Purpose: To determine the flow-corrected luminal permeability, P(c), of lipophilic drugs measured by the in situ brain perfusion method under circumstances where the traditional Crone-Renkin equation (CRE) method, using diazepam as a flow marker, often fails.
Methods: The pH-dependent rate of brain penetration of five lipophilic drugs (amitriptyline, atomoxetine, imipramine, indomethacin, maprotiline, sertraline), as well as of atenolol and antipyrine, were measured in Sprague-Dawley rats. A new pH-dependent CRE was derived and applied to remove the hydrodynamic component of effective permeability, P(e), to produce P(c) values.
Results: It was shown by the analysis of the in situ data in the pH 6.5-8.5 interval for the lipophilic bases that the average vascular flow F(pf) = 0.036 mL∙g(-1)∙s(-1), centered in a "flow-limit window" (FLW) bounded by P (e) (min) = 170 and P (e) (max) = 776 (10(-6) cm∙s(-1) units). It was shown that the traditional CRE is expected not to work for half of the molecules in the FLW and is expected to underestimate (up to 64-fold) the other half of the molecules.
Conclusion: The new pH-CRE flow correction method applied to lipophilic ionizable drugs, based on the pH partition hypothesis, can overcome the limitations of the traditional CRE.