Wheat-bran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice

Int J Mol Med. 2017 Feb;39(2):407-414. doi: 10.3892/ijmm.2016.2831. Epub 2016 Dec 14.

Abstract

Whole-wheat intake is known to reduce the risk of metabolic syndrome. However, the active component remains unclear. Recently, we identified bioactive peptides [leucine-arginine-proline (LRP) and leucine-glutamine‑proline (LQP)] from wheat bran autolytic hydrolysate. The present study aimed to investigate the effects of LRP and LQP on non-alcoholic steatohepatitis (NASH) in a mouse model. We also evaluated the effects of these peptides on oxidative stress and on the AMP-activated protein kinase (AMPK) signaling pathway, two major pathogenic factors of NASH. Seven‑week-old male C57BL/6 mice were fed a high-fat diet for 10 weeks and administered water supplemented with 0.05% LRP, 0.20% LRP, 0.05% LQP, or 0.20% LQP (each n=5) or distilled water (control; n=5) ad libitum. Oxidative stress was evaluated by measuring the serum levels of diacron reactive oxygen metabolite (d-ROM) and biological antioxidant potential (BAP). Hepatic expression of phosphorylated AMPK and phosphorylated acetyl-CoA carboxylase (ACC) were evaluated by immunoblotting. The result showed that non‑alcoholic fatty liver disease activity score was significantly decreased in all types of treatment. Serum d-ROM levels were significantly decreased in the 0.20% LRP group, but not in the 0.05% LRP, 0.05% LQP, and 0.20% LQP groups. Serum BAP levels were significantly increased in the 0.05% LRP and 0.20% LRP groups, but not in the 0.05% LQP and 0.20% LQP groups. Immunoblotting analysis revealed that the expression of phospho-AMPK was increased whereas that of phospho-ACC was decreased in the 0.20% LQP group. In conclusion, we demonstrated that both LRP and LQP alleviated the severity of NASH in a high-fat diet-induced NASH mouse model. In addition, we showed that LRP and LQP modulated oxidative stress and upregulated AMPK/ACC, respectively. Thus, LRP and LQP may constitute clinically applicable therapeutic agents for NASH.

MeSH terms

  • AMP-Activated Protein Kinases / metabolism*
  • Acetyl-CoA Carboxylase / metabolism*
  • Amino Acids, Branched-Chain / metabolism*
  • Animals
  • Antioxidants / metabolism
  • Body Weight
  • Diet, High-Fat / adverse effects*
  • Disease Models, Animal
  • Liver / metabolism
  • Liver / pathology
  • Male
  • Mice
  • Non-alcoholic Fatty Liver Disease / etiology*
  • Non-alcoholic Fatty Liver Disease / metabolism*
  • Non-alcoholic Fatty Liver Disease / pathology
  • Oxidative Stress*
  • Peptides / chemistry
  • Peptides / metabolism
  • Reactive Oxygen Species / metabolism
  • Triticum / chemistry

Substances

  • Amino Acids, Branched-Chain
  • Antioxidants
  • Peptides
  • Reactive Oxygen Species
  • AMP-Activated Protein Kinases
  • Acetyl-CoA Carboxylase