Robust real-time pattern matching using bayesian sequential hypothesis testing

IEEE Trans Pattern Anal Mach Intell. 2008 Aug;30(8):1427-43. doi: 10.1109/TPAMI.2007.70794.

Abstract

This paper describes a method for robust real time pattern matching. We first introduce a family of image distance measures, the "Image Hamming Distance Family". Members of this family are robust to occlusion, small geometrical transforms, light changes and non-rigid deformations. We then present a novel Bayesian framework for sequential hypothesis testing on finite populations. Based on this framework, we design an optimal rejection/acceptance sampling algorithm. This algorithm quickly determines whether two images are similar with respect to a member of the Image Hamming Distance Family. We also present a fast framework that designs a near-optimal sampling algorithm. Extensive experimental results show that the sequential sampling algorithm performance is excellent. Implemented on a Pentium 4 3 GHz processor, detection of a pattern with 2197 pixels, in 640 x 480 pixel frames, where in each frame the pattern rotated and was highly occluded, proceeds at only 0.022 seconds per frame.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Bayes Theorem
  • Computer Systems
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity