐵<)U
 

which yields 

𝜕𝑝
𝜕𝑥#

=
𝜕𝑤
𝜕𝑥#		

+
((𝐴<.𝐵<)𝐴< − 𝐵<)
1 − (𝐴<.𝐵<)U

Ã𝐵<.
𝛿𝑤
𝛿𝑥#		

Å 

which is an efficient way to perform the calculation. 

Vertex vs. Smooth 
In the case where the intersection is between the curve swept out by a vertex of the 𝐴-surface 
and a smooth part of the 𝐵-surface, we instead assume that we have a tangent vector 𝐴. =
7À9
7:

/ Æ7À9
7:
Æ to the curve and a normal vector to the space-time 𝐵-surface. Again, also assume 

that those vectors are normalized to unit magnitude. We get a very similar calculation as for the 
smooth-to-smooth case. The local motion of the 𝐴-curve is measured by eÀ

e89		
. The correction 

along the  𝐴-curve to ‘get back to’ the 𝐵-surface is then some multiple 𝑞 of 𝐴.. The sum of those 
two is the vector 

𝜕𝑝
𝜕𝑥#

= 𝐴	.𝑞 +
𝜕𝑤
𝜕𝑥#		

 

we are looking for. We also have the constraint that 𝐵<.
e�
e89

= 0, which allows us to solve for  

𝑞 = −
𝐵<.

𝜕𝑤
𝜕𝑥#		

𝐴..𝐵<
 

which yields 

𝜕𝑝
𝜕𝑥#

=
𝜕𝑤
𝜕𝑥#		

−
𝐴	.
𝐴..𝐵<

Ã𝐵<.
𝜕𝑤
𝜕𝑥#		

Å. 
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Smooth vs. Vertex 
In the case where the intersection is between a smooth part of the 𝐴-surface and the curve 
swept out by a vertex of the 𝐵-surface intersecting, we instead assume that we have a normal 
vector to the space-time 𝐴-surface and a tangent vector 𝐵. =

7Àd
7:

/ Æ7Àd
7:
Æ to the curve. Again, 

also assume that those vectors are normalized to unit magnitude. The local motion of the 𝐴-
surface is measured by eÀ

e89		
. The movement of the intersection point along the 𝐵-curve is e�

e89
=

𝐵.𝑞, which is some multiple 𝑞 of 𝐵.. The subtraction of those two has to be in the plane of the 
𝐴-surface and hence perpendicular to 𝐴<, which yields 

𝐴<. Ã𝐵	.𝑞 −
𝜕𝑤
𝜕𝑥#		

Å = 0 

and 

𝑞 =
𝐴<.

𝜕𝑤
𝜕𝑥#		

𝐴<.𝐵.
 

which yields 

𝜕𝑝
𝜕𝑥#

=
𝐵	.
𝐴<.𝐵.

Ã𝐴<.
𝜕𝑤
𝜕𝑥#		

Å. 

 

References 
[1] https://en.wikipedia.org/wiki/Bump_function 

[2] https://en.wikipedia.org/wiki/Mollifier 

[3] https://en.wikipedia.org/wiki/Non-analytic_smooth_function 

 




