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Abstract  

The knowledge about FeO con
and it influences the latter technologica
the slag is sent and analyzed in the labo
FeO content estimation, based on the 
steel slag composition measurement. 

1. Introduction 

Steel slag consists of metal ox
steel as it provides information about it
the FeO content in steel slag. Amon
spectrometry [2] and thermography  [3]
chemistry [5] and remote sensing [6]. 
chemical content basing on scattered 
elastic and Raman and Brillion scatterin
content in steel slag using the laser light

2. Importance of slag in metallurgic

Metallurgical slag is a multi-com
processes. In liquid state, slag is regarde
with molecular theory as multi-compo
processes [9,10,16]. Substantially, me
steelmaking process it absorbs che
desulphurization, dephosphorization an
absorption of impurities introduced along

Steelmaking slag,is of much l
composition, floats on the surface of st
from atmospheric air. The slag, absorbin
process.  

Presence of particular compon
with steel, and as a corollary on the pr
CaO, SiO2, MgO, Al2O3, FeO, MnO, P
important. CaF2, CaS, CaC2 are to 
concentration in slag in steelmaking pro
facilitates application of adequate tec
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Knowledge of FeO concentration in steelmaking slag allows to optimize slag deoxidation, and as a corollary the 
use of deoxidants, thus impacts production cost and metallurgical purity of steel. However estimation of FeO 
concentration in slag, based on balance calculations is difficult, as the said oxide is a product of oxidation of main 
component of charge material, i.e. iron [14].  

Samples of the slag described in this paper (fig. 3-8) were collected from the Electrical Arc Furnace (EAF) in the 
different phases of the production process. Samples were examined in the chemical laboratory in order to mark chemical 
composition according to the procedures shown in the table 1. 

Table 1.Procedures for testing slag composition 

Indication Testing procedure, method used, equipment 

Al2O3 
CaO 
Fe 
MgO 
MnO 
P2O5 
SiO2 

 
ICP-OES Instruments 5100 ICP-OES [19] 

Fe (II+III) 
Fe met 

Titrimetric analysis 
 

S Coulometric method, Coulomat 702 SO/CS [20] 

3. Raman spectroscopy 

Raman spectroscopy is an advanced radiation method used already in different applications [4, 5, 6]. The main 
idea of Raman scattering, which differentiates it from Rayleigh one, relies on the shift of frequency of a monochromatic 
light, resulting from the coupling between the molecules vibrational energy levels and the incident radiation as shown in 
figure 1 [21]. For Raman Stokes scattered radiation, the final energy state E2 is higher than the initial state E1, the 
molecule is exited from. For Raman anti-Stokes radiation, the initial energy state is E2. The interaction between the 
molecule and an incident photon moves it to a virtual energy state E4, and then the molecule’s energy drops to lower, 
final state E1 [7]. 

 
Fig. 1: Spectroscopic transitions underlying several types of vibrational spectroscopy. ʋ0 is the source laser 

wavenumber, while ∆ʋ is the Raman shift[21] 

In chemistry, the backscattered Raman spectra contain information about the structure and chemical 
composition of a sample. It is indicated by the Raman shift. In addition, this technique provides essential information 
about the concentration of the compositions. The concentration is indicated by the Raman scattered radiation intensity. 
One must notice that the Raman spectroscopy signals are very weak. In consequence, it requires better optics in 
comparison to absorption methods such as e.g. Fourier transform infrared spectroscopy. Another essential matter that 
plays an important role is the compatibility and alignment of Raman spectroscopy system for a given application, in order 
to obtain accurate and reproducible results for quantitative measurements. Laser power, frequency stability, polarization 

ʋ0 ʋ0 
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of light and path length has to be taken into consideration[21]. It is important to know that anti-Stokes scattered radiation 
strongly depends on temperature. This effect is successfully used in Distributed Temperature Sensing (DTS) [6,7]. 

4. Materials and experimental setup 

In this research, one examined 6 samples of steel slag, with different chemical compositions and in solid and 
powder forms. Figure 2 presents an exemplary piece of the solid steel slag and its microscopic view. 

 
 

 
Fig. 2: Exemplary piece of the tested steel slag (a), microscopic view of the steel slag piece (b) 

HT Raman Spectrometer by EmVision was used in the tests. It operates with NIR laser source at the 

wavelength λ=785 nm, with maximum power P=20 mW [27]. This device is combined with a high performance Raman 
filters integrated in the fibre optic probe. The laser light is delivered into investigated sample through the light guide. The 
backscattered waves are then directed to the Raman spectrometer by a directional coupler. Figure 3 presents the block 
diagram of the testing system. The Raman spectrometer is delivered with special software, which helps reading the 
backscattered signals' wavenumbers. Analysing the backscattered signals allows obtaining information about the content 
of FeO and other metal oxides in steel slag samples.   

 
Fig. 3: Block diagram of the testing system 

5. Exemplary results 

Figures 4-9 present the chemical composition and the obtained Raman spectra corresponding to the 
investigated samples. Based on the data in literature, one can find the Raman shifts for the chemical compounds for the 

wavelength of used NIR laser source λ=785 nm.  

For example, for iron oxides FeO, Fe2O3 and Fe3O4, Raman scattered radiation can be observed in the spectral 
range 600-750 cm

-1 
[22] [23]. For aluminium oxide (alumina) Al2O3, the return scattered radiation is at 420 cm

-1
 [24], for 

CaO at 1080 cm
-1

 [25] and for MgO the peak of radiation appears at 617 cm
-1

 [26]. Due to the high concentration of iron 
oxides in the slag samples, the highest intensity is obtained at 612 cm

-1
. The results of our tests confirm the spectral 

ranges of Raman scattered radiation found in the scientific literature. Some insignificant shifts to higher or lower values of 
wavelength were also observed. These shifts might have shown up due to the diversity of the chemical composition of 
the tested samples. It is remarkable, that the wavenumbers, at which the peaks emerge, are the same for all samples. It 
denotes that the Raman spectroscopy is a reproducible and precise method.  In addition, the Raman spectra intensities 
vary due to the difference of concentration of metal oxides in each of the measured samples. 

 

Directional 
Coupler 

Laser 

Raman 
spectrometer 

Sample 

Computer 

(a) (b) 
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Fig. 4: Chemical composition of the sample 1A and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 

 
Fig. 5: Chemical composition of the sample 1B and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 

 

 
Fig. 6: Chemical composition of the sample 1C and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 
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Fig. 7: Chemical composition of the sample 2A and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 

 
Fig. 8: Chemical composition of the sample 2B and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 

 
Fig. 9: Chemical composition of the sample 2C and its Raman spectrum acquired using NIR laser with power P=20 mW 

and wavelength λ=785 nm 
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6. Conclusion 

Steel slag content is studied using several methods, in order to obtain information about the steel quality and 
the effectiveness of steelmaking process. Raman spectroscopy provides detailed information about the material content 
of the slag. The intensity of Raman scattered radiation refers to the concentration of a particular compound in the slag. 
For some materials the spectral ranges of Raman radiation are overlapping.  Previous Raman spectroscopy studies 
focused on the examination of individual metals separately. The method presented in this paper implements Raman 
spectroscopy to study steel slag containing several metals and oxides. In addition, this method is useful for estimation 
the oxides content in steel slag, as shown by the Raman shift values. Subsequent studies are planned, with better 
calibration and accuracy, in order to obtain quantitative results for different oxides in steel slags.  
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